Management of time-dependent multimedia data:
T.D.C. Little and J.F. Gibbon

Multimedia Communications Laboratory
Department of Electrical, Computer and Systems Engineering
Boston University, Boston, Massachusetts 02215, USA
(617) 353-9877, (617) 353-6440 fax
tdcl@bu.edu, jfg@bu.edu

MCL Technical Report 09-01-1992

Abstract—A number of approaches have been proposed for supporting high-bandwidth time-
dependent multimedia data in a general purpose computing environment. Much of this
work assumes the availability of ample resources such as CPU performance, bus, 1/0O, and
communication bandwidth. However, many multimedia applications have large variations in
instantaneous data presentation requirements (e.g., a dynamic range of order 100,000). By
using a statistical scheduling approach these variations are effectively smoothed and therefore
more applications are made viable. The result is a more efficient use of available bandwidth
and the enabling of applications that have large short-term bandwidth requirements such as
simultaneous video and still image retrieval. Statistical scheduling of multimedia traffic relies
on accurate characterization or guarantee of channel bandwidth and delay. If guaranteed
channel characteristics are not upheld due to spurious channel overload, buffer overflow
and underflow can occur at the destination. The result is the loss of established source—

destination synchronization and the introduction of intermedia skew.

In this paper we present an overview of a proposed synchronization mechanism to limit
the effects of such anomalous behavior. The proposed mechanism monitors buffer levels to
detect impending low and high levels on frame basis and regulates the destination playout
rate. Intermedia skew is controlled by a similar control algorithm. This mechanism is used
in conjunction with a statistical source scheduling approach to provide an overall multimedia

transmission and resynchronization system supporting graceful service degradation.

Keywords: Multimedia synchronization, scheduling.

n Proc. SPIE Symposium OE/FIBERS’92, (Enabling Technologies for Multi-Media, Multi-Service Net-
works), Boston, Massachusetts, September 1992, SPTE Vol. 1785, pp. 110-121. This material is based upon
work supported in part by the National Science Foundation under Grant No. TRI-9211165.

1 Introduction

Multimedia as a technology can now be interpreted to describe computer systems supporting
audio and video as data types. Characteristic of these data types is the need for timely data
retrieval and delivery to the user. A multimedia computer system must overcome any system
delays caused by storage, communication, and computational latencies in the procurement
of data for the user. These latencies are usually random in nature, being caused by shared
access to common system resources such as networks, storage devices and system buses.
In a distributed multimedia information system (DMIS), multiple data sources including
databases, video cameras, and telephones can be connected to user workstations via high-
speed packet-switched networks. System latencies in a DMIS are problematic because several
streams originating from independent sources can require synchronization to each other in

spite of the asynchronous nature of the network.

To support the presentation of time-dependent data, scheduling disciplines associated
with real-time operating systems are necessary. These data are either generated in real-time
or are assumed to be retrieved and transmitted in real-time; coming from storage at a rate
approximately equal to consumption at the receiver. However, the real-time requirements of
multimedia data can be relaxed because data delivery can tolerate some occasional lateness,
i.e., catastrophic results do not occur when data are not delivered on time. The design
of a system to support time-dependent media must account for latencies in each system
component used in the delivery of data, from its source to its destination. Therefore, specific

scheduling is required for storage devices, the CPU, and communications resources.

Recent work supporting time-dependent data is for live data communications, data stor-
age systems, and general distributed systems®. For data communications, live, periodic data
sources such as packet audio and video are considered, and the capacity of the communi-
cation channel is assumed to not be exceeded. These configurations typically use a single
connection because there is seldom any need to deliver synchronous data streams from mul-
tiple independent live sources. Packet delay variations introduced by queuing in the channel
are limited at the receiver by buffering. Our view of an analogous system supporting mul-
timedia sessions is illustrated in Fig. 1. In this model, data are transmitted from multiple
independent sources and are buffered at the receiver prior to delivery to the appropriate

presentation subsystems.

One of the difficulties in supporting multimedia sessions is the synchronization of related

media in what we call intermedia synchronization. The lip-sync of audio and video is typical,

fifo buffer pool

disk . Audio
\ S / Subsystem

’

. network

~ —> Graphics

Subsystem

Figure 1: Data retrieval from multiple independent sources and multimedia playout

but synchronization to both real-time and to other streams can be required in a multime-
dia application. When data are transmitted (or stored) via different channels (disks) and
synchronization is required, a mechanism is necessary to ensure synchronous presentation or
playout to the application. Interleaving, or multiplexing of interrelated media can be used
for multimedia storage or transmission'®. However, it can only be applied to a single stor-
age subsystem or communication channel. Furthermore, the interleaving process increases
overhead, especially for compressed data formats, and requires that all media have the same
quality of service!. Multicast channels introduce similar synchronization problems. Earlier
techniques provide synchronization by allowing the destination to track the source for packet

audio or video communications®!?

. We generalize the single-medium model to multimedia
sessions, allowing intermedia synchronization among multiple sources in a multidrop fash-
ion. Furthermore, we extend previous work® by providing a mechanism to gracefully degrade
time-dependent presentation during periods of resource overload and channel data loss due

to network dropping.

Our approach is to monitor and control queue size and intermedia skew introduced after
session establishment by frame drop and duplication. This scheme prevents disruptions in
playback caused by unanticipated temporary overloads due to events such as file transfers,
and effectively extends the buffering capability of the receiver without increasing memory
use or latency. Although this would seem to duplicate the efforts provided by a statistical
resource allocation mechanism for bandwidth and delay, we anticipate both short and long-
term guarantee violations in any real system. Furthermore, data frames can be lost in the
network (e.g., via asynchronous transfer mode congestion control) which will require the

source to manage intermedia synchronization in the presence of frame losses.

Feedback can also be used to change the characteristics of the source though rate-based

17,14

transmission control® and variable source resolution contro Both of these approaches

address changing channel loading scenarios rather than specific playout synchronization. For
playout synchronization, the use of feedback has been applied to audio and video delivery
at the bit? and packet levels>*13. A digital phase-locked loop (DPLL) can track either
the stream of incoming bits or packets to derive the source clock frequency for playout
synchronization. However, for compressed, variable bit-rate (VBR) data formats, the bit
synchronization does not apply. Neither of these schemes can deal with multiple sources
because they cannot track more than one source. Furthermore, there is no provision for
dealing with a fixed data presentation rate at the destination which prevents control of
playout rate. We propose the use of an intermedia synchronization mechanism at the time
of playout by using a frame-based control loop instead of a bit or packet-based loop. Playout
times are assumed to be fixed at a constant value, with playout rate controlled by selective
duplication and dropping. This proposal differs from other approaches that assume a variable

playout rate necessary for the destination to track the source.

In the remainder of this paper we describe a system for managing synchronization for
multiple streams of real-time multimedia traffic. In Section 2 we define the characteristics
of intermedia synchronization and the framework for its control. In Section 3 we outline an

implementation of the control mechanisms. Section 4 concludes the paper.

2 Characterization and Control of Intermedia Synchro-
nization

Synchronization is critical for the operation of any multimedia presentation environment.
General-purpose computer systems do not have the dedicated hardware data paths found
in video cassette recorders that provide synchronous audio and video presentation. Instead,
storage devices, the network, the system bus, and dynamic memory must be carefully re-
served and scheduled to provide similar but more flexible functionality. At each component
and at different levels of system abstraction the synchronization requirements differ in char-
acter and control. In this section we establish parameters affecting various levels and propose

a model for controlling intermedia synchronization.

2.1 Characterization of Synchronization

The synchronization of multimedia traffic streams need not be viewed as absolute. We

can define a quality of service (QOS) associated with intermedia synchronization. For ex-

4

ample, a synchronization tolerance defines the bounds on the differences in desired versus
actual playout times for continuous data streams. QOS parameters can characterize perfor-
mance characteristics at any level in the system including end-to-end delays, startup times,
dropouts, packet error rate, etc. The values of the QOS parameters depend on each medium

and are interpreted in different ways by system components and the user.

With a QOS framework, the needs of both the user and service provider can be managed.
For the user, QOS parameters ensure acceptable service over a session by control of inter-
media synchronization. For the service provider, resources can be allocated based on QOS
to support many sessions. Ideally, QOS provides a relationship between cost and quality.
However, many variables affect QOS for intermedia synchronization. We seek a smooth cost
vs. quality parameter to allow graceful degradation of service or service change to support
different system loadings. This would support graceful service degradation in response to
load changes (for individual connections), and would support resource allocation decisions

at the operating system level.

We define timing parameters characterizing intermedia and real-time synchronization
for the delivery of periodic (e.g., audio and video) and aperiodic data (e.g., text and still
images). Parameters applicable to aperiodic data are mazimum delay, minimum delay,
and average delay as measured with respect to real time or with respect to other aperiodic
data. For periodic data, maximum, minimum, and average delay are also applicable to
individual data elements, but in addition, instantaneous delay variation or jitteris important
for characterizing streams. These parameters can describe time skew with respect to real-

time as well as to other periodic streams in an manner analogous to a phase angle.

-
-
-

real-time

»
S
T
S

>
>
>

playout time

(a) (b) (©

Figure 2: Skew: (a) lagging, (b) none, (c) leading

Synchronization implies the occurrence of multiple events at the same instant in time.
If they occur at different instants they are skewed in time (Fig. 2). For two sequences
of events (e.g., sequences of audio and video data frames) individual differences between

corresponding events are called jitter, whereas the average difference over some interval of

n frames is called skew.

For periodic data such as audio and video, data can be lost resulting in dropouts or gaps
in playout. Such losses cause the stream of frames to advance in time or cause a stream
lead. Similarly, if a data frame is duplicated, it causes the stream to retard in time or a
stream lag. By dropping or duplicating frames we are able to control the rate of playback
assuming a constant playout interval between frame playouts. We can monitor skew of a
periodic stream by keeping track of the number of dropped, lost, and duplicated frames.
We can control skew by forcing frame drops or duplications. Initiation of frame dropouts is
permissible for audio and video which have substantial short-term temporal data redundancy.

For text and graphics, this is not true, however, their tolerance to delay is greater.

In our proposed mechanism we monitor skew at the time of playout when delay variations
have the most impact on the user. We therefore are interested in the skew of the most
recently presented frame, assuming a fixed playout rate (e.g., 30 frames/s for video). Skew
can be measured with respect to real-time as an offset to some mutual presentation start
time between the source and destination, or can be measured with respect to another stream.
Because many streams are possible, we characterize both intermedia and real-time reference

skew for k streams using a matrix representation as,

0 skip skig sk g1

sko 1 0 skos sko k41

skew = sks 1 0 sks j11
Skrt11 Skry12 Skri1s 0

where sk, , describes the skew from stream p to stream ¢ (g to p is negative) and the
k + 1th element corresponds to a real-time reference. We also define a target skew matrix
tsk, , (analogous to Ravindran’s divergence vector'®) which indicates target values which can
be interpreted by a skew control function. Related to skew is data utilization®. Utilization U
describes the ratio of the actual presentation rate to the available delivery rate of a sequence
of data. Frame drops will decrease utilization whereas duplicates will increase utilization

from its nominal unit value. Either skew or utilization can be used as a control variable.

Skew best measures intermedia synchronization for continuous stream media. For charac-
terization of discrete events associated with timed playout of text, graphics and still images,
we can apply real-time scheduling terminology as already mentioned (e.g., maximum and

minimum delay). However, it is often advantageous to decompose segments of continuous

| afW_2| afw_1| af,, |

vf

z-1 z

Figure 3: Blocking for continuous media

media into blocks to permit efficient storage and manipulation'®. With this decomposition,
blocks associate a single start deadline with a sequence of periodic stream frames, as illus-
trated in Fig. 3. In this example the decomposition is performed on a motion picture and

blocks of audio and video are associated with a single logical scene.

2.2 Control of Intermedia Synchronization

Intermedia synchronization can be approached several ways. One approach is to set up an
open-loop path from source to destination and allow the destination to track the source clock.
Buffering provides accommodation of delay jitter, and source tracking handles changes to
long-term average delay. When multiple independent sources exist, this approach cannot
work in the presence of clock variations. The destination must lose synchronization or take
control of the source delivery rate via feedback. Furthermore, initiation of data transfer
for multiple sources can cause additional skew between streams as initiation messages can
traverse different network paths. At the destination, intermedia synchronization relies on
the availability of data to playout. Maintaining a constant skew between streams assumes
the presence of nominal levels of queued data frames. If short-term load anomalies occur
then graceful degradation of service must be provided. To provide consistent service at the
source, a statistical scheduling approach can be used to schedule the times when data must be
retrieved and then transmitted to the destination. Subsequently, spurious load changes can
be accommodated by buffering and service degradation using our proposed control algorithm.
In summary, a statistical scheduler manages transmission times with respect to the source

whereas the destination provides buffering for delay variations and service degradation for

transient load changes.

2.2.1 Statistical Source Pacing Control

For live sources such as video cameras, the destination has no control over the times when
packets are generated and transmitted. The destination can only control the source clock
(when not multicast to other destinations) or the end-to-end latency, or control time, between
frame generation and playout. This latter approach has limited utility in conversational
services such as videotelephony due to user intolerance to large end-to-end delay. For stored-
data sources, the rate at which data are put on the channel can be fully controlled subject to
available or reserved bandwidth constraints. We therefore present a synopsis of our statistical

transmission scheduler for handling these two cases'!.

The approach uses a priori knowledge of data traffic characteristics to facilitate schedul-
ing, when available. Otherwise, the statistical nature of the live multimedia traffic source
is anticipated through existing statistical methods. Essentially, the dynamic bandwidth re-
quirements of a multimedia object are fit into finite resources of delay and channel capacity
rather than the resources dictating the feasibility of the application. The result is that de-
lays are traded-off for the satisfaction of a playout schedule, even when the capacity of the

channel is exceeded by the application.

={0} | -

Figure 4: Example relation between playout and retrieval schedules

Depending on their size and playout times, transmission of a sequence of objects is either
back-to-back or introduces slack time. We define an optimal schedule for a set to be one that
minimizes the object’s control times. Two constraints determine the minimum control time
for a set of objects. These are the minimum end-to-end delay (MD constraint) per object,
and the finite capacity (FC constraint) of the channel. The MD constraint simply states that
an object cannot be played-out before arrival. This constraint must always be met. The FC

constraint describes the relation between a retrieval time and its successor when the channel

is busy and accounts for the interarrival time due to transit time and variable delays. It also

represents the minimum retrieval time between successive objects.

Given the characteristics of the channel and of a composite multimedia object (D,, D,, Dy, C, Sy, 7, 04, I
corresponding to variable, fixed, and channel transmission delays, channel capacity, packet
size, playout deadline, object size, and probability of lateness), a schedule is constructed!!.
Construction begins by establishing an optimal retrieval time for the final, nth object, i.e.,
¢n = ™, — T,,. The remainder of the schedule can be determined by iterative application of
the MD and FC constraints for adjacent objects. The resultant schedule indicates the times
to put objects onto the channel between the source and destination (e.g., Fig. 4), and can
be used to establish the worst case buffering requirement. During slack periods objects are
scheduled based on playout time and object size. During busy periods objects are scheduled

based on channel availability as well.

Feedback from the destination to the source can provide a course adjustment to the
precomputed data delivery schedule to eliminate initiation skew or long-term changes to the
expected delay distribution. This is achieved by adding an offset to each data stream by
passing this skew parameter to the retrieval/transmit scheduler (i.e., ¢, = &; + of fset).
The delay can then be adjusted on an ongoing basis by feedback using the measured long-
term queue level and playout skew. This is somewhat coarse because the schedule has been

statically precomputed.

2.2.2 Buffer Level and Skew Control

By using the statistical source pacing control, the destination can be configured with a buffer
of sufficient length to accommodate measured or guaranteed channel delay variations. How-
ever, changes in the channel delay characteristic in time or other spurious violations in delay
and bandwidth guarantees can cause buffer overflow or underflow resulting in anomalous
playout behavior. We propose a control mechanism to monitor and control levels of queued
periodic stream data as well as intermedia synchronization as specified by a target skew
matrix. This mechanism can then provide graceful degradation of playout quality during

periods of spurious network or device behavior.

One of our assumptions in the design of a control mechanism is that the playout interval
for periodic data streams is constant. For example, video frames have a playout interval
of 33 ms. Because this playout interval cannot be changed dynamically, we control the

playout rate instead by changing the frame drop and duplication rates. If two streams are

skewed we can either drop frames from the lagging one to increase its speed or duplicate
frames of the leading one to decrease its speed (or both). The tradeoff between dropping
versus duplicating is the loss of data versus the increase in end-to-end latency that affects
interactive sessions. Depending on the priority of these two considerations and the current

queue levels, the appropriate policy can be applied.

attempt overflow attempt intermedia attempt underflow
control synchronization control
queue tail --- -9 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ - - - queue head
high low
threshold threshold

Figure 5: Three queue states

We propose two related control paradigms. The first is intended to maintain intermedia
synchronization between streams, or between a stream and a real-time reference, when op-
erating at nominal queue levels (Fig. 5). The second is for providing graceful degradation
when queue underflow or overflow is pending and attempts at intermedia synchronization are
abandoned. For intermedia synchronization we are investigating three policies with respect
to intermedia synchronization: (1) minimize real-time skew, (2) minimize inter-stream skew,
and (3) minimize session aggregate inter-stream skew. The first policy targets synchroniza-
tion of playout with a constant end-to-end delay established during connection set-up. This
policy is appropriate for streams such as high-quality digital audio. The second policy places
priority on maintaining synchronization between streams rather than between a stream and
a real-time reference, but could be used in conjunction with the first policy. The third policy
is to minimize skew over a set of streams within a multimedia session. For queue level con-
trol, our goal is to provide graceful degradation prior to queue under or overflow. Control
takes effect upon reaching either low or high thresholds and results in modification of the

playout rate via frame drop or duplication.

To implement intermedia synchronization we use a control loop that monitors the queue
level and playout skew. Control is provided by changing the playout rate (or utilization)
using frame drop and duplication. Oscillation of the system is prevented by determination
of appropriate time constants for queue level and skew measurement. Utilization, ideally a
continuous parameter nominally of unit value, is representative of the playout rate. How-

ever, because the drop and duplicate parameters rely on integral values, utilization takes on

10

discrete values. Duplication causes U > 1 while dropping (loss of frames) causes U < 1.
Utilization over an interval comprised of n frames can be determined using the formula,
U = pass + slip/pass, where pass and slip correspond to played and dropped/duplicated
frames. For dropped frames, pass indicates the total number of frames evaluated, and slip,
a positive integer, corresponds to the number to drop from pass passing frames. For du-
plicated frames, pass has the same interpretation, however, slip indicates the number of
duplications of the last frame in the sequence. This formulation leads to a fast evaluation

at playout time.

3 Intermedia Synchronization Mechanism

In this section we describe our overall system for managing real-time multimedia presentation
and dynamic quality of service adjustment. Our approach relies on an initialization phase, a
retrieve/transmit process, a playout process, and a monitor/control process. These processes
are illustrated schematically in Fig. 6 where the source and destination are assumed to
operate asynchronously. We have formulated these components using an independent source—
destination model with the goal of supporting either a distributed or a local data model.

Each component will be described in the following subsections.

fifo buffer pool

source destination

e E—

1
1
retrieve/tramsmit v playout/receive
process SO - process
monitor/control
process

Figure 6: Processes involved in delivery of time-dependent data

3.1 The Initialization Phase

In the course of a multimedia application’s execution, the establishment of a session can be

requested, requiring the activation of the delivery and playout subsystem. Typical scenarios

11

for this include establishing a videoconference or selecting a multimedia motion picture
for presentation®®. Once selected, the session timing requirements must be interpreted for

connection establishment and maintenance.

For session establishment, the statistical scheduling framework described in Section 2
can be applied based on the characteristics of the requested session and the current system
resources. The result is the generation of a set of deadlines which can be used by the
retrieve/transmit process as local timing information. Included in this initialization phase
are playout time identification!®; data size characterization; bandwidth, delay and buffer
reservation; computation of a retrieval /transmission schedule, and initiation of data transfer
as applied to either live or stored data sources. The data involved in this initialization phase

are summarized in Table 1.

Table 1: Data manipulated in the initialization phase

object 4 composite multimedia object
treey object temporal representation
IT = {m} | ordered sequence of object playout times (deadlines)
Y. ={o;} | component object sizes (bits)
D, D,, D; || queuing, propagation, and transmission delays for packet of size S,

S, packet size for medium m
C channel capacity
T, control time for nth block

P(late) || requested fraction of late packets/blocks
® = {¢;} | ordered sequence of retrieval /transmission times (deadlines)
b C P set of aperiodic deadlines from ®

3.2 The Retrieval/Transmission Process

The nature of a packet-switched communications mechanism is inherently asynchronous
as is the retrieval of data from rotating storage subsystems. We model the retrieval and
transmission of data across a network as an asynchronous system component which must
be managed in order to support real-time data delivery required for multimedia presen-
tation. Flow-control (window) protocols can provide feedback necessary to prevent buffer
overflow in bulk data transfers. For real-time data streams, rate-based flow-control is more
appropriate’. However, feedback approaches alone cannot provide consistent presentation

quality under wide bandwidth variations due to network delays or multimedia object sizes.

12

A priori knowledge of the data characteristics can resolve this difficulty as typified by the

approach described in Section 2.

The retrieval /transmission process is perceived to be independent of the remaining mon-
itor and playout /receive processes to support both the local and distributed cases of data
retrieval (from local or remote sources). It is therefore an asynchronous process, whereas the

transfer of data from the buffer pool to the display mechanism can be synchronous.

The retrieval /transmission process is outlined as follows. Initially, the multimedia object
is characterized in the initialization phase and component object deadlines are determined
(IT, ®). After transfer initiation, data objects are sent to the destination based on their
deadlines and sequence number. Feedback from the destination to its source can change the
time offset of our static retrieval schedule. Data retrieval and transfer is provided by the

following retrieval /transmission algorithm outlined below.

1. whilei4 7 <2m+1 do

(a) if ¢; € ¢ and i < m then {aperiodic parts of schedule}
i. if clock > ¢; + start then
A. send object 7 to destination with appended playout deadline 7;
B.i:=1+1
(b) else
=i+ 1
(c) if ¢i not € ¢S and j < m then {periodic parts of schedule}
i. if (clock < m; + start < clock + Tg + start) then
A. send object j to the destination with appended playout deadline 7;
B.j=7+1
(d) else
Lji=7+1

The algorithm operates by iterating on the set of objects waiting for transmission, as-
suming initially that no objects are sent. The first conditional statement in the algorithm
tests for impending retrieval deadlines for objects in the culled (®°) retrieval schedule. The
second conditional statement identifies the retrieval time of the remaining objects not in the

culled schedule. The value of start reflects the variation of end-to-end delays for a session

13

that uses multiple channels and allows each source to begin transmission synchronously.
Start is determined using start; = clock + T, — T'E;, where T}, is the aggregate control time
among the channels of the session (T}, = maz({TE;,Vj}) and T'E} is the control time for the
jth channel). After initiation, the retrieve/transmit processes transfer data from sources to
the destination with attached deadlines and sequence numbers for playout. At the receiver
(destination), the arrived data are queued based on deadlines and sequence numbers inside
individual blocks. If no space is available to buffer arriving data frames, they are assumed
to be discarded.

Feedback can also be used to correct initial skew introduced at startup time. This process
is achieved by subtracting a time offset from the source clock, i.e., clock := clock — of fset.

The offset can be sent as a control message from the destination to the source.

3.3 The Playout Process

The playout must schedule the presentation of aperiodic events such as text and graphic
display and initiate the playout of segments of periodic streams of audio and video. Once
established, sequencing of these segments relies on sequence numbers rather than individual
deadlines associated with each frame. For example, a motion picture scene can have an
initial playout initiation deadline, but its component frames can be played out with respect
to this initial deadline and their individual sequence numbers. This mechanism provides
less overhead than managing a deadline for each frame. Deadlines are always arranged to
be monotonically increasing in time'®, and objects are assumed to arrive in sequence. The

playout algorithm for managing presentation deadlines is outlined below.

1. if clock > m; + start then
(a) call playout(object;) {initiate playout of block}
(b) mark object; used
(c) i:=i+1

2. for each stream k in session do

(a) if clock = tpqy then {time to play next frame}

i. call playout(rhy) {play frame at head of queue}
i. if slip < 0 then {drop required}

14

e move queue head to cause frame drop
iii. elsif slip > 0 then {duplicate required}

e move queue head to cause frame duplication
iv. else {slip =0}

e move queue head to next frame

(b) tpiay = tpiay + Ak {next playout time}

This algorithm performs two iterative loops. The first loop evaluates the current time
against the set of scheduled deadlines. At the appropriate times, it initiates their playout.
The second loop performs a similar function on periodic stream deadlines as indicated by
sequence numbers. For each steam the current frame is played-out prior to the update of
the queue head pointer based on the siip and pass control parameters set by the monitor

and control process. The details of the pointer manipulation are not shown here.

Note that the buffer to playout process is synchronous. At the appropriate intervals for
each medium (e.g., via interrupt), the current frame is evaluated for dropping or duplication.
In either case, a frame is always passed to the presentation device for playout. In contrast,

data arriving from the source are put in the receiving queue asynchronously.

3.4 The Monitor and Control Process

The monitor/control process serves three functions: monitoring queue and skew values for
each stream, providing playout rate control through utilization U, and providing source
timing feedback to initiate time offset correction. The frequency of execution is dependent
of the playout rates and block sizes of the individual presentation streams. An outline of the
monitor /control algorithm is shown below where the control variables are summarized in
Table 2.

1. for each stream k do

(a) if glevel, < qlli, then {low queue level}
e (pass, slip) := under(qlevely) {set new control values to initiate stream lag}
(b) elsif glevely, > qlhy then {high queue level}

e (pass, slip) := over(qlevely) {set new control values to initiate stream lead}

15

(c) else {nominal queue level}

e (pass, shift) := sync(qlevely, skew(k, 1)) {synchronize stream k to stream |}
2. update queue level, skew, and lost frame statistics
3. if avg_glevely, > threshold then

(a) send of fset to source

Table 2: Control variables for stream k&

glevely, | current queue level in objects/blocks
qlly queue low level threshold
qlhy, queue high level threshold
Uk playout utilization (1 = nominal)
passy || number of frames to evaluate for drop/duplicate
skipy, number of frames to drop or duplicate
of fsety || feedback signal to source to control delivery rate
sk skew from stream k to [
tsky, target skew from stream k to [
ringy || ring buffer (queue)
rhy ring buffer head pointer

rtg ring buffer tail pointer
S€qk,i sequence number of frame
Ay frame playout period for medium k

On each iteration, this algorithm invokes one of the control functions under(), over(),
or sync() depending on the queue level. If it is high or low, the algorithm provides service
degradation in the form of drops or duplicates until service is restored. If the level is nominal,
then intermedia synchronization control is applied. In all cases, the values of pass and skip
are manipulated to control the utilization at playout time and to effectively control the

playout rate.

3.5 Data Structures for Scheduling

Critical for the performance of our scheduling mechanism is the maintenance of timing
information to facilitate rapid playout scheduling and data flow. In addition to maintaining
session information, the system must keep track of arrived, dropped, and processed frames.

Because data flow though the system dynamically, a major concern is the management of

16

buffer space. To provide the FIFO buffering, an appropriate data structure is required to

allocate and deallocate buffer space for the receiver and the playout processes.

A reasonable choice for a FIFO queue mechanism is a ring buffer!”. This logical structure
allows data to be written and read in FIFO fashion and also provides for memory reuse. As
data are added to slots in the ring, obsolete elements are overwritten and reused. When the
capacity of the ring is exceeded, the newest element can overwrite the oldest unused item
providing a data dropping mechanism. However, because we desire graceful degradation
when the buffer is at capacity, we want instead to selectively drop (or duplicate) elements
from the middle of the buffer. For variable length frames, the removal of items from the
middle of the ring introduces memory fragmentation and a significant free-space allocation
problem. In our scheme, frame drop and duplication is always performed at the output of
the buffer rather than the middle, therefore, the ring buffer is sufficient for our purposes
with the stipulation that a full buffer cannot be overwritten. For a fixed size ring, variable
length buffer cells cause a variable ring capacity in number of frames. This complicates the

control paradigm somewhat because it assumes a fixed queue capacity measured in frames.

4 Conclusion

We have proposed a mechanism to enable intermedia synchronization in a distributed mul-
timedia information system. Its interesting feature is the ability to perform graceful service
degradation under anomalous system behavior. The proposed mechanism is not without
deficiencies. Our scheduling approach does not address many of the real-time scheduling
issues associated with operating system task management, i.e., we have assumed sufficient
CPU resources can be obtained by the scheduler to perform its job. In the presence of
multiple users, sessions, and other background tasks, this assumption can be invalidated.
Furthermore, our present statistical scheduling algorithm is unable to to dynamically adjust

to channel loading changes. We are currently addressing these issues.

The synchronization mechanism fits into a larger system framework of managing time
dependencies of multimedia data in a distributed multimedia information system (Fig. 7). A
DMIS must provide services for creation, modification, selection, retrieval, and presentation
for a diverse set of applications. We intend to incorporate our intermedia synchronization
mechanism into our virtual video browser (VVB) application® for content-based query and
information display as applied to digital movies, and into our news at eleven (NATE) appli-

cation which facilitates multimedia information retrieval and presentation.

17

application and application-specific user interface
(e.g., NATE, VVB)

time dependent data management
object selection and
attribute identification

temporal access control
(forward, reverse, speed)

playout scheduling

Figure 7: Application and time management views

5 Acknowledgments

This material is based upon work supported in part by the National Science Foundation
under Grant No. IRI-9211165. We would also like to thank Frank Kao for his input into the

development of the feedback mechanism.

6 References

1. A. Cambell, G. Coulson, F. Garcia and D. Hutchison, “A continuous media transport
and orchestration service,” SIGCOMM’92 Baltimore, Maryland, August 1992.

2. H.J. Chao and C.A. Johnston, “A packet video system using the dynamic time division
multiplexing technique,” Globecom 86 (IEEE Global Telecommunications Conference
Record 1986), pp. 767-772, Houston, TX, December 1986.

3. J.Y. Cochennec, P. Adam, and T. Houdoin, “Asynchronous time-division networks:
terminal synchronization for video and sound signals,” Globecom 85 (IEEE Global
Telecommunications Conference Record 1985), pp. 791-794, New Orleans, LA, Decem-
ber 1985.

4. M. De Prycker, M. Ryckebusch, and P. Barri, “Terminal synchronization in asyn-
chronous networks,” Proc. ICC “87 (IEEE Intl. Conf. on Communications '87), pp.
800-807, Seattle, WA, June 1987.

18

10.

11.

12.

13.

14.

D. Ferrari and D.C. Verma, “A scheme for real-time channel establishment in wide-

area networks,” IEEFE Journal on Selected Areas in Communications, Vol. 8, No. 3,
pp. 368-379, April 1990.

. R.J. Folz, J.F. Gibbon, T.D.C. Little, F.W. Reeve, and D.H. Schelleng, “A digital

video-on-demand database supporting content-based queries,” working paper, Multi-

media Communications Laboratory, Boston University.

M. Gilge and R. Gussella, “Motion video coding for packet-switching networks—an
integrated approach,” Proc. SPIE Conf. on Visual Communications and Image Pro-
cessing, Boston, MA, November 1991.

T.D.C. Little and A. Ghafoor, “Multimedia synchronization protocols for broadband
integrated services,” IEEE Journal on Selected Areas in Communications (Special Is-

sue: Architectures and Protocols for Integrated Broadband Switching), Vol. 9, No. 9,
pp. 1368-1382, December 1991.

T.D.C. Little and A. Ghafoor, “Distributed multimedia object management and compo-
sition,” IEEE Network (Special Issue: Distributed Applications for Communications),
Vol. 4, No. 6, pp. 32-49, November 1990.

T.D.C. Little, A. Ghafoor, and C.Y.R. Chen, “Conceptual data models for time-dependent
multimedia data,” Proc. 1992 Workshop on Multimedia Information Systems (MMIS
'92), pp. 86-110, Tempe, AZ, February 1992.

T.D.C. Little and A. Ghafoor, “Scheduling of bandwidth-constrained multimedia traf-
fic,” Computer Communications (Special Issue: Multimedia Communications), Vol.

15, No. 5, pp. 381-387, July/August 1992.

W.A. Montgomery, “Techniques for packet voice synchronization” IEEE Journal on
Selected Areas in Communications, Vol. SAC-1, No. 6, pp. 1022-1028, December 1983.

J.D. Northcutt and E.M., Kuerner, “System support for time-critical applications,”
Proc. 2nd Intl. Workshop on Network and Operating Support for Digital Audio and
Video, Heidelberg, Germany, November 1991.

A. Park and P. English, “A variable rate strategy for retrieving audio data from sec-
ondary storage,” Proc. 1st Intl. Conf. on Multimedia Information Systems ‘91, pp.
135-146, Singapore, January 1991.

19

15.

16.

17.

P.V. Rangan and H.M. Vin, “Designing file systems for digital video and audio,” Proc.

13th Symp. on Operating Systems Principles (SOSP’91), Operating Systems Review,
Vol 25, No. 5, pp. 81-94, October 1991.

K. Ravindran, “Real-time synchronization of multimedia data streams in high speed
networks,” Proc. 1992 Workshop on Multimedia Information Systems, pp. 164-188,
Tempe, Arizona, February, 1992.

L.C. Wolf, “A runtime environment for multimedia communications,” Proc. 2nd Intl.

Workshop on Network and Operating Support for Digital Audio and Video, Heidelberg,
Germany, November 1991.

20

