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Abstract–Multimedia data often have time dependencies that must be satisfied at presen-

tation time. To support a general-purpose multimedia information system, these timing

relationships must be managed to provide utility to both the data presentation system and

the multimedia author.

In this paper we propose new conceptual models for capturing these timing relationships

and managing them as part of a database. Specifically, we introduce and define n-ary

and reverse temporal relations along with their temporal constraints. These new relations

are a generalization of our earlier temporal models and establish the basis for conceptual

database structures and temporal access control algorithms to facilitate forward, reverse, and

partial-interval evaluation during multimedia object playout. The proposed relations are

defined to ensure a property of monotonically increasing playout deadlines to facilitate both

real-time deadline-driven playout scheduling or optimistic interval-based process playout.

Furthermore, we show a translation of the conceptual models to a structure suitable for a

relational database.
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1 Introduction

Multimedia refers to the integration of text, images, audio, and video in a variety of appli-

cation environments. These data can be heavily time-dependent, such as audio and video

in a motion picture, and require time-ordered playout during presentation. The task of co-

ordinating sequences of these data requires synchronization among the interacting media as

well as within each medium. Synchronization can be applied to the playout of concurrent

or sequential streams of data and to the external events generated by a human user includ-

ing browsing, querying, and editing typical of stored-data applications. This problem of

synchronizing time-ordered sequences of data elements is fundamental to multimedia data.

Timing relationships between the media can be implied, as in the simultaneous acqui-

sition of voice and video, or can be explicitly formulated, as in the case of a multimedia

document with voice-annotated text. In either situation, the characteristics of each medium,

and the relationships among them must be established in order to provide synchronization

in the presence of vastly different presentation requirements. Consider the familiar canned

multimedia slide presentation in which a series of verbal annotations coincides with a series

of images. The presentation of the annotations and the slides occur in a sequential man-

ner. Synchronization points correspond to the change of an image and the end of a verbal

annotation, representing a coarse-grain synchronization between objects. A fine-grained ex-

ample of synchronization is the lip-sync of audio and video which usually requires 25 or 30

synchronization points per second.

A multimedia system must preserve the timing relationships among the elements of the

object presentation at these points by the process of multimedia synchronization. A mul-

timedia database management system (MDBMS) must have the capability for managing

the aspects of time required for time-dependent media. This problem is different from the

provision of historical databases, temporal query languages [25, 27], or time-critical query

evaluation [14]. Time-dependent multimedia objects require special considerations for pre-

sentation due to their real-time playout characteristics as data need to be delivered from

the storage devices based on a prespecified schedule. Furthermore, presentation of a single

object can occur over an extended duration (e.g., a motion picture). Fig. 1 illustrates such

a time dependency between elements of a composite multimedia object. In this example, a

sequence of text and image elements are played-out in succession based on such a prespecified

schedule.

The tolerance of data to timing skew and jitter during playout varies widely depending on
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Figure 1: Time-Dependent Data Presentation

the medium. Audio and video require tight bounds on the order of hundreds of milliseconds,

whereas synchronous text and images can tolerate skew on the order of seconds. Furthermore,

audio and video can tolerate different absolute timing requirements during playout as the

human ear can discern dropouts in audio data more readily than of video. Based on the

data’s tolerance to skew and jitter during playout, two approaches to providing synchronous

playout of time-dependent data streams have been proposed. These consist of a real-time

scheduling approach [19], and an optimistic interval-based process approach as proposed in

this paper.

In addition to simple linear playout of time-dependent data sequences, other modes of

data access are also possible due to the unique nature of the multimedia data objects and

should be supported by a MDBMS. These include,

• Reverse

• Fast-forward

• Fast-backward

• Midpoint suspension

• Midpoint resumption

These Temporal Access Control (TAC) operations are feasible with existing technologies;

however, when non-sequential storage devices are used with complex data compression al-

gorithms, and random communication delays are introduced due to data distribution, the

provision of these capabilities can be very difficult. Examples include viewing a motion

picture backwards or reversing an animation of a series of images (sequence reversal), rapid

viewing of a long sequence of time-dependent data by increasing the rate of presentation

or by skipping some data (fast-forward or fast-backward), and stopping and starting of a
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motion picture at an arbitrary point (midpoint suspension, resumption and partial interval

evaluation).

In this paper, we propose temporal-interval-based models and constraints which provide

a basis for a proposed conceptual data representation and algorithmic support of the afore-

mentioned TAC functionality. The work represents major extension and generalization of

our earlier models presented in [17]; however, we do not consider the dynamic properties

of user interaction (e.g., Stotts and Furuta [24]). The uncertainty created by random user

interaction is an additional complexity in managing time in multimedia information systems.

The remainder of the paper is organized as follows. In Section 2, we review related work

on time-dependent data storage. In Section 3, we describe interval-based modeling schemes,

including our proposed models for establishing a conceptual database structure. Section 4

describes a conceptual data representation based on the new temporal models, including an

example using a relational implementation. Section 5 describes algorithms for accessing the

proposed conceptual models in the context of a database. We discuss characteristics of the

overall modeling methodology in Section 6, and in Section 7 we conclude the paper.

2 Background and Related Work

The primary requirements for the support of time-dependent data playout in an MDBMS

include the means for the identification of temporal relations between multimedia data ob-

jects, temporal conceptual database schema development, physical schema design, and syn-

chronous access for data retrieval. In this section we briefly describe these requirements,

introduce various terminology, and describe related work.

As indicated in the introduction, time-dependent data differ from historical data which

do not specifically require timely playout. Typically, time-dependent data are stored using

mature technologies possessing mechanisms to ensure synchronous playout (e.g., VCRs or

audio tape recorders). With such mechanisms, dedicated hardware provides a constant rate

of playout for homogeneous, periodic sequences of data, and concurrency in data streams

is provided by independent physical data paths. When this type of data is migrated to

more general-purpose computer data storage systems (e.g., disks), many interesting new

capabilities are possible, including random access to the temporal data sequence and time-

dependent playout of static data (animation). However, the generality of such a system

eliminates the dedicated physical data paths and the implied data structures of sequential
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storage. Therefore, a general MDBMS needs to support new access paradigms including a

retrieval mechanism for large amounts of multimedia data, and must provide conceptual and

physical database schemata to support these paradigms. Furthermore, a MDBMS must also

accommodate the performance limitations of the computer.

At the conceptual level, the temporal aspects of data must be modeled. Data can have

natural or implied time dependencies, (e.g., audio and video recorded simultaneously). These

data streams often are described as continuous because recorded data elements form a con-

tinuum during playout, i.e., elements are played-out contiguously in time. Static data,

which lack time dependencies, can have synthetic temporal relationships (e.g., Fig. 1). The

combination of natural and synthetic time dependencies can describe the overall temporal

requirements of any pre-orchestrated multimedia presentation. Temporal information can be

encapsulated in the description of the data using the object-oriented paradigm (e.g., Gibbs

[10], Herrtwich [12]). Using such schemes, temporal information such as a time reference,

playout time units, temporal relationships, and required time offsets can be maintained for

specific multimedia objects. If the data are periodic, this approach can define the time

dependencies for an entire sequence by defining the period or frequency of playout (e.g.,

30 frames/s for video). For mixed-type, time-dependent data, there have been several pro-

posals for their conceptual modeling and interchange format specification, most based on

temporal-interval-based schemes [5, 8, 13, 23]. However, these works either neglect to con-

sider the implications on the development of conceptual database structures to support TAC

operations or do not comprehensively model time-dependent data.

Once a conceptual temporal model is established for a multimedia object, the multimedia

data must be mapped to the physical system to facilitate database access and retrieval. For

time-dependent multimedia data this presents some interesting challenges. Problems arise

due to the strict timing requirements for playout of time-dependent data. The multimedia

types of audio and video require very large amounts of storage space and must be maintained

in secondary storage. In order to meet the presentation requirements for these data, vari-

ous physical storage organizations have been proposed, such as storing data in contiguous

blocks on a disk in the same order as playout. Some recent work on data placement on

physical storage for audio data retrieval is described by Yu et al. [28, 30], Gemmell and

Christodoulakis [9], Rangan and Vin [22], and Christodoulakis and Faloutsos [7]. We do not

address physical storage organizations here.

The integration of conceptual and physical data models with system support for data

delivery yields the functionality necessary to construct multimedia applications. System
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support for time-dependent data includes the study of real-time operating systems for sup-

porting audio and video synchronization [3, 6, 20, 21, 26, 29], however, this work is beyond

the scope of this presentation. We now describe our proposed conceptual models as a one

component required in the construction of a multimedia information system.

3 Interval-Based Conceptual Models

In order to support time-dependent data retrieval from a MDBMS, we must provide both

conceptual temporal models for describing the data and models for their storage. In this

section, we introduce conceptual models that describe temporal information necessary to

represent multimedia time dependencies and synchronization. Specifically, this includes a

discussion of the various temporal specification methodologies, our proposed reverse and

n-ary temporal relations, and our partial-interval evaluation scheme.

3.1 Basic Temporal Relations

An important and often used representation of time is the temporal interval [1]. Temporal

intervals consist of time durations characterized by two endpoints, or instants. These interval

and instant-based representations are widely investigated in the study of time. A time instant

is a zero-length moment in time, such as “4:00 PM.” By contrast, a time interval is defined

by two time instants and, therefore, their duration. “100 ms” or “eight hours” represent

temporal intervals (see Fig. 2), which we formally define as follows [2]:

8:00 am 4:00 pm 12:00 am 8:00 am

8 hours 8 hours

Figure 2: Instants vs. Intervals

Definition 1 Let [S,≤] be a partially ordered set, and let a, b be any two elements (time

instances) of S such that a ≤ b. The set {x | a ≤ x ≤ b} is called an interval of S denoted

by [a, b]. Furthermore, any interval [a, b] has the following properties:
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1. [a, b] = [c, d] ⇐⇒ a = c ∧ b = d

2. if c, d ∈ [a, b], e ∈ S and c ≤ e ≤ d then e ∈ [a, b]

3. #([a, b]) ≥ 1

Time intervals are described by their endpoints (e.g., a and b in Def. 1 above). The

length of such an interval is identified by b − a. The relative timing between two intervals

can be determined from these endpoints. By specifying intervals with respect to each other

rather than by using endpoints, we decouple the intervals from an absolute or instantaneous

time reference, leading us to temporal relations.

Given any two intervals, there are thirteen distinct ways in which they can be related

[11]. These relations indicate how two intervals relate in time; whether they overlap, abut,

precede, etc. Using Allen’s the representation [1], these relations are shown graphically in

Fig. 3, using a timeline representation.

The thirteen relations can be represented by seven cases because six of them are inverses

(the equality relation has no inverse). For example, after is the inverse relation of before,

or equivalently, before−1 is the inverse relation of before (α equals β is the same as β equals

α). For inverse relations, given any two intervals, it is possible to represent their relation

by using the noninverse relations only by exchanging the interval labels. In Section 3.2, we

show how the ordering of deadlines required for the playout algorithms forces the use of some

inverse relations. However, this use does not affect our ability to model temporal relations,

being only an artifact of existing syntax conventions for temporal relations.

Temporal intervals can be used to model multimedia presentation by letting each interval

represent the presentation of some multimedia data element, such as a still image or an audio

segment, in what we call temporal-interval-based (TIB) modeling. We define an atomic

interval to be one which cannot be decomposed into subintervals, as in the case of the

presentation of a single frame of a motion picture. Intervals indicate the start times (πα, πβ),

durations (τα, τβ), and end times for data elements α and β. The relative positioning between

them is captured by a delay from the beginning of the first interval (τδ), as is their overall

duration (τTR).

Fig. 4 shows audio and images synchronized to each other using the meets and equals

temporal relations. For continuous media such as audio and video, an appropriate temporal

representation is a sequence of intervals described by the meets relation because intervals

abut in time and are non-overlapping, by definition of a continuous medium.
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Figure 3: Binary Temporal Relations. (a) α before β, (b) α meets β, (c) α overlaps β, (d) α

during−1 β, (e) α starts β, (f) α finishes−1 β, (g) α equals β
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Figure 4: Synchronization of Audio and Images Represented by Temporal Intervals

Table 1: Temporal Parameters of Unified Model (Pα tr Pβ)

Relation τα τδ τTR

before < τδ 6= 0 τβ + τδ > τα + τβ

meets τδ τα τα + τβ

overlaps < τβ + τδ 6= 0 τβ + τδ < τα + τβ

during−1 > τβ + τδ 6= 0 τα

starts < τβ 0 τβ

finishes−1 τβ + τδ 6= 0 τα

equals τβ 0 τα

In Table 1, a set of constraints indicate the timing parameter relationships between

simple binary temporal relations. These constraints, identified for the simple unified Object

Composition Petri Net (OCPN), are used to show uniqueness in identification of temporal

relations [17]. In particular, these constraints can be used to:

1. Identify a temporal relation from the parameters τα, τβ, τδ, and τTR.

2. Verify that the parameters satisfy a temporal relation, tr.

3. Identify overall interval duration, τTR, given a temporal relation.

This functionality proved valuable for describing the temporal component of composite

multimedia objects as shown by Little and Ghafoor [17]. We reiterate an important result

for the determination of durations of related temporal intervals in Lemma 1 below.

Lemma 1 For binary temporal relations, the duration, τTR, of two related intervals τα and

τβ can be uniquely determined by the durations of intervals τα, τβ, τδ, and the temporal

relation, tr, between them.
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This lemma and Table 1 result in the following equations discerning the durations for

sequential and parallel temporal relations.2 For the sequential cases,

τTR = τβ + τδ ≥ τα + τβ (1)

and, for the parallel cases,

τTR = max{τα, τβ + τδ} < τα + τβ . (2)

Using these equations and the OCPN modeling scheme, complex timeline representations

of multimedia object presentation can be delineated. In the next section we introduce a

major generalization of the binary temporal interval modeling approach which permits a

more uniform representation of temporal intervals and supports the aforementioned TAC

operations.

3.2 n-ary Temporal Relations

Binary temporal relations are sufficient for the temporal characterization of simple or com-

plex multimedia presentations at the level of orchestration. By introducing a relationship

among many intervals which we define as a n-ary temporal relation, we can generalize the

binary temporal relations and ultimately simplify the data structures necessary for maintain-

ing the synchronization semantics in a database. The deficiency of the binary construction

process [17] is evident when many objects are to be synchronized by a single kind of temporal

relation. Although a TIB scheme can easily model this case, a general approach is desired

so that an efficient conceptual model for data storage results permitting simple algorithmic

data retrieval and other TAC paradigms.

We therefore propose a new kind of homogeneous temporal relation for describing this

case. The new temporal relation on n objects, or intervals, is defined as follows:

Definition 2 Let P be an ordered set of n temporal intervals such that P = {P1, P2, ...Pn}.

A temporal relation, tr, is called an n-ary temporal relation, denoted trn, if and only if

Pi tr Pi+1, ∀i(1 ≤ i < n)

2In both cases τTR = max{τα, τβ + τδ}, assuming τdelta ≥ 0.
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Like the binary temporal relations, there are thirteen possible n-ary temporal relations,

which reduce to the seven cases indicated in Fig. 5, after eliminating their inverses. When

n = 2, the n-ary temporal relations simply reduce to the binary ones, i.e., for n = 2, P1 tr

P2. Like the binary case, each interval indicates the start time (πi), duration (τ i), and end

times for a data element i. The relative positioning and time dependencies are captured by

a delay (τ i
δ), as is their overall duration (τTRn).

before

meets

overlaps

starts

equals

   during  
-1

   finishes -1

τ 2
τ 3 τ 4τ 1

τ n

τ n

τ n
τ 1

τ 1

τ 1

τ 1

τ 1

τ 1

τ 2

τ 2

τ 2

τ 2

τ 2

τ 2

τ 3

τ 3

τ 3

τ 3

τ 3

τ 3

τ 4

τ n

τ n

τ n

τ n

Figure 5: n-ary Temporal Relations

We now investigate the properties of the n-ary temporal relations including implications

of multiple playout deadlines and temporal constraints.

3.2.1 Property of Monotonic Playout Times

If we constrain ourselves to n-ary relations with the property that

πi ≤ πj , (1 ≤ i < j ≤ n)

then we ensure the characteristic of monotonically increasing playout deadlines, which
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simplify presentation algorithms and the generation of playout deadlines [17, 18]. Therefore,

we concentrate on the relations before, meets, overlaps, during−1, starts, finishes−1, and

equals. This does not affect our ability to model temporal relations, i.e., we have chosen a

set of the 13 temporal relations such that an ordering relationship is always implied and is

easily identified in both the forward and reverse directions.

3.2.2 Deadline Determination

A complex multimedia data object consists of many subobjects, each with characteristic

time dependencies, and can be evaluated for the purpose of identifying the exact playout

deadlines of each subobject. This task is necessary for real-time scheduling of the retrieval

of objects in the presence of significant system delays [18]. The following theorem describes

the relative playout time (deadline) for any object or start point of a temporal interval [19].

Theorem 1 The relative playout deadline πk for interval k for any n-ary temporal relation,

is determined by

πk = c, (k = 1)

πk = c +
k−1∑

i=1

τ i
δ , (1 < k ≤ n)

where c is a constant time offset.

Proof : Because timing is relative to start of the set of intervals, we let π1 = c. π2 = c + τ 1
δ

since τ 1
δ = π2 − π1, by definition of delay for the binary case, and π1 = c. Suppose,

πm = c +
∑m−1

i=1 τ i
δ , for some m. We find the m + 1th deadline noting that for intervals

Pm and Pm+1, Pm tr Pm+1 by Def. 2. Therefore, τm
δ = πm+1 − πm, or πm+1 = πm + τm

δ , but

πm = c +
∑m−1

i=1 τ i
δ , so πm+1 = c +

∑m
i=1 τ i

δ .2

Theorem 1 specifies how to generate playout times from an n-ary temporal relation. In

Section 5.2 we show this theorem applied to an algorithm for identifying playout times from

our proposed temporal model.
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3.2.3 Temporal Constraints

Like the binary temporal relations described in Section 3.1, a set of constraints can be iden-

tified for the timing parameter relationships among intervals of the n-ary case. Considering

only the parallel and sequential n-ary cases, rather than each relation individually, we can

see that for sequential cases,

τTRn =
∑n−1

i=1 τ i
δ + τn ≥

∑n
i=1 τ i (3)

and, for the parallel cases,

τTRn = max{τ 1,
∑n−1

i=1 τ i
δ + τn} <

∑n
i=1 τ i (4)
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Figure 6: Illustration of the Timing Parameters for the (a) meets and (b) overlaps Relations

Therefore, similar to Equs. 1 and 2 of the binary case, we can determine whether an

n-ary temporal relation is parallel or sequential, or if the temporal relation is known, verify

its consistency in terms of temporal parameters.3 Fig. 6 illustrates these parameters for

3Similar to the binary cases, τTRn = max{τ1,
∑n−1

i=1
τ i
δ +τn} for both the parallel and sequential relations,

assuming τ i
delta ≥ 0.
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the before and overlaps relations. A more general set of constraints can be identified for the

n-ary relations as described in the following theorem.

Theorem 2 There exist a set of temporal constraints for the n-ary temporal relations (n ≥

2) as shown in Table 2.

Table 2: n-ary Temporal Constraints

Relation τ i, (1 ≤ i < n) τTRn

before < τ i
δ

∑n−1

i=1 τ i
δ + τn

meets τ i
δ

∑n
i=1 τ i,

∑n−1

i=1 τ i
δ + τn

overlaps < τ i+1 + τ i
δ

∑n−1
i=1 τ i

δ + τn

during−1 > τ i+1 + τ i
δ τ 1

starts < τ i+1, (τ i
δ = 0) τn

finishes−1 τ i+1 + τ i
δ τ 1

equals τ i+1, (τ i
δ = 0) τ i, (1 ≤ i < n)

Proof : The τ i are determined by Def. 2 and by noting that adjacent intervals (ith to i+1th)

form binary relationships for which we can apply the relationships of Table 1. The τTRn are

proven by induction using base cases from Table 1 as follows. For the before, meets, and

overlaps relations, assume τTRk =
∑k−1

i=1 τ i
δ + τk. The k + 1th relation/interval is formed by

adding another interval (Fig. 7) as,

τTRk+1 = τTRk + τk
δ − τk + τk+1

=
k−1∑

i=1

τ i
δ + τk + τk

δ − τk + τk+1

=
k∑

i=1

τ i
δ + τk+1

= τTRk+1

For the during−1 case, clearly τTRn = τ 1, since ∀i, τ i > τ i+1. For the starts case, τTRn = τn

and ∀i, τ i < τ i+1. For the finishes−1 case, τTRn = τ 1, since ∀i, τ i > τ i+1. For the equals case,

τTRn = τ 1, since ∀i, τ i = τ i+1. 2
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Figure 7: Interval Relations for Proof of Theorem 2

The notion of temporal intervals can also support reverse and partial playout activities,

i.e., reversing the direction in time of presentation, or beginning the presentation of an object

at a midpoint rather than at the beginning or end. For this purpose, reverse temporal rela-

tions are proposed in the next section. These relations, derived from the forward relations,

define the ordering and scheduling required for reverse playout.

3.3 Reverse Temporal Relations

As mentioned earlier, in addition to simple linear playout of time-dependent data sequences,

other modes of information access are also viable, and should be supported by a MDBMS.

These TAC operations include reverse playout and partial interval evaluation for midpoint

suspension and resumption. In this section we describe temporal models for satisfying these

aforementioned requirements. In order to facilitate reverse playout, we first characterize

reversal of time in temporal intervals, and then show their n-ary extension.

3.3.1 Reverse Binary Temporal Relations

A unique use of temporal interval processing proposed in this paper is the application of

temporal relations to provide reverse presentation of objects. We introduce reverse temporal

relations as distinct from inverse temporal relations, which are described by commuting

the operands, i.e., a ∗ b = b ∗−1 a. This characterization is essential for reverse playout of

time-dependent multimedia objects, and allows us to playout, in reverse time, as defined by

changing the direction of time evaluation of a temporal relation. The following definitions

and lemmas characterize reverse temporal intervals and relations:

Definition 3 A reverse interval is the negation of a forward interval, i.e., if [a, b] is an

interval, then [−b,−a] is the reverse interval. [−b,−a] is clearly an interval since a ≤b and

therefore −b ≤ −a.
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Definition 4 A reverse temporal relation trr, is defined as the temporal relation formed

among reverse temporal intervals. Let [a, b] and [c, d] be two temporal intervals related by

tr, then the reverse temporal relation trr is defined by the temporal relation formed between

[−b,−a] and [−d,−c].

Lemma 2 The reverse relation is a temporal relation.

Proof : Because [a, b] and [c, d] are intervals, [−b,−a] and [−d,−c] are also intervals. Given

two intervals, a relation tr exists between them.2

In relation to the other temporal models, we deal with relative timing rather than absolute

endpoints. As we are more interested in the durations and properties of relative ordering, we

can normalize the intervals with respect to the negative values. Consequently, the following

lemma relates to the duration of a reversed interval.

Lemma 3 #([a, b]) = #([−b,−a]), i.e., reverse intervals have identical durations as their

forward counterparts.

Proof : #([a, b]) = b − a = −a − (−b) = #([−b,−a]).2

Table 3: Temporal Parameter Conversions (Pα tr Pβ to Pα−r trr Pβ−r)

Forward Reverse τα−r τβ−r τδ−r

before before τβ τα τδ + τβ - τα

meets meets τβ τα τβ

overlaps overlaps τβ τα τδ + τβ - τα

during−1 during τβ τα τα - τβ - τδ

starts finishes−1 τβ τα τβ - τα

finishes−1 starts τβ τα 0
equals equals τα, τβ τα, τβ 0

The reverse relations are summarized in Fig. 8, noting that the reverse intervals are the

reflection across a line on the time axis. To identify reverse temporal parameters (τα−r, τβ−r,

τδ−r, and trr) from the forward temporal parameters (τα, τβ, τδ, and tr), the conversions

summarized in Table 3 can be used, which are derived from the consistency formulae of Table

1 and by inspection of the binary reverse relations of Fig. 8. These parameters represent
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Figure 8: Forward and Reverse Relations and Intervals

the new parameters formed by the new relation when viewed in reverse.4 Reverse temporal

intervals must obey rules for temporal intervals.

3.3.2 n-ary Reverse Temporal Parameters

Like the n-ary case, we can define reverse n-ary temporal relations as follows:

Definition 5 Let P be an ordered set of n temporal intervals such that P = {P1, P2, ...Pn},

and let tr be a temporal relation with reverse relation trr. If trn is a n-ary temporal

relation on P , then a temporal relation trn
r is called a reverse n-ary temporal relation, and

is defined as,

Pi trr Pi−1, (1 < i ≤ n),

where trr can be found from Table 3.

4The during−1 conversion results in a non-inverted during relation outside of our complete set of seven
relations (shown in the table). By commuting the operands we close our conversion with respect to the seven
relations (and monotonically increasing deadlines) but result in an exception in the handling of the interval
ordering.

17



Given the temporal parameters of an n-ary temporal relation, we can determine the

corresponding reverse temporal parameters in a similar manner as is shown in Table 3.

Ultimately these parameters enable reverse presentation timing given the forward timing

parameters. To identify reverse temporal parameters for the n-ary cases (τ i
r , τ i

δ−r, and trn
r )

from the forward temporal relations (τ i, τ i
δ , and trn), we can apply the following theorem:

Theorem 3 Conversion from the forward temporal parameters to the reverse parameters is

achieved with the equations shown in Table 4.5

Table 4: n-ary Temporal Parameter Conversions

Forward Reverse τ i
r , (1 ≤ i ≤ n) τ i

δ−r, (1 ≤ i < n)
before before τn+1−i τn−i

δ + τn+1−i - τn−i

meets meets τn+1−i τn−i
δ + τn+1−i - τn−i, τn+1−i

overlaps overlaps τn+1−i τn−i
δ + τn+1−i - τn−i

during−1 during τn+1−i τ i - τ i
δ - τ i+1

starts finishes−1 τn+1−i τn+1−i - τn−i

finishes−1 starts τn+1−i τn−i - τn+1−i - τn−i
δ , 0

equals equals τn+1−i, τ i 0

Proof : The reverse interval durations, τ i
r , are implied by Def. 5 of a n-ary reverse temporal

relation. The reverse delay durations, τ i
δ−r, are found by noting that adjacent intervals (ith

to i + 1th) are instances of the binary case for which conversions are tabulated in Table 3.2

3.3.3 Partial Interval Evaluation

A further enhancement for multimedia presentation is the ability to playout only a fraction

of an object’s overall duration. This operation is typical during audio and video editing, in

which a segment is repeatedly started, stopped, and restarted. Another example of partial

playout occurs when a viewer stops a motion picture then later restarts at some intermediate

point (or perhaps an earlier point to get a recap). In this section we show the basis for

achieving partial evaluation or fractional playout for a composite (n-ary) temporal interval.

Later, in Section 5, we show an algorithm for partial interval evaluation based on this scheme.

5The same difficulty arises again for the during−1 relation. The conversion of this relation results in a
relation outside of our set of seven. The commuting of the operands implies that the correct reverse values
on during−1 are equal to τ i, however, this requires a transposition of the interval indices.
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Figure 9: Partial Interval Evaluation

Consider a single temporal interval that represents the overall duration, τTRn , of a com-

plex n-ary temporal relationship, as shown in Fig. 9. We seek to present some fraction of

this temporal interval beginning at a relative time called ts. If ts < 0, then it is too soon to

consider τTRn . If ts = 0, then the whole interval and corresponding n-ary intervals must be

considered. For (0 < ts < τTRn), a fractional part of the n-ary relation must be evaluated,

and finally, for ts ≥ τTRn , the interval need not be considered for evaluation at all.

A non-decomposable, or atomic, interval does not have an n-ary decomposition, and can

represent the presentation of a data element. For the fractional part, we must consider both

non-decomposable and decomposable intervals. For a non-decomposable interval, partial

evaluation implies that the data has already been presented and need only be terminated

upon expiration of the temporal interval. For a decomposable interval, the problem is to

determine where to begin evaluation of the sub-intervals.

There are two cases, one for parallel temporal relations and the other for sequential

relations. The following theorems characterize partial interval evaluation for these cases.

Theorem 4 For a sequential n-ary temporal relation (before, meets), playout at ts implies

beginning playout at a subinterval k such that,

k−1∑

i=1

τ i
δ ≤ ts <

k−1∑

i=1

τ i
δ + τk, (1 ≤ k < n).

P roof : Consider the first interval. If ts < τ 1, then some time is left in τ 1. If τ 1 ≤ ts < τ 1
δ ,

then ts falls in the delay period between intervals τ 1 and τ 2, and no k exists. For ts ≥ τ 1
δ , ts

19



occurs during the next interval τ 2. From Theorem 1, we know that the kth interval starts

at
∑k−1

i=1 τ i
δ , and ends at

∑k−1
i=1 τ i

δ + τk.2

Theorem 5 For a parallel temporal relation (overlaps, during−1, starts, finishes−1, and

equals), playout at ts indicates playout of all subintervals k such that,

k−1∑

i=1

τ i
δ ≤ ts <

k−1∑

i=1

τ i
δ + τk, (1 ≤ k < n)

Proof : For intervals k such that ts < πk + τk, there is clearly time left. However, the ones

that will be active are indicated by πk ≤ ts < πk + τk, but πk =
∑k−1

i=1 τ i
δ , by Theorem 1.

Next, we show how the temporal parameters can be aggregated in a suitable manner for

database storage.

4 Database Models for Time-Dependent Media

In Section 3 we have shown a new kind of temporal relation which can describe the timing

among sets of multimedia objects. We now show how the proposed relations and their

associated formulation lead to the development of conceptual temporal models suitable for

storage and retrieval of time-dependent multimedia data.

The OCPN model, used to formally specify sets of synchronized media elements, leads

to a specific conceptual database model by selecting synchronized groups of objects and

by assigning their temporal parameters to a database elements [17]. Our discussion here

parallels this earlier work, however, the new temporal relations provide a more efficient and

homogeneous structure and provide new TAC functionality. We design conceptual database

structures for the elements of the database which can ultimately be applied to a relational,

network, or other data model. We do not assume any specific model for the multimedia

database management component, rather, we build a framework which can be integrated, or

used in a complementary fashion, with other DBMS schemes. Later, we show examples of

this conceptual model applied to a relational data model.
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4.1 Proposed Temporal Data Model

To capture the semantics of the n-ary temporal relations and the object orchestration tech-

nique, we need to group multimedia objects and identify them with temporal parameters.

The first node type template for this purpose is the leaf or terminal node as indicated in Fig.

10(a). This node has attributes which indicate media type (text, image, video, etc.) and

a pointer which indicates the storage location of the data for presentation. This node type

indicates the elements at the finest grain for synchronization. There are no restrictions on

the in-degree of this node type to permit links to multiple instances of composite multimedia

objects.

τ
δ-f

i

medium node type

(a) (b)

τ
δ-r

i

ττ

Figure 10: (a) Terminal Node Type and (b) Nonterminal Node Type

Nonterminal nodes have a structure as indicated in Fig. 10(b). Attributes for this tem-

plate include node type, pointers to children, and temporal parameters (forward delay, τδ−f ,

reverse delay, τδ−r, and overall temporal duration, τTRn). Again, in-degree can be arbitrary.

Note that the forward temporal parameters are necessary and sufficient for reconstituting a

temporal relation and deriving the reverse parameters [17]. Clearly these parameters should

be maintained in a database to support time-dependent data retrieval.

Using these node types, sets of synchronized elements can be represented in a conceptual

temporal framework developed for an OCPN. Consider the multimedia slide presentation

example to illustrate this development. First, we identify and assign individual images and

audio segments to terminal nodes along with their locations. We select a parallel relation

equals, with unique durations for each slide-talk pair, and form a set of synchronized pairs

of objects using a nonterminal node type. In this case the assigned attributes include

the forward, reverse, and overall temporal durations (τδ−f , τδ−r, τTRn). Because we have a

set of slide-talk pairs, a single nonterminal node type is indicated to aggregate the set of

sequentially related object pairs. A hierarchical conceptual model for this example is shown
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in Fig. 11.
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Figure 11: Conceptual Model for the Multimedia Slide Presentation

Based on the intended access or query methods, additional attributes can be assigned

to the nodes, but these are not considered here. For more complex timing interactions,

aggregation of components provides a means of isolating components of a presentation at a

coarse-grain of synchronization. The level of terminals provides the finest grain of timing

whereas levels towards the root of a hierarchy are comprised of composite object aggregations

having a more coarse inter-object synchronization grain.

4.2 Database Creation

The construction of a multimedia database is the process of assigning data instances to the

developed database model. We assume multimedia data elements are stored and managed by

some entity which can be accessed by pointers from terminal nodes defined by the conceptual

model. Database construction begins by assigning multimedia data to the terminal nodes,

including the required time durations of the data elements. To establish temporal parameters

for nonterminal nodes, Lemma 1 is used by combining timing parameters of temporally

related terminal elements and assigning them to their connecting nonterminal parent nodes.

As this process is repeated, timing values are propagated up the database hierarchy until

timing values are established at all nodes. Determination of the reverse delay parameters

can be performed using the conversion formulae provided in Section 3. This process can be

performed at database creation time, or dynamically in the event of a reverse playout TAC

operation.
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4.3 A Relational Data Model for Temporal Data

Using the conceptual model described above (Section 4.1), data structures can be imple-

mented to capture time-dependent data. These data structures indicate specific choices for

implementation of the presentation algorithms. In this section we show how the conceptual

model is applied to a relational data structure.

The organization of a temporal hierarchy is naturally tree-like. We can capture this

hierarchy using a relational model by defining a relation called nodes to which we can

apply temporal constraints. Any terminal or nonterminal node can be described by a tuple

in the relation:

nodes(node no, node type, duration, subject)

Each node is uniquely identified by an integer, node no. The remaining attributes,

node type, duration, and subject characterize the node and describe accompanying tem-

poral relationships. node type describes the kind of temporal integration for assembly of

subnodes, if any exist. Values of this attribute are nonterm s, nonterm p, and terminal,

indicating the sequential, parallel, and terminal cases, respectively. The duration attribute

describes the overall temporal interval for a possibly complex object. subject is an attribute

used to describe the content of the node for illustrative purposes only, however, by using a

complementary data schema, it is possible to provide content-based attributes as well [16].

To support a hierarchy of conceptual nodes, we define a second relation to represent the

children, or subnodes, of an arbitrary node described by the relation nodes. For any node

in nodes, multiple subnodes are possible, representing subobjects for temporal integration.

A tuple is defined to indicate node-to-subnode links as follows:

subnodes(node no, subnode no, indexf , indexr, deltaf , deltar)

In this case, the attributes node no and subnode no uniquely identify the tuples. indexf

and indexr are attributes indicating the ordering among a set of subnodes with the same

parent for forward and reverse playout, respectively. By using these indices, an arbitrary

number of subnodes can be specified as required for an n-ary temporal relation, as discussed

in Section 4.1. Lower values of these indices indicate preceding (in time) subnodes, with

increasing values indicating directional traverse of the temporal hierarchy for evaluation
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of the parent’s temporal relation. However, ordering is not necessarily identical for the

forward and backwards cases, as established by the reverse n-ary relation. deltaf and deltar

establish the durations, τδ−f and τδ−r for forward or reverse temporal relationships between

two adjacent subnodes.

Finally, to locate data corresponding to objects for playout, a relation terminals is

defined with node no as the unique identifier as follows:

terminals(node no, medium, filename)

This separate relation is defined apart from the nodes relation because many nodes

are not terminal elements and do not require these attributes. Only a subset of all nodes

will indicate terminal elements which capture single-medium base types (e.g., single images,

audio segments, etc.). Additional information can be defined as part of these relations such

as details of formatting requirements, but are not shown here.

Table 5: Tuples of the Terminals Relation

node no medium location

1 image –
2 audio –
3 image –
4 audio –
5 image –
6 audio –
7 image –
8 audio –

Referring to the multimedia slide presentation example, we now illustrate the creation of

a relational database to capture a temporal hierarchy. Suppose the slideshow is on a topic

of “Planets.” The temporal hierarchy for this example is illustrated in Fig. 11. To map this

conceptual model to the relational data structures we first identify each node with a unique

identifier, and assign each terminal element to a tuple in the terminals relation along with

its location and media type. These tuples are shown in Table 5.

Next, for each node we create a tuple describing whether it is a terminal, nonterm p,

or nonterm s type. We also identify its duration and a relevant topic or keyword. These

tuples are summarized in Table 6.
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Table 6: Tuples of the Nodes Relation

node no node type duration subject

1 terminal 10 “Venus”
2 terminal 10 “Venus”
3 terminal 5 “Mars”
4 terminal 5 “Mars”
5 terminal 15 “Saturn”
6 terminal 15 “Saturn”
7 terminal 10 “Neptune”
8 terminal 10 “Neptune”
9 nonterm p 10 –
10 nonterm p 5 –
11 nonterm p 15 –
12 nonterm p 10 –
13 nonterm s 40 “Planets”

Table 7: Tuples of the Subnodes Relation

node no subnode no indexf indexr deltaf deltar

9 1 1 2 0 0
9 2 2 1 0 0
10 3 1 2 0 0
10 4 2 1 0 0
11 5 1 2 0 0
11 6 2 1 0 0
12 7 1 2 0 0
12 8 2 1 0 0
13 9 1 4 10 0
13 10 2 3 5 5
13 11 3 2 15 15
13 12 4 1 0 10
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Finally, the subnodes relation table is created by identifying the children of each node

in the temporal hierarchy. For each node, the position indices and forward and reverse delays

(τδ−f and τδ−r) are identified from the conceptual model. Table 7 shows these tuples.

5 Access Algorithms for Multimedia Databases

We have presented a specification methodology and conceptual models suitable for database

storage of time-dependent multimedia data. In conjunction with these models, we have

developed access algorithms that we describe in this section. These algorithms provide func-

tionality for partial interval playout, playout reversal, and playout deadline determination

as required for real-time scheduling approaches.

5.1 Playout Scheduling Approaches

In formulating an approach to media delivery suitable for satisfying the timing requirements

for multimedia data, one must realize that most workstation technology lacks sufficient per-

formance to support the playout of complex multimedia objects. Viable applications will be

supported either by ample or marginal system performance. For systems with ample perfor-

mance, data delivery is simplified by system components without bottlenecks or significant

latencies. For systems with marginal performance, techniques must be applied to guarantee

delivery of data in a timely fashion. For this reason, we perceive two approaches to data de-

livery: the real-time scheduling approach and the optimistic, or ideal, interval-based process

playout approach.

In a real system, latencies exist in storage devices, communications, and multiprocessing

that make enforcement of an ideal timing specifications difficult. These delays can be larger

than the playout durations of individual data elements requiring synchronization, and a

mechanism must be employed for compensation. Methods of overcoming these delays rely

on some form of real-time scheduling (e.g., [15, 19]).

As system performance becomes less marginal, or as playout time durations increase,

the system delays become less significant, warranting the development of ideal presentation

algorithms. Images, text, and audio segments can be effectively synchronized with such

an ideal scheme because their presentation durations are large (greater than a few seconds),

whereas video and audio frames have a very short presentation interval (less than one second)
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and require specific resource scheduling.

For both approaches the objects and their temporal hierarchy must be evaluated. For the

real-time scheduled approach this requires a recursive traversal of the hierarchy to identify

object deadlines, with subsequent scheduling of playout for the deadlines [19]. For the

ideal approach, tree traversal includes immediate presentation of component objects without

specific consideration of system latencies, i.e., sufficient system performance is assumed to be

available. In the remainder of this section we show we show algorithms for TAC operations in

the ideal case and an algorithm for generating deadlines for the real-time scheduled approach.

Mechanisms for satisfying a playout schedule once generated in this manner are described

elsewhere [19].

5.2 Determination of Playout Time Based on Temporal Intervals

The temporal hierarchy can be evaluated for the purpose of identifying the exact deadlines

for playout of all objects by applying Theorem 1 for any object or start point of a temporal

interval using either forward or reverse parameters. The expression in Theorem 1 can be

evaluated in n steps where n is the number of elements indicated by the temporal relation.

This is a very important consideration for real-time deadline evaluation when expenditure

of time is critical.

Alternatively, the original OCPN model, used to describe a composite multimedia object,

can be simulated directly [18]. The following algorithm, based on Theorem 1, finds the

playout time, or deadline, for any object or start time of a temporal interval using either

forward or reverse parameters. This algorithm uses as input a parameter telapsed to indicate

the current elapsed time throughout its processing, and is initially set to zero.

Playout Deadline Algorithm

1. For object Object, identify attributes, get elapsed time offset, telapsed.

2. If Object is not a terminal then evaluate its subnodes:

(a) For each subnode with increasing node index i:

i. Recursively invoke algorithm on the ith subnode with telapsed.

ii. telapsed = telapsed + τ i
δ.
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3. If Object is a terminal then its deadline, πobject, is equal to telapsed.

Basically, an object’s subnodes are identified in a recursive tree-traversal. As each subn-

ode is identified, its temporal parameters are evaluated via Theorem 1 to generate a set of

playout times. It is important to note that for such evaluation, the parallel and sequential

information (used in later algorithms presented here) has no significance because deadlines

are generated for each interval and a real-time scheduling approach can interpret the dead-

lines uniformly [19]. Furthermore, the nth occurrence of each τδ (forward and reverse) is

ignored since it has no interpretation without a subsequent object to which it can relate.

Consider the multimedia slide presentation as an example. Applying the deadline gen-

eration algorithm initially to node no. 13 results in the identification of a nonterminal

element. Therefore, its subnodes are evaluated in increasing order of their indices. Node

no. 9 yields yet another subnode which then leads to two terminal nodes. For node no. 1,

π1 = telapsed = 0. The return of the recursive call on subnode no. 1 causes telapsed to be set

to 0, and π2 = 0 for node no. 2. The subsequent return of the recursive call on node no. 9

causes telapsed to be set to 10, prior to recursively descending the hierarchy for the second set

of audio-image pairs. Evaluation continues in this manner resulting in the following set of

playout deadlines: Π = {πi} = {0, 0, 10, 10, 15, 15, 30, 30}. These deadlines can be generated

in either the forward or reverse direction or beginning at an arbitrary point in the temporal

hierarchy.

5.3 Retrieval Algorithm for Reverse Playout

To support reverse playout of an object represented by our temporal data model we merely

require evaluation of the reverse direction indices. These can be derived from either existing

forward temporal parameters or from the temporal relations themselves. Rather than storing

identical object durations, indices can be used to establish the playout ordering in the for-

ward and reverse directions, hence the need for the position indices in the relational model.

The modification to the original presentation algorithm [17] to support forward and reverse

playout is shown as a program fragment as follows (shown later as part of the complete

playout algorithm):

1. For each subnode in increasing order of index id:
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where id is either the forward or reverse position index. In the general case, we would like

to be able to stop at any point in the temporal hierarchy and restart in either the forward

or reverse direction. This functionality is provided though partial-interval evaluation.

5.4 Partial-Interval Evaluation

A further enhancement required for multimedia presentation is the ability to playout partial

objects. Partial interval evaluation allows us to stop in the middle of presentation and resume

in either the forward or reverse direction.

For the fractional part, we must consider both nondecomposable (atomic) and decom-

posable intervals. A non-decomposable interval indicates the actual playout of a multimedia

data element. When this is the case, partial evaluation implies that the data element has

already been presented and need only be terminated upon expiration of the temporal inter-

val. For a decomposable interval, the problem is to determine where to begin evaluation of

the subintervals. To stop and then restart during presentation of a decomposable interval,

we can save the elapsed playout time, offsetf since starting presentation. For the reverse

direction, the reverse elapsed playout time, offsetr, can be computed by subtracting the

forward elapsed playout time from the overall duration of the object under consideration,

i.e.,

offsetr = τobject − offsetf

Based on Theorems 4 and 5, we describe the modifications necessary to support partial

interval evaluation. These modification require as input a parameter offset indicating the

relative time offset from the start of the indicated object (generalized for both forward and

reverse playout in the complete algorithm).

For the Sequential Cases

1. For each subnode in increasing order of index i:

(a) If 0 ≤ offset < τ i then (time left in this node)

i. Recursively invoke algorithm on the ith subnode with offset.

ii. Delay by τ i
δ − τ i, offset := 0.
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(b) Elseif τ i ≤ offset < τ i
δ then (some delay left)

i. Delay by τ i
δ − offset, offset := 0.

(c) Else offset ≥ τ i
δ (no delay left)

i. offset = offset − τ i
δ (try next subnode)

For the Parallel Cases

1. For each subnode in increasing order of index i:

(a) If 0 ≤ offset < τ i then (time left in this node)

i. Fork a new process and recursively invoke algorithm on the ith subnode with

offset

(b) Else offset ≥ τ i (no time left in this node)

(c) If 0 ≤ offset < τ i
δ then (some delay left)

i. Delay by τ i
δ − offset, offset := 0.

(d) Else offset ≥ τ i
δ (no delay left)

i. offset = offset − τ i
δ (try next subnode)

With these modifications the playout of an object can be initiated at an arbitrary time

within the duration τTRn of an object.

5.5 Complete Playout Algorithm

The complete algorithm is shown below, considering all of the proposed modifications to

our original presentation algorithm to support TAC functionality. In this algorithm offset

indicates either the forward or reverse elapsed time depending on the direction d of playout.

Complete Playout Algorithm

1. For object Object identify subnodes, and direction d.

2. If Object is not a terminal then evaluate its temporal relation:

(a) If temporal relation is sequential then:

30



i. For each subnode in increasing order of index id:

A. If 0 ≤ offset < τ i then

• Recursively invoke algorithm on the idth subnode with offset.

• Delay by τ i
δ − τ i, offset := 0.

B. Elseif τ i ≤ offset < τ i
δ then

• Delay by τ i
δ − offset, offset := 0.

C. Else offset ≥ τ i
δ

• offset = offset − τ i
δ

(b) If temporal relation is parallel then:

i. For each subnode in increasing order of index id:

A. If 0 ≤ offset < τ i then

• Fork a new process and recursively invoke algorithm on the idth subnode

with offset.

B. Else offset ≥ τ i

C. If 0 ≤ offset < τ i
δ then

• Delay by τ i
δ − offset, offset := 0.

D. Else offset ≥ τ i
δ

• offset = offset − τ i
δ

3. If Object is a terminal then present data on the appropriate I/O device for its specified

duration.

4. Terminate when all recursive invocations have completed.

6 Discussion

The proposed n-ary temporal relations offer a more elegant means of representing timing

information than our previous binary models. In particular, the n-ary model captures an

arbitrary number of component objects with a common temporal relationship without re-

quiring many levels of hierarchy.

We presented a number of consistency formulae in Theorem 2. These formulae can be

used at the time of object creation to establish a consistent database of temporal param-

eters by using a tree traversal procedure akin to the playout algorithms (not shown here).
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Alternatively, a timing coercion technique can be applied to incompletely specified timing

hierarchies to achieve a cohesive presentation as has been applied by Buchanan and Zellweger

[4].

In a similar manner, reverse timing parameters can be computed at object creation time

and stored in the temporal database or can be computed dynamically at the time of sequence

reversal by using the conversions of Table 4. This process can also rearrange the ordering of

intervals that are incorrectly arranged (by the author) for sequence reversal (e.g., arbitrarily

ordered intervals with the starts relation). The penalty for this computation depends on

the complexity of the represented objects and their frequency of reversal. Frequent sequence

reversal suggests the use of stored reverse parameters whereas infrequent reversal can be

adequately provided by dynamic parameter computation.

We have implemented the aforementioned algorithms of Section 5 using the C program-

ming language and process forking as part of our development of a general purpose dis-

tributed multimedia information system in the Multimedia Communications Laboratory at

Boston University. The temporal model has also been incorporated into an interactive mo-

tion picture database application called the Virtual Video Browser [16]. In this system

the relational data structures supporting object timing complement an application-specific

schema for a database of motion pictures. The result is a database that supports both TAC

functionality as well as content-based retrieval of motion picture components.

7 Conclusion

In this paper we have proposed two new temporal models for time-dependent data retrieval in

a multimedia database management system. These models, the n-ary and reverse temporal

relations, are shown to be useful for facilitating storage and retrieval of time-dependent

multimedia data by applying a temporal hierarchy supported by a relational data model.

Because the proposed models are restricted to having the property of monotonically in-

creasing playout deadlines for represented objects, algorithms for synchronous data retrieval

are greatly simplified, both for identification of deadlines necessary for real-time scheduling

of playout, or for optimistic process playout synchronization. Furthermore, algorithms are

shown that allow traversal of the temporal hierarchy in a manner that provides forward,

reverse, or partial interval evaluation.
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