
Physical Storage Organizations for Time-Dependent
Multimedia Data1

H.-J. Chen and T.D.C. Little

Multimedia Communications Laboratory

Department of Electrical, Computer and Systems Engineering

Boston University, Boston, Massachusetts 02215, USA

(617) 353-9877, (617) 353-6440 fax

{huangjen,tdcl}@bu.edu

MCL Technical Report 10-01-1993

Abstract–Multimedia computing requires support for heterogeneous data types with differ-

ing storage, communication and delivery requirements. Continuous media data types such as

audio and video impose delivery requirements that are not satisfied by conventional physical

storage organizations. In this paper we describe a physical organization for multimedia data

based on the need to support the delivery of multiple playout sessions from a single rotating-

disk storage device. Our model relates disk characteristics to the different media recording

and playback rates and derives their storage pattern. This storage organization guarantees

that as long as a multimedia delivery process is running, starvation will never occur. Further-

more, we derive bandwidth and buffer constraints for disk access and present an approach to

minimize latencies for non-continuous media media stored on the same device. The analysis

and numerical results indicate the feasibility of using conventional rotating magnetic disk

storage devices to support multiple sessions for on-demand video applications.

Keywords: Multimedia, physical data organization, file systems, data clustering, time-

dependent data.

1In Proc. 4th Intl. Conf. on Foundations of Data Organization and Algorithms (FODO’93), Evanston,

IL, October 1993, pp. 19-34. This work is supported in part by the National Science Foundation under

Grant No. IRI-9211165.



Table 1: Properties of multimedia data

Data Type Buffer/Bandwidth
Voice-quality audio (8 bits @ 8 KHz) 64 Kb/s
CD quality audio (stereo @ 44.1 KHz) 1.4 Mb/s
NTSC-quality video (uncompressed @ 5.9 Mb/frame
512 × 480 pixels, 24 bits/pixel) (177 Mb/s)
JPEG-compressed NTSC video ≈ 7 Mb/s – 3.5 Mb/s
MPEG-I-compressed NTSC video ≤ 1.5 Mb/s
MPEG-II-compressed NTSC video ≤ 10 Mb/s
HDTV-quality video (uncompressed @ 28.7 Mb/frame
1248 × 960 pixels, 24 bits/pixel) (863 Mb/s)

1 Introduction

Files comprised of multimedia data are different from conventional data files in many re-

spects. As shown in Table 1, multimedia data, and hence files, consume enormous space

and bandwidth relative to text of program files. For example, a single feature-length JPEG-

compressed movie can require over 2 gigabytes of memory for digital storage. Because

multimedia data are also sensitive to timing during delivery, a multimedia file system must

satisfy timing constraints of some data and not others. When a user plays-out or records

a time-dependent multimedia data object, the system must consume or produce data at

a constant, gap-free rate. This means that the file system must ensure the availability of

sufficient data buffer space for the playback or recording process. For example, to maintain

a continuous NTSC-quality video playback, a file system must deliver data at a rate of 30

frames/s. Moreover, the delivery mechanism must also satisfy the intermedia synchroniza-

tion requirement among related media (e.g., the lip synchronization between audio, video,

and subtitles).

A storage subsystem accesses data by positioning its read heads at the desired location

for a data block. A random allocation approach, regardless of the time-dependency for mul-

timedia data, increases the head and seek switching frequency and resultant access latency.

In addition, the electromechanical nature of secondary-storage devices requires the use of

scheduling disciplines modified to meet the throughput and real-time requirements of mul-

timedia data delivery. When a multimedia file system transfers data from a disk, it must

guarantee that multimedia data arrive at the consuming device on time. It must also meet

the timing requirements of the multimedia object; however, this task is difficult due to the

2



unpredictability of disk seek latencies. Furthermore, in a multitasking system, more than

one user can request multimedia or non-real-time services, thereby requiring multiple session

management. In contrast, the data allocation and scheduling strategies for conventional

file systems are only concerned about the throughput, latency, and storage utilization for

random access to files.

Our objective is to provide real-time behavior for a set of multimedia sessions originating

from a single, conventional rotating-disk magnetic storage device. Since conventional file

systems can not satisfy the real-time requirements for multimedia applications, we propose

a new file system to support multimedia applications.

A number of related works exist in this area. The problem of satisfying timing require-

ments for multimedia data has been studied as a conceptual database problem [7], as an

operating system delivery problem [1, 10, 17, 9], and as a physical data organization and

performance problem [3, 4, 5, 11, 8, 16, 18].2 Rangan et al. [13] propose a model for storing

real-time multimedia data in file systems. The model defines an interleaved storage organi-

zation for multimedia data that permits the merging of time-dependent multimedia objects

for efficient disk space utilization. In a related work, Rangan et al. [12] develop an admis-

sion control algorithm for determining when a new concurrent access request can be accepted

without violating the real-time constraints of existing sessions. Polimenis [11] shows that the

hard requirement for the acceptance of a set of real-time sessions is the availability of disk

bandwidth and buffer space. Gemmell and Christodoulakis [5] establish some fundamental

principles for retrieval and storage of time-dependent data. A theoretical framework is de-

veloped for the real-time requirements of multimedia object playback. Storage placement

strategies for multichannel synchronized data are also examined. P. Yu, Chen, and Kandlur

[8] present an access scheme called the grouped sweeping scheme (GSS) for disk scheduling to

support multimedia applications by reducing buffer space requirements. C. Yu et al. [16, 18]

describe approaches to interleaving time-dependent data to support constant playout rates.

In this paper, we propose a physical data organization for multimedia data. We interleave

different media objects within a block so as to maintain temporal relationships among those

objects during retrieval (Fig. 1). We also define an allocation policy based on the contiguous

approach to prevent frequent head movement that can cause significant seek latencies and can

support editing on multimedia files. The behavior of a conventional magnetic rotating-disk

storage device is analyzed with respect to the mean and variance of the seek latency.

2The communications view is not applicable here.

3



disk track

block i

video

audio

text

reserved

Figure 1: Physical storage organization for a rotating disk device

A round-robin scheduling discipline is chosen for the service of multimedia sessions as in

other work [9, 11, 14], permitting the disk to switch alternately between multimedia tasks

and other non-real-time tasks. We show the constraints which must be satisfied to permit the

acceptance of a set of multimedia sessions including bandwidth and buffer considerations.

We also evaluate the impact of the disk latency and establish a probabilistic model for our

disk access schedule to guarantee that the frequency of starvation will be less than a specified

rate.

The remainder of this paper is organized as follows. In Section 2, we describe the stor-

age organization and allocation policy for multimedia objects to facilitate disk bandwidth

utilization. In Section 3, we analyze the probabilistic behavior of seek latency for a disk. In

Section 4, we show an access schedule for the disk and present a periodic service discipline

for multimedia objects based on a probabilistic model of a disk, and show how this schedule

reduces the required buffers and increases the number of supported multimedia sessions.

Section 5, concludes the paper.

2 Storage Organization for Multimedia Objects

Most existing storage server architectures employ random allocation of blocks on a disk.

This type of organization is not sufficient to meet the real time requirements for multimedia

applications because the disk latency between blocks of a media object is unpredictable [14].

The file system cannot guarantee satisfaction of the deadline for the retrieval of multimedia

data.

We view a multimedia object as consisting of components of any data type. Without loss

4



of generality, we model a typical multimedia object as being comprised of audio, video and

text. These three components can be viewed as distinct even though they are simultaneously

recorded, and as input, arrive at the file system as three different streams [14]. During

retrieval, these three streams are sent to three output queues for playout and ultimately

are experienced by the user. From a timing perspective, the data streams can arrive at the

file system with specific implied timing (e.g., live audio) or can arrive at the file system

arbitrarily. For example, live video and audio can be recorded at the same time while

subtitles are recorded later.

This leads us to the issue of data interleaving for maintaining intermedia synchronization.

The advantage of interleaving multiple data streams into a single layout is the preservation

of timing between related steams. The penalty with this scheme is the overhead associated

with data combination and redistribution. These layouts are also called homogeneous (non-

interleaved) and heterogeneous (interleaved) layouts [14]. The homogeneous layout stipulates

storage of single medium data in blocks without interleaving. Of course, for this layout

scheme timing relationships between media are not implicitly stored with the interrelated

media.

In the homogeneous approach, each medium requests a session in a round-robin schedule.

When retrieving a multimedia object, the file system must switch between sessions which

can consume additional disk bandwidth and degrade throughput. There is no such problem

in the heterogeneous approach. We merge different media data within a block based on their

temporal relationships and can treat the aggregation of data as a single media object. There-

fore, there is only one session for each multimedia object for the heterogeneous approach.

For this reason we use the heterogeneous layout approach in this work. In our approach,

multiple media streams being recorded are stored within the same block and the length of

each object is proportion to its consumption rate.

In terms of intramedia timing, interleaving of data becomes important to maintain

smooth, gap-free playout. In the extreme case, contiguous space allocation yields the highest

effective bandwidth from a disk, but with a penalty for costly reorganization during data

insertions and updates:

1. With the interleaved policy, multimedia data are stored on disk in a interleaved fashion

[13, 14, 16, 18]. This approach can guarantee continuous retrieval and smooth the

speed gap between disk and multimedia devices. Therefore, it can reduce the buffer

requirement significantly. Usually, it can be applied on optical disks or in a single user

5



environment.

2. With the contiguous policy, multimedia data are stored on a disk contiguously. This

policy can also provide continuous retrieval, but entails enormous copying overhead

during insertions and deletions [13]. However, it is the most efficient way for bandwidth

utilization [11]. This approach can be used for data that is seldom modified (read-only)

such as digital motion picture archives which do not need deletion and insertion.

In our approach, we refine the contiguous scheme using a two-tiered structure. On the

first level, we propose a doubly-linked list which is built based on the temporal relations of

a multimedia object [7]. Each item in the list contains a pointer which points to the disk

address of a media block. The reason for the doubly-linked list structure is to support the

ability to provide reverse playback of multimedia objects. On the second level, we store the

multimedia data that are indicated in the first level, permitting the reversal of a multimedia

presentation at any moment. Basically, multimedia objects are stored sequentially on the

disk. Subsequent media blocks are put on adjacent, unoccupied blocks. If a disk track or

cylinder becomes full (or the next block is occupied) this policy places the multimedia data

in the next nearest available block.

3 Disk Latency and Bandwidth

Multimedia data require large file sizes and consumption rates. The file system must or-

ganize the multimedia data on the disk for efficient use of the limited available space and

bandwidth. To reach the highest bandwidth, a disk system must read (or write) contigu-

ously. A discontinuous disk access can result in diminished disk bandwidth due to additional

seek and rotational latencies involved in each discontinuity.

In our approach, there are two classes of disk latencies. The first one is caused by

fragmentation inside the multimedia file. The file system can trace the file index and calculate

the latencies. The second one is task switching latency. In our scheduling approach, the disk

switches alternately to different multimedia tasks. Because one can pause, stop or reverse a

multimedia presentation at any moment, and a multimedia object can be allocated anywhere

in the disk, there are unpredictable and significant latencies during retrieval. In this section,

we determine these disk latencies and their distributions through analysis for a typical hard

disk storage unit suitable for a Unix workstation [15]. Parameters characterizing such a

device are summarized in Table 2 using symbols adopted and extended from Kiessling [6].

6



Table 2: Disk parameters and derived statistical behavior

Symbol Identification Value Units
Sdt Size of a single track 54,900 bytes
Nhead Number of tracks in a cylinder (number of disk heads) 15 tracks
Thh Time to change head to the another surface 2,000 µs
Ttt Time to cross a track 21 µs
Tstart Seek start-up time 11,000 µs
Trot Rotation time for a disk 16,700 µs
Rt Data transfer rate within a track 3.29 Mbyte/s
c Number of cylinders per disk 2,107 cylinders
Tlatency = Tcross + Tswitch + Trotate ms
E(Tcross) ∼= 1

3
c × Ttt + Tstart 25.7 ms

σ2
cross

∼= c2

18
T 2

tt 108 ms2

σcross
∼= c√

18
Ttt 10.4 ms

E(Tswitch) = Nhead−1
Nhead

Thh 1.86 ms

σ2
switch = T 2

hh
Nhead−1

N2

head

∼= T 2

hh

Nhead
0.27 ms2

σswitch
∼= Thh√

Nhead
0.51 ms

E(Trotate) ∼= 1
2
Trot 8.35 ms

σ2
rotate

∼= 1
3
T 2

rot 92.96 ms2

σrotate
∼= 1√

3
Trot 9.64 ms

E(Tlatency) ∼= 1
3
c × Ttt + Tstart + Nhead−1

Nhead
Thh + 1

2
Trot 35.9 ms

σ2
latency

∼= c2

18
T 2

tt +
T 2

hh

Nhead
+ 1

3
T 2

rot 201.6 ms2

7



3.1 Seek Delay Latency

When a user edits the multimedia file or the file system schedules another process to access

the disk, the next block to be retrieved can be arbitrarily located anywhere on the device.

The disk head must start up and cross a number of tracks, switch to a recording (write)

surface and rotate to the indicated block. Assuming that the location of the desired block is

uniformly distributed on the whole disk, then the total latency is Tlatency = Tcross +Tswitch +

Trotate, where Tcross is the arm positioning time for disk head move to the correct track,

Tswitch is the delay to switch the head to the other surface, and Trotate is the delay for disk

rotation. We have derived various statistical disk performance behaviors from these base

parameters [2], and summarize them in Table 2.

3.2 Disk Bandwidth Normalization

In an ideal disk storage organization, data can be accessed without latencies, and the data

transfer rate (or bandwidth) is dependent only on the disk rotational speed. In a real disk,

latencies are introduced due to track and platter switching, and disk rotation. These latencies

are determined by the layout of data on the disk and the scheduling policy for their access.

We can normalize the data transfer rate based on a complete disk scan policy as follows:

once the head reaches and retrieves the first block of an object, it retrieves the adjacent

block in the same track. If the whole track has been retrieved, it switches to the next surface

but remains on the same cylinder. If the whole cylinder has been retrieved, the disk arm

crosses to the next track. We normalize the disk bandwidth by considering each of these

head motions in the complete scan as:

R =
1

1
Rt

+ 1
Sdt

Thh + 1
Sdt×Nhead

[Tstart + Ttt]
(1)

Therefore, we can use this derived value as the maximum effective bandwidth for data

transfer from the disk.

4 Disk Access Scheduling

In this section we show the constraints for the acceptance of a set of multimedia sessions

and the requirements for buffer size and disk bandwidth.

8



period

latency 1 latency 2 latency 3 leftover

session 1 session 2 session 3

playback recording

Figure 2: Layout model

4.1 Layout Model

In the layout model of Polimenis [11], a working period Tperiod is defined for a set of multi-

media tasks and other non-real-time tasks as shown in Fig. 2.

During a working period, the schedule switches among all multimedia sessions. It carries

enough data into the buffer for the ith session to keep task i busy until its term is active in

the next working period. If R is the whole disk bandwidth that we derived in (1), then each

session i shares an interval T (i) proportional to its consumption rate Rc(i). The amount of

data accessed during T (i) is equal to the amount consumed during the period Tperiod. Thus,

we have T (i) = Rc(i)
R

Tperiod.

In this equation, Rc(i) represents the bandwidth requirement for session i. Let the ith

session contain k different media data (video, audio, text, etc.). Each medium j requires

Rc
j(i) of bandwidth. Thus, the total bandwidth requirement Rc(i) for session i is

∑k
j=1 Rc

j(i).

For viable multimedia data delivery, the bandwidth lost due to task switching latencies plus

the bandwidth consumed by each multimedia session must be less than the normalized disk

bandwidth (where the period is fixed unless we change the number of sessions).

4.2 Bandwidth Requirements

In this section, we derive the bandwidth constraint. Let n(i) be the number of bytes accessed

for medium i during a working period Tperiod. The total number of bytes n to be read during a

period Tperiod is then
∑m

i=1 n(i). Because the time interval T (i) for each media is proportional

to its bandwidth requirement and n(i) = T (i) × R. Thus, we have n(i) = Tperiod × Rc(i).

As shown in Fig. 2, the total interval used for multimedia sessions plus the disk seek

latency should be less than the working period Tperiod in order to have enough bandwidth for

other non-real-time tasks. On the other hand, the period Tperiod must be greater than the

9



time needed in the worst case to transfer data from (or to) the disk for all sessions. Suppose

we have m multimedia sessions. Let R be the total disk bandwidth and Tlatency(i) be the

task switching latency between sessions i − 1 and i. Then,

n

R
+

m∑

i=1

Tlatency(i) < Tperiod =
n(i)

Rc(i)
, (2)

where n(i)
Rc(i)

should be equal to Tperiod to maintain a steady-state. This means that the

amount of data read from the disk for each session i during a period is exactly equal to the

amount of data consumed by the ith consumer process. Thus, by (2),

R >
n

n(i)
R(i)

− ∑m
i=1 Tlatency(i)

=
1

n(i)
n

1
R(i)

−
∑m

i=1
Tlatency(i)

n

.

Since, n(i)
n

= Rc(i)∑m

i=1
Rc(i)

, then

R >
1

Rc(i)∑m

i=1
Rc(i)

1
R(i)

−
∑m

i=1
Tlatency(i)

n

=
1

1∑m

i=1
Rc(i)

−
∑m

i=1
Tlatency(i)

n

.

The right hand side of the above equation can be divided into two parts. The first part

is the bandwidth requirement of all multimedia sessions. The second part is the factor due

to the seek latency between any two sessions. Thus,

R >
m∑

i=1

Rc(i) +
(
∑m

i=1 Rc(i))2 × ∑m
i=1 Tlatency(i)

n − ∑m
i=1 Rc(i) × ∑m

i=1 Tlatency(i)
. (3)

The last term of this equation describes the bandwidth wasted, or lost, when the disk

head is moved, or seeked, between sessions.

4.3 Buffer Requirements

In Section 4.1, we showed the bandwidth requirements for a set of multimedia sessions

without considering their acceptability in terms of buffer utilization. In the layout model,

each session i shares only part of a period (Fig. 2). Each session must carry enough data into

the buffer to keep the process i busy until it is reserviced. Otherwise, the process starves.

Therefore, the second condition to accept a set of multimedia sessions is the availability of

10



a
time

buffer
 use

T(i)

latency i

period
T

To

b

aT bT

Figure 3: Buffer consumption

sufficient buffer space. As illustrated in Fig. 3, session i shares a duration T (i) in a disk

access.

When session i is active, its buffer size increases at a rate R−Rc(i). Outside this duration,

the buffer size shrinks at a rate Rc(i). Let B(i) be the buffer requirement for session i. Then

B(i) > (R−Rc(i))× T (i), or B(i) > Rc(i)× (Tperiod − T (i)). If we let B be the total buffer

requirement, then B >
∑m

i=1[(R − Rc(i)) × T (i)]. Rewriting, we get:

B >
m∑

i=1

[Rc(i) × (Tperiod − T (i))] (4)

Therefore, we have defined the buffer constraint that can be applied to determine the

feasibility of adopting additional multimedia sessions.

4.4 Length of Period Tperiod

In Fig. 2 and (2), we show that the period Tperiod must be greater than the sum of all

individual session periods in order to transfer data from (or to) disk for all sessions. Let D

be the leftover duration as shown in Fig. 2. For each period, the disk spends Ttransfer to

transfer data, where, Ttransfer = Tperiod −
∑m

i=1 Tlatency(i) − D. In a period, session i shares

T (i) duration based on its consuming rate Rc(i). Therefore,

T (i) = [Tperiod −
m∑

i=1

Tlatency(i) − D] × Rc(i)
∑m

i=1 Rc(i)

11



To maintain a steady-state for the system, the data read from the disk during T (i) for

session i must be equal to the amount consumed during the period Tperiod. Otherwise, the

buffer can starve or grow without bound. Thus,

Tperiod × Rc(i) < [Tperiod −
m∑

i=1

Tlatency(i)] ×
Rc(i)

∑m
i=1 Rc(i)

× R

Tperiod >
m∑

i=1

Tlatency(i) ×
R

R − ∑m
i=1 Rc(i)

= T (5)

In (5), Tlatency(i) represents the seek latency when the disk switches the service from

session i − 1 to session i. Because the next retrieval data for session i can be allocated

anywhere on the disk, the latency Tlatency is a random variable. In Section 3, we derive the

average seek latency and the variance of the seek latency. Let E(Tlatency) be the average seek

latency and σ2
latency be the variance of seek latency (Table 2). The expectation E(T ) and

variance σ2(T ) of T in (5) are as follows:

E(T ) = m × E(Tlatency) ×
R

R − ∑m
i=1 Rc(i)

σ2(T ) = m × σ2
latency ×

R

R − ∑m
i=1 Rc(i)

By the above equations, we know T is also a random variable, so we cannot assign T to

be the lower bound of the period Tmin
period. Let p be the probability of starvation that can be

tolerated for the mth session, by Chebychev’s Inequality we have P [|Tmin
period − E(T )| > k] ≤

σ2(T )
k2 = p, and therefore,

Tmin
period ≥ E(T ) +

σ(T )√
p

(6)

This means that if the lower bound Tmin
period is chosen, the probability for the mth session

can be accepted successfully is greater than 1 − p.

By (6), if we chose Tperiod equal to the lower bound E(T ) + σ(T )
√

p
, we can guarantee that

the starvation rate for session m will be less than p. Equation 6 is always true; however, it

does not mean that the starvation rate is equal to p. In the heavy load situation, when the

number of multimedia sessions m is very large, by the Law of Large Numbers, the starvation

12



probability of
starvation    

Tperiod

min
E(T)

Probability

p

1 - p 

Figure 4: Distribution of T

rate will approach p. In the light load case, the starvation rate can be much lower than p.

Conversely, we can use a shorter period Tperiod to keep the starvation rate under p.

A period Tperiod for a set of multimedia sessions must meet two hard requirements. In

Section 4.2, we derived the bandwidth requirement, but it was not sufficient to accept a set

of multimedia sessions. The system must provide enough buffer for each multimedia session.

In the light load situation, there are always enough resources to allocate to multimedia

sessions. Thus, we are more interested in the heavy load case. Let us assume the number of

multimedia sessions m is large. Then, comparing with the period Tperiod, the duration T (i)

assigned to each multimedia session is small. We simplify (4) by ignoring the T (i) and the

result is still valid:

B ∼= Tperiod ×
m∑

i=1

Rc(i) (7)

By the equation above, we find that the buffer requirements are dependent on the length

of period Tperiod. Let Bmax be the maximum buffer space that is available. Obviously, there

is a upper bound Tmax
period for the period that can be accepted for a set of multimedia sessions.

Otherwise, the total buffer requirements will exceed the available buffer space Bmax. From

(7), we have:

Tmax
period =

Bmax

∑m
i=1 Rc(i)

(8)

Equs. (6) and (8) derived above are for the general case where the consumption rates

for multimedia sessions have different values. In real applications, the disk bandwidth re-

quirements for multimedia sessions can have the same value. In the following example, we

assume, for simplicity, that the consumption rates for all multimedia sessions are the same

and evaluate the buffer consumption and number of sessions supported.

13



Table 3: File system performance for Example 1

100 % Bandwidth Utilization 100 % Buffer Allocation
N Tmin

period (ms) Buffer Allocation (bytes) Tmax
period (ms) Bandwidth Utilization

1 86 29,000 40,000 16.35 %
2 213 143,000 20,000 32.88 %
3 385 386,000 13,333 49.58 %
4 706 946,000 10,000 66.48 %
5 1,577 2,641,000 8,000 83.75 %
6 14,013 * 28,163,000 6,667 * 100.80 %

* Insufficient memory.

Example 1 Let us assume all multimedia sessions request the same disk bandwidth. Each

multimedia session includes video data at a rate of 1.92 Mb/frame @ 30 frames/s with a 20:1

compression ratio, and audio data at a rate of 1.4 Mb/s with a 4:1 compression ratio. Each

multimedia session consumes disk bandwidth at a rate of 0.4 Mbyte/s. Using the same disk

parameters as in Table 2, the average disk latency E(Tlatency) is equal to 35, 965µs and the

standard division σlatency is equal to 14, 212µs. In (6) we let p be 0.05. We then derive the

lower bound for different numbers of supported sessions using (6) assuming that there are

16 Mbytes of main memory that can be assigned for buffering. The upper bound of a period

is determined by (8).

Let N be the number of multimedia sessions and Tmin
period be the lower bound for the

period. In this example we assume all multimedia sessions request the same disk bandwidth

Rc. If Tmin
period is chosen then there is no disk bandwidth left. By (4) we know that the buffer

requirement is minimized. By (4), we have

B =
N∑

i=1

{Rc(i) × [Tmin
period −

Rc(i)

R
Tmin

period]} = N × Rc × Tmin
period × (1 − Rc

R
)

The results of this analysis are summarized in Table 3. The third column presents the

buffer requirement for N multimedia sessions when we chose Tmin
period. The fourth column

indicates the upper bound for period. In this case, the whole 16 Mbytes of memory are

assigned for buffering. This allows us to use the least amount of disk bandwidth.

In our layout model, a period Tperiod is equal to the sum of all durations assigned multime-

dia sessions and the disk latency for switching service between multimedia sessions plus the

leftover used for other non-real-time process (Fig. 2). The percentage P of disk bandwidth

14



0

1

2

3

4

5

6

7

8
x107

0 5 10 15 20 25

Number of Multimedia Sessions

pe
ri

od

0.4M 0.3M 0.2M

0.1M
0.4M

0.3M

0.2M

0.1M

Figure 5: Number of sessions vs. period length

consumed by multimedia sessions can be considered as the interval assigned to multimedia

session, plus disk latency lost in task switching between multimedia sessions, divided by the

length of the period:

P =

∑N
i=1 T (i) +

∑N
i=1 Tlatency(i)

Tmax
period

=
N × Tperiod

Rc

R
+ N × Tlatency

Tmax
period

In the fifth column, we show the percentage of disk bandwidth consumed by the multi-

media sessions when the upper bound Tmax
period is chosen.

In Fig. 5, when we increase the number of supported sessions, the buffer requirement

for lower bound and disk bandwidth requirement for upper bound increases. If there are

five multimedia sessions accessing the file system, the system can perform within these

constraints, but it cannot accept additional multimedia sessions. An additional session

causes the request for a 28,163,000 byte buffer and 100.8% of disk bandwidth, both of which

exceed the capacity of the system.

Fig. 5 also shows the effect of varying the compression rate to reduce the bandwidth

required for any (video) session and increase the number of multimedia sessions supported per

15



device. For video data, a compression ratio in the range of 1:10 to 1:100 is not unreasonable.

4.5 Consideration for Choosing a Period

Two hard requirements must be met when choosing the length of a period, otherwise the

system cannot work. A period must be greater than Tmin
period to meet the bandwidth require-

ment and less than Tmax
period to meet the buffer requirement. These constraints are summarized

as:

Tmax
period > Tperiod > Tmin

period (9)

A new multimedia session can be accepted only it satisfies this relationship. Fig. 5 illus-

trates the ranges of sessions supported that satisfy these constraints. The region enveloped

by the lower bound and upper bound is safe. In Table 3 for the sixth session the lower bound

of period Tmin
period is 14, 013 ms, the upper bound Tmax

period is 6, 667 ms. Since Tmin
period > Tmax

period,

we know the file system can not accept six multimedia sessions at the same time.

We estimate the upper and lower bound very conservatively (due to the large m assumed).

The real upper bound can be larger and the lower bound can be lower than we derived.

However, when the number of sessions increases, our estimates approach the real upper and

lower bounds. There are two reasons to support our assumption. First, in the light load

case, there are always enough resources for use. We are more concerned about the heavy load

situation when the number of multimedia sessions m is large. Second, it is not necessary

or wise to chose a period Tperiod close to either the upper or lower bound because of the

degradation of the throughput of other non-real-time data transfers. For a general-purpose

machine, a multimedia file system not only has to meet the hard requirements above, but

also must leave enough bandwidth for these other non-real-time transfers. Let A = D/Tperiod

be the the percentage of disk bandwidth used to carry data from disk for non-multimedia job

during every period Tperiod. For a set of multimedia sessions, we have the maximum value of

A when Tperiod = Tmax
period [11]. This means if we increase the period Tperiod we can have more

disk bandwidth left for the non-multimedia task.

From a memory perspective, a multimedia file system must minimize its buffer utilization

to provide more free memory for other system tasks. By (7), when period Tperiod = Tmin
period,

the buffer requirement is minimized. By the above two results, we intend to increase the

period to have more disk bandwidth left for non-multimedia traffic but minimize the period

16



to get more free memory for non-multimedia tasks. In the extreme case, if we minimize

the Tperiod value, we minimize the buffer requirement and maximize free memory for other

non-multimedia tasks. At the same time, the leftover for disk bandwidth is zero. Similarly,

maximizing the Tperiod can free the maximum disk bandwidth for other non-multimedia

processes to use but will also result in complete memory consumption. In this case, even if

the disk has ample bandwidth available, no non-multimedia process can use it. Thus, these

two soft requirements are in conflict.

To improve the response time for non-multimedia processes, we can change the period

Tperiod dynamically with feedback from operating system to balance the resources allocation.

For example, if there are tasks suspended due to disk bandwidth shortage and there is free

memory space available, the file system can extend the period Tperiod in order to have more

disk bandwidth to assign to the non-multimedia processes. On the other hand, if there are

non-multimedia processes waiting for memory space and the disk is idle during the leftover

interval. The file system can shrink the period Tperiod in order to free more memory space

and to load more processes in the memory.

For a multimedia on-demand server, the file system need only provide service to mul-

timedia processes. In this situation, we chose the lower bound to achieve the highest disk

utilization. Given the physical disk characteristics, we can determine the buffer requirements.

By Fig. 3 and (4), we know the buffer consumed is dominated by the period length Tperiod.

By (5), the period length depends on the sum of random variables Tlatency(i). We assume

the worst case, take the maximum value for for all task switching latencies Tlatency(i), and

decide the period length. This assumes that starvation can never happen, when in practice

it will only rarely happen. In a refined model, we define an acceptable rate q = 1 − p of

non-starvation, and derive the period length which guarantees a set of multimedia session

can be accepted with at least a value of q for the probability of not starving. For example,

we define q = 95%. In this case, if there are five multimedia sessions in the system we can

save 20.8% of available memory.

5 Conclusion

When a multimedia file system transfers data from a disk, it must guarantee that multimedia

data arrive at the playout device with a minimum latency. It must also satisfy the timing

requirements implied by the nature of the multimedia object (e.g., intermedia synchroniza-

tion among media). However, disk seek latency is very significant and can be unpredictable

17



in a general-purpose file system.

In this paper we presented a physical data organization for supporting the storage of

time-dependent multimedia data. We interleaved different media objects within a block to

maintain timing among the objects during data storage and retrieval. We also refined existing

contiguous allocation approaches to maximize disk bandwidth utilization and to prevent

the enormous copying overhead during editing. Furthermore, we introduced a probabilistic

model as a refinement of the round-round scheduling discipline that supports concurrent

multimedia processes. Moreover, it reduces the amount of required buffering. We showed

the acceptance conditions for additional multimedia sessions which include bandwidth and

buffer constraints, and a means for balancing these two parameters to support the largest

number of multimedia sessions originating from a single device.

References

[1] Anderson, D.P., Homsy, G.: A continuous media I/O server and its synchronization

mechanism. Computer 24 (1991) 51-57

[2] Chen, H.J. Little, T.D.C.: A file system for multimedia applications. Tech. Rept. 12-

09-1992, Multimedia Communication Laboratory, Boston University (1992)

[3] Christodoulakis, S., Faloutsos, C.: Design and performance considerations for an optical

disk-based, multimedia object server. Computer 19 (1986) 45-56

[4] Ford, D.A., Christodoulakis, S.: Optimal placement of high probability randomly re-

trieved blocks on CLV optical disks. ACM Trans. on Information Systems 9 (1991)

1-30

[5] Gemmell, J., Christodoulakis, S.: Principles of delay-sensitive multimedia data storage

and retrieval. ACM Trans. on Information Systems. 10 (1992) 51-90

[6] Kiessling, W.: Access path selection in databases with intelligent disc subsystems. The

Computer Journal 31 (1988) 41-50

[7] Little, T.D.C., Ghafoor A.: Interval-based conceptual models for time-dependent mul-

timedia data. To appear in IEEE Trans. on Data and Knowledge Engineering (1993)

[8] Yu, P.S., Chen, M.S., Kandlur, D.D.: Design and analysis of a grouped sweeping scheme

for multimedia storage management. Proc. 3rd Intl. Workshop on Network and Oper-

ating System Support for Digital Audio and Video, San Diego (1992) 38-49

18



[9] Lougher, P., Shepherd, D.: The design and implementation of a continuous media

storage server. Proc. 3rd Intl. Workshop on Network and Operating System Support for

Digital Audio and Video, San Diego (1992) 63-74

[10] Nakajima, J., Yazaki, M., Matsumoto, H.: Multimedia/realtime extensions for the mach

operating system. Proc. Summer 1991 Usenix Conf., Nashville, Tennessee (1991) 183-

198

[11] Polimenis, V.G.: The design of a file system that supports multimedia: ICSI Tech.

Rept. TR-91-020 (1991)

[12] Rangan, P.V., Vin, H.M., Ramanathan, S.: Designing an on-demand multimedia ser-

vice. IEEE Communications Magazine 30 (1992) 56-64

[13] Rangan, P.V., Kaeppner, T., Vin, H.M.: Techniques for efficient storage of digital video

and audio. Proc. Workshop on Multimedia Information Systems, Tempe, Arizona (1992)

68-85

[14] Rangan, P.V., Vin, H.M.: Designing file systems for digital video and audio. Proc. 13th

Symposium on Operating Systems Principles (SOSP’91), Operating Systems Review 25

(1991) 81-94

[15] Seagate Technology: Seagate Wren 8 ST41650N product manual (volume 1). Publication

No. 7765470-A (1991)

[16] Wells, J., Yang, Q., Yu, C.: Placement of audio data on optical disks. Proc. Intl. Conf.

on Multimedia Information Systems, Singapore (1991) 123-134

[17] Wolf, L.C.: A runtime environment for multimedia communications. Proc. 2nd Intl.

Workshop on Network and Operating Support for Digital Audio and Video, Heidelberg,

Germany (1991)

[18] Yu, C., Sun, W., Bitton, D., Yang, Q., Bruno, R., Tullis, J.: Efficient placement of

audio data optical disks for real-time applications. Communications of the ACM 32

(1989) 862-871

19


