
Capture-Time Indexing Paradigm, Authoring Tool,
and Browsing Environment for Digital Broadcast

Video1

Michael Carreira,2 John Casebolt,3 Gerard Desrosiers,4 and T.D.C. Little

Multimedia Communications Laboratory

Department of Electrical, Computer and Systems Engineering

Boston University, Boston, Massachusetts 02215, USA

(617) 353-9877, (617) 353-6440 fax

tdcl@bu.edu

MCL Technical Report 01-08-1995

Abstract–Historically, Multimedia Video-on-Demand (VOD) systems have considered stream

indexing as an authoring activity, decomposing monolithic streams containing no explicit in-

dexing information. This paper suggests a scheme for “up-front,” capture-time indexing

of digital video streams, whereby the indexing information logically becomes part of the

stream. This approach takes advantage of the sequential, temporal nature of capture and

the knowledge of the stream recorder to empower further manipulation and playout of the

stream. We explore the impact of capture-time indices, and implement a sample format in

a Segment Definition File (SDF).

The Video Broadcast Authoring Tool (VBAT) is the focus of our paper. Taking a video

stream and an SDF as input, VBAT provides a means for authors to create, delete, modify

and annotate segments of that stream. VBAT also integrates existing technology such as

World-Wide Web’s HTTP links and the Motion Picture Parser application.

Creation of various-format stills for browsing is supported. VBAT provides for post-

processing of the SDF to various playout environments; we implement and describe a post-

processor for World-Wide Web browsing and playout. Finally, we discuss VBAT’s position

in an integrated digital video broadcast environment and areas of future work.

1In Proc. Multimedia Computing and Networking, IS&T/SPIE Symposium on Electronic Imaging Science
and Technology, SPIE Vol. 2417, February 1995, pp. 380-388.

2Quantum Corporation, Shrewsbury, MA 01545, carreira@leds.enet.qntm.com
3United States Air Force, Draper Laboratory, Cambridge, MA 02139, casebolt@bu.edu
4Naval Undersea Warfare Center Division Newport, RI 02841, desrosiers@v22c.npt.nuwc.navy.mil



Keywords: Multimedia authoring, indexing, browsing, digital video.

2



1 Introduction

Recently, we had the chance to review over 100 papers representing both current and classical

thinking in the field of Multimedia. In the process of distilling all this information, while

trying to gain a ’big picture’ view of the current state-of-the-practice in digital video, we

became intrigued by a couple of topic areas, namely indexing and browsing.

This paper documents research efforts leading out of that interest, and presents two dif-

ferent, yet inter-related ideas: a capture-time indexing paradigm, and an extensible, portable

authoring tool implementing that paradigm.

In the majority of literature on continuous-media stream indexing, the subject is viewed

as a post-capture/post- creation activity, based on decomposing monolithic streams contain-

ing no explicit indexing information [1, 2, 3]. This ’downstream’ indexing has quite a few

disadvantages, including computationally-intense processing and, in many cases, hardware-

specific display requirements. Couple these drawbacks with the published fact [2, 3] that

much of authoring is just flat tedious work – both error-prone and boring – and we wonder

if there is a better way to do the business of authoring.

Interesting work has been done by Deardorff, et al., to alleviate some of the tedium

involved with authoring by introducing the Motion Picture Parser [4], a tool designed to

detect scene/shot transitions by operating mathematically on a histogram of the individual

frame sizes. Although reducing the need for laboriously cycling fast-forwards/rewinds to

find scene changes, the MPP algorithms themselves can be quite compute-intensive, perhaps

more appropriate to a non-interactive/off-line environment. We believe that something can

be done to give the author a ’head start’ on the event/scene transition identification process.

In particular, there exists a way of presenting to the author an idea of what the recorder of

the stream had in mind as ideal browsing points, highlight frames, audio marks, or content

transition points.

In the end, we struck on a very simple idea, one which we have not seen in the literature

to date. Why not add indexing activities to the front-end of the process, either capture-time

(for live streams) or creation-time (for pre-produced streams)?

Exploring this concept a bit further, it becomes clear that this scheme has many advan-

tages. Perhaps most importantly, it allows the introduction of a line-of-communication –

a bridge – between the recorder of the stream and the author of the stream, perhaps two

different people. Additionally, depending on the amount of indexing information captured,

3



very little overhead would be involved in the logical (perhaps even physical) inclusion of

indexing information in the stream itself. As a return on this investment, the author would

receive a stream pre-indexed – providing the head start we want, and perhaps saving many

hours of traversing the stream looking for certain events.

Concentrating for a moment on the capture of live streams, we can argue that the greatest

gains could be made in this area (as opposed to prepared, pre-produced streams). Since the

capture of live streams is essentially sequential in its temporal nature – i.e., it takes 300

seconds to capture 300 seconds of a live event, no more, no less – we have an opportunity to

take advantage of this time to provide indexing information. The point being that since the

300 seconds in the above example must be spent to capture the event, why not also use it

to index the event, rather than wasting another person’s time downstream to do the same

work?

A perfect example would be the capture of a sporting event. Taking a baseball game, say

we wanted an index at the end of every inning, after every out, and even after each pitch.

Without capture-time indexing, someone must watch the game in its entirety at a later date

to mark the stream with the appropriate information, doubling the amount of time necessary

to have a stream with this information embedded. Why not mark the stream as the game

progresses?

Another important part of the information transfer along our conduit from recorder

to author is domain expertise. It is easy to imagine a scenario where the recorder has

information or knowledge which would allow the recognition of an important event during

the capture of a stream; an author lacking the same information may not understand the

significance of the event. Using our baseball game example again, stipulate that a player

steals a base, setting the all-time record for bases stolen in a single season. To the announcer

and/or recorder of the game, as well as to future viewers of the stream, this represents a

major event. To an author preparing this stream for viewing who happens to not follow

baseball, the event may just be another stolen base - nothing of any consequence - and the

event may not be indexed. This is an example of information loss due to an author unfamiliar

with the domain of the stream which is being indexed.

Having defined the indexing paradigm, the paper will present an example of capture-time

indexing implementation. Next, we will relate our design and implementation experiences

with an authoring tool based on the paradigm. In conclusion, we will summarize our expe-

riences, relate some lessons learned, and discuss future work in the areas covered.

4



2 Capture-Time Indexing Implementation

Implementation of a capture-time indexing paradigm could take many forms. After present-

ing a few of these theoretical possibilities, we will examine the Segment Definition File, our

chosen format for implementing capture-time indexing.

2.1 Capture-Time Indexing Implementation - In Theory

It is convenient to establish two categories of indexing information inclusion: physical and

logical. Physical inclusion dictates that the indexing information is actually embedded in

the stream itself. Logical inclusion implies a relationship between the stream and the index-

ing material based upon a projection provided by an external mechanism; for example, an

authoring tool.

An example of physical inclusion would be immersion of the index mark in an MPEG

stream, perhaps as a sequence of contiguous I-frames, or, more elegantly, as a logical function

layer in the bit stream [5]. Various encoding methods (H.261, J-Movie, etc.) could be

adapted to provide a place to ’hide’ the indexing information. In short, an entire paper

could be devoted to studying the current and future encoding schemes with a mind for

extension to include this type of out-of-band information.

For the purposes of this research, we chose to implement a logical inclusion scheme. The

reasons for this choice are three: simplicity, portability, and utility. Addressing simplicity

first, we did not have to modify any existing encoding method to carry out our research.

Next, portability; by choosing a logical inclusion method, we did not need to worry about

portability problems between varied coding schemes, which complemented one of our motiva-

tions for building the Video Broadcast Authoring Tool, described below. Finally, addressing

utility concerns, it is much easier to access and manipulate the indexing information outside

of the stream in a concise format, leveraging available operating system tools. In our case,

the information is even human readable, residing in an ASCII file.

Drawbacks of the logical inclusion scheme which are immediately obvious deal with con-

figuration management and performance. As we shall see, steps were taken to deal with

configuration concerns, and performance, in our experiments, did not seem to be an issue

due to the relatively small set of information dealt with (on the order of 100 or so indices

for a given stream).

5



2.2 The Segment Definition File (SDF)

The vehicle we have chosen to implement our capture-time indexing database is the Seg-

ment Definition File (SDF). The SDF is simply a formatted ASCII file containing stream

information and segment information. The SDF may be automatically generated at capture

time; in our research, however, the initial SDF was created by a test program or by hand.

The contents of the file were designed to support the types of user queries found in

some of the literature [6, 7], as well as provide information necessary to perform configura-

tion management and extended annotation. We decided to let the SDF provide both our

capture-time indexing information and authoring information. Since a capture-time index

implementation may provide either minimal information for an indexed event (perhaps only

the frame number) or a more robust collection of data, our SDF provides the notion of op-

tional data fields. As portrayed in Fig. 1, the SDF is composed of exactly one header section

and one-or-many segment sections. Of particular interest to Capture-Time Indexing is the

fact that each indexable event is marked by the creation of new segment entry in the SDF,

minimally with a start frame number and nothing else. See the first segment entry in Fig. 1

for an example of a capture-time index segment. The second, more fully-populated segment

section will be explained below in the context of the Video Broadcast Authoring Tool.

6



———————-Header—————–

Source Media File: stout.mv

Session Name : team-intro

Still File Format: GIF

File Produced By : Video Broadcast Authoring Tool

Program Version : PreBeta

Date/Time : Mon Aug 15 20:06:41 1994

———————Segments—————-

Segment Name :

Parent Name :

Children :

Start Frame : 5

Stop Frame : Rep Frame :

Narrative :

External Refs:

x Position :

y Position :

———————————————

Segment Name : Stout

Parent Name : NONE

Children : 3

Jerry

John

Mike

Start Frame : 0

Stop Frame : 0

Rep Frame : 94

Narrative : This is our favorite segment

External Refs: 2

Name: BU MCL

URL : http://spiderman.bu.edu

Name: Quantum

URL : http://www.qntm.com

x Position : 1

y Position : 0

7



Fig. 1 - Example Segment Definition File

3 The Video Broadcast Authoring Tool

The Video Broadcast Authoring Tool (VBAT) is a tool for segmenting and annotating

previously-captured digital video streams. Its main purpose is to break a video stream

into logical segments and then arrange those segments in a hierarchical manner for subse-

quent browsing and playout. The following sections describe our implementation of VBAT.

The motivations for creating VBAT will be outlined as will some interesting design and

implementation details that were encountered developing VBAT.

3.1 Motivations

The Video Broadcast Authoring Tool (VBAT) was developed primarily as a vehicle for

demonstrating the usefulness of capture- time indexing by taking advantage of a “capture

time” SDF. Secondary motivations include the integration of existing capabilities (such as

the Motion Picture Parser and Hyper Text Transfer Protocol) as well as a way in which to

automate the creation of HyperText Markup Language (HTML) files.

A “capture time” SDF may be generated as a by-product of the initial video capture.

This SDF will define certain frames as marked frames, allowing VBAT to initialize the user’s

display with a still image representing each marked frame. At this point, we define this

representative frame as the frame from which a still image is extracted for purposes of visual

identification of a segment during authoring and browsing. Notice that at this time, each

marked frame is considered a segment of length one – i.e., a segment with identical start

and stop frames (and, for now, an identical representative frame). Each such single-frame

segment will be positioned in the user’s display as the root node of an n-ary tree. The

tool will now allow the author to manipulate each segment by modifying start, stop, and

representative frames as well as entering narrative data and hypermedia links to related

information. An internal, VCR-like media player is provided to aid in the start, stop, and

representative frame selection. The player provides forward and reverse play, single step

forward and reverse play, and fast forward and reverse play.

As we alluded to earlier, the sequencing of segments is derived from their position in

one or more n-ary trees; leaf segments are traversed in a depth-first, left-to-right manner.

8



Segments may be “dragged” and “dropped” to different hierarchy levels or locations in

the main window grid and attached to parent segments to edit their playout relationships.

Although somewhat simplistic, this sequencing relationship more than adequately provides

us with a framework in which to carry out our research.

The results of all these modifications are stored in a new SDF. As seen in Fig. 1, the

SDF includes data fields for each segment parameter (e.g., Parent Name, Start Frame, Rep-

resentative Frame, Grid Position, etc.). In addition to the modification of existing segments,

new segments may be added or existing segments deleted at any time during an authoring

session.

VBAT maintains a separate SDF for each authoring session. A session may be suspended

and resumed any number of times with the SDF containing all pertinent session information.

Multiple authoring sessions are allowed for each media file. Thus, multiple views of a cap-

tured audio/video sequence may be maintained, possibly providing alternate perspectives of

the media stream. Segmented media files and still image files may be generated for leaf node

segments as well as a HyperText Markup Language (HTML) file to facilitate browsing and

playout. VBAT integrates existing capabilities such as the Motion Picture Parser [4], Hyper

Text Transfer Protocol (HTTP), and related World-Wide Web browsers to provide a robust

authoring environment.

In the event that a “capture time” SDF is not available, a useful feature is provided by

VBAT to determine all shot transitions in the media file. This capability is provided by

integrating VBAT with the Motion Picture Parser [4] which detects shot transitions. This

provides the author a starting point in the editing process in the absence of “capture time”

markings. VBAT also uses the MPP algorithm in VBAT’s VCR-like player feature. In this

setting, it is used to jump to the next shot transition, allowing the user quick navigation of

the video stream. This effort also capitalized on the Hyper Text Transfer Protocol (HTTP) to

provide external links to supplementary information for a particular segment. VBAT allows

the entry of multiple links for each segment and will utilize Mosaic to support resolution of

reference link entries. The back-end of VBAT will generate an HTML file which represents

the playout tree generated by the author. This final product will allow an end user to browse

the video in an organized fashion.

9



3.2 Design

VBAT fits into the system environment depicted in Fig. 2. VBAT inputs include the

monolithic video stream to be arranged and, optionally, a capture-time or authoring-session

SDF. VBAT outputs are an updated SDF (capturing the state of the authoring session at

save time) and, optionally, physically-segmented video stream files representing each segment

defined during the authoring session. A post-processing back-end for VBAT will utilize the

physical output of VBAT (SDF and media segments) to prepare and format the logical output

(segments, annotation, playout order) for browsing and playout in a particular environment.

For demonstration purposes, we chose to implement a post-processor capable of creating an

HTML file for subsequent use by World-Wide-Web browsers such as Mosaic. This post-

processor also creates a set of stills, one for each representative frame, in a format configured

by the author (current supported formats include XPM, JPEG, and RGB). These stills are

displayed as imagemaps in the HTML output.

VBAT has been designed in a modular fashion with well defined internal interfaces to

support future extensions. VBAT is composed of the following modules: User Interface, Seg-

ment Data Manager, Audio/Video Interface, Authoring Services, File services, Command

Processing, and HTML-generating post-processor. VBAT was modularized in this manner

to accommodate anticipated future enhancements. In our judgment, some system compo-

nents that are likely to change are the video encoding type (e.g., MPEG vs. SGI format),

the required back-end (the browsing/playout system may not require HTML), and target

windowing system (e.g., Windows vs. X). Any or all three of these potential environment

changes can be accommodated independently by changing the Audio/Video Interface mod-

ule, the post-processor, or the User Interface module, respectively.

3.3 Implementation

A bit more attention was paid to the process of implementation for VBAT than is usual

for research projects. We did this to encourage future enhancements of VBAT as well as

to satisfy external project requirements. VBAT was implemented using a tailored Waterfall

[9] software development process model which was extended to include a Human Computer

Interface (HCI) prototype phase. A Software Project Management Plan was developed per

IEEE standard [8], and other documents (including a Software Requirements Specification,

Software Design Document, Software Test Plan, User’s Manual, System Administrator’s

Manual, and Software Portability Guide) were produced.

10



Figure 1: VBAT System Environment

11



The prototyping effort was conducted using the ICS Builder Xcessory (BX) tool and

served to clarify requirements associated with the VBAT HCI. The BX tool proved to be

very useful for a novice Motif developer to rapidly create static displays. The tool was

abandoned upon completion of the prototyping phase primarily due to its consistent hard

coding of child widget size resources. Afterwards, it was determined that a BX default

parameter could have been altered, thus allowing widgets to manage their own size resources.

Although the bulk of the code generated by BX was retained throughout the development

effort, certain modifications were performed to enhance portability and modularity. These

modifications included utilization of the variable-argument Motif functions to minimize the

number of source statements, the removal of redundant BX “helper” code (embedded XPM

code, specifically), and remodularization of the generated code into smaller, more manageable

files. VBAT was developed in ANSI C, compiled with GNU GCC version [2, 5, 6] and SGI’s

unbundled C compiler.

VBAT’s development took advantage of code reuse by utilizing existing public domain

software wherever feasible. Video software included XPM, NetPBM, SGI libraries and SGI

demo software. Some of the tools used in development included Builder Xcessory, CVS,

Imake, RCS, Schmit Rene’s Memdebug and Conor P. Cahill’s dbmalloc. In all, VBAT

consists of 8800 new non-comment source lines, and 3200 modified source lines. A full-page

screen capture of a VBAT session is presented on the following page. The main VBAT

window contains information such as the Media File Name, Session Name, and Current

Segment, as well as a five-segment tree containing three leaf nodes and one root node. In

addition to the main window, windows for the Media Player, Segment Status, and External

Reference Editor are displayed. The Media Player window is described above in the text.

Segment Status displays information pertaining to the currently selected segment (in this

case, Segment Five). The External Reference Editor allows interactive definition, modifica-

tion, and resolution of Uniform Resource Locators (URL’s) for our current segment.

4 Concluding Remarks

In summary, we have forwarded the idea of capture-time indexing as a tool for enhancing the

quality and efficiency of the authoring and subsequent browsing and playout of digital video

streams. We have briefly discussed our implementation of an authoring system utilizing

capture-time indexing, the Video Broadcast Authoring Tool (VBAT).

12



We have presented VBAT as a modular, extensible authoring tool which leverages existing

code and modern software engineering tools and practices to produce a solid foundation for a

digital video authoring environment. Emphasis was placed on VBAT’s adaptability, and the

concept of independent post-processors was explained. We will conclude with a presentation

of lessons learned, and discuss future work.

4.1 Lessons Learned

This project provided the team with an opportunity to learn much about Multimedia in

general, and even more about authoring and digital video/image implementation in specific.

First, and most importantly to us, we have been able to successfully implement a system

capable of taking advantage of capture-time indexed media streams. Second, we feel en-

couraged that it possible to build a high-quality, useful authoring tool in an Open-Systems

environment using very little other than freely-available software libraries and a minimum

of hardware-specific code. Once again, our experiences prove that it is always wise to ex-

plore the Internet extensively prior to implementing anything - standing on the shoulders of

existing work allows creation of useful new capabilities in a robust framework.

4.2 Future Work

The life of VBAT (and capture-time indexing) is far from over. Starting in the first few

months of 1995, VBAT will be extended by an entirely new team of researchers. Al-

though their work will primarily focus on enhancing VBAT functionality, porting efforts

are also planned to allow VBAT to utilize Parallax video boards on Sun workstations, Indy

Video boards/COSMO Compression boards on SGI workstations, and perhaps some as-yet-

undetermined format on Pentium workstations running Linux.

On a system level, VBAT figures to play an important part in a new fast-access digital

video initiative in the Multimedia Communications Laboratory. Adaptation to this initia-

tive’s front-end capture and back-end browsing/playout environments will provide another

challenge to VBAT’s modular design.

Finally, although not currently scheduled, a large amount of work remains in the area

of capture-time indexing implementation methods. This work needs to explore not only the

encoding and encapsulation of the indexing information (logical and physical approaches),

but also the methods for actually marking the desired frames, including manual (push-

13



button) and automatic (pattern- or color-matching) paradigms.

5 Acknowledgements

The authors wish to thank Quantum Corporation, Naval Undersea Warfare Center, Draper

Laboratory, and The United States Air Force Institute of Technology for funding while con-

ducting this research. Also, special thanks to Dinesh Venkatesh for his help with integrating

Motion Picture Parser functionality. Equipment was provided by the Multimedia Communi-

cations Laboratory of Boston University. Finally, thanks to everyone who contributes quality

software to the Internet community.

References

[1] W. Mackay, and G. Davenport, “Virtual Video Editing in Interactive Multimedia Ap-

plications,” Communications of the ACM, July 1989, Vol. 32, No. 7, pp. 802-10.

[2] L. Hardman, G. van Rossum, and D. Bulterman, “Structured Multimedia Authoring,”

ACM Multimedia 93 Proceedings, June 1993, pp. 283-9.

[3] G. Drapeau, and H. Greenfield, “MAEstro - A Distributed Multimedia Authoring En-

vironment,” USENIX Summer ’91 Proceedings, pp. 315-28.

[4] E. Deardorff, T.D.C. Little, J.D. Marshall, D. Venkatesh, and R. Walzer, “Video Scene

Decomposition with the Motion Picture Parser,” IS&T/SPIE Symposium on Electronic

Imagery Science & Technology (Digital Video Compression and Processing on Personal

Computers: Algorithms and Technologies), San Jose, February 1994, SPOE Vol. 2187,

pp. 44-55.

[5] D. LeGall, “MPEG: A Video Compression Standard for Multimedia Applications,”

Communications of the ACM, April 1991, Vol. 34, No. 4, pp. 47-58.

[6] E. Oomoto, and K. Tanaka, “OVID:Design and Implementation of a Video-Object

Database System,” IEEE Transactions on Knowledge and Data Engineering, August

1993, Vol. 5, No. 4, pp. 629-643.

[7] L. Rowe, J. Boreczky, and C. Eads, “Indexes for User Access to Large Video Databases,”

IS&T/SPIE Symposium on Electronic Imagery Science & Technology (Digital Video

14



Compression and Processing on Personal Computers: Algorithms and Technologies),

San Jose, February 1994, Vol. 2187, pp. 1-12.

[8] IEEE Std 1058.1-1987, IEEE Standard for Software Project Management Plans.

[9] W.W. Royce, “Managing the Development of Large Software Systems: Concepts and

Techniques,” WESCON Proceedings, August 1970.

15


