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Abstract–Concurrent retrieval of continuous media from a physical storage device can be

achieved by interleaving data and providing a suitable scheduling algorithm. Scheduling

approaches that exploit gains from statistical multiplexing are susceptible to a non-zero

probability of frame loss due to the variable-bit-rate characteristic of compressed video.

With interframe encoding schemes (such as specified by the MPEG standard), the losses

propagate, resulting in a net loss of frames that exceeds the fraction of missing data.

In this paper we describe a mechanism for the storage and retrieval of MPEG-encoded

video from a single disk storage system. The scheme balances the need for the reliable

delivery of MPEG frames with the desire to support the largest number of sessions. Our

approach reorganizes the MPEG-encoded video stream based on the relative importance of

the frames and maps them to the storage device geometry. The reorganization reduces the

impact of frames lost due to missed deadlines and distributes the frame losses over time and

among sessions. Simulation results show that the new approach improves performance when

compared to conventional storage and scheduling schemes.

Keywords: Multimedia, physical data organization, scheduling, time-dependent audio and
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1 Introduction

Multimedia data differ significantly from conventional data types due to their strict timing

and large bandwidth requirements. Table 1 illustrates some bandwidth and storage needs

for several continuous-media data types. Typically, video data require more storage and

communication bandwidth than text files do. When users request interactive on-demand

sessions from a multimedia server, the system must ensure data delivery at the specified

rate; the file system must ensure the availability of sufficient buffer space for the playback

process. For example, to ensure the delivery of jitter-free NTSC-quality video, the file system

must deliver data at a rate of 30 frame/s.

Data Type Bandwidth Storage for 1 Hour

Voice-quality audio (8 bits @ 8 KHz) 64 Kb/s 28.8 Mbyte
CD quality audio (stereo @ 44.1 KHz) 1.4 Mb/s 630 Mbyte
MPEG-I-compressed NTSC video ∼= 1.5 Mb/s 675 Mbyte
MPEG-II-compressed video ≤ 10 Mb/s 3,600 Mbyte

Table 1: Storage and Communication Requirements for Multimedia Data

Unlike traditional file systems, the goals for designing a multimedia system are not just

the maximization of utilization and throughput, but also the maintenance of temporal rela-

tionships among multimedia data. However, a storage subsystem2 accesses stored data by

positioning its read heads at the desired location for a data block. A random allocation ap-

proach, regardless of the time-dependency for multimedia data, increases the disk head seek

switching frequency and the resulting access latency. In addition, the electro-mechanical na-

ture of secondary-storage devices requires the use of scheduling disciplines modified to meet

the throughput and real-time requirements of multimedia data delivery [1]. Furthermore, it

is desirable to design a multimedia-on-demand system that can support several concurrent

interactive sessions from the same physical device.

The ability of the multimedia system to meet session timing requirements becomes diffi-

cult due to the unpredictable nature of disk seek latencies. Due to the time-varying charac-

teristics of compressed video it is difficult to predict disk production and display consumption

rates. Without proper scheduling, systems cannot support continuous playback for an un-

limited number of sessions. The result is the inability to meet session deadlines and the

subsequent loss of data. Scheduling is more critical for inter-frame encoding schemes such as

2In the rest of the paper we use the term “storage” to refer to an electro-mechanical storage device.
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MPEG because even the loss of a small portion of data in retrieval can result in significant

losses in the number of dropped frames at playout time.

In this paper we focus on data placement strategies within a single disk storage system

and propose a new approach that improves a disk’s ability to support multiple sessions. Our

approach is suitable for video data compressed and stored using an inter-frame encoding

scheme as specified by the MPEG (Motion Picture Experts Group) video compression stan-

dard. The proposed scheme employs a non-preemptive fixed-length-period flexible-service-

time round-robin scheduling discipline to support multiple time-varying MPEG-compressed

video sessions from a single physical device. This approach permits the disk to switch alter-

nately between tasks to take advantage of the gains offered by statistical multiplexing.

The remainder of this paper is organized as follows. In Section 2 we investigate the

characteristics of MPEG-compressed data including decoding dependence and time-varying

behaviors. In Section 3 we develop a physical disk scheduling scheme which supports multiple

real-time temporal data streams. In Section 4 we propose an alternate storage scheme for

MPEG data and propose a priority access scheme for retrieving data. In Section 5 we

evaluate the performance gains from our approach. We discuss related work in Section 7.

Section 8 concludes the paper.

2 MPEG Video Characteristics

In order to understand the effects of MPEG-encoding on disk scheduling, we begin by ex-

amining inter-frame dependencies in an MPEG-compressed video stream. In MPEG com-

pression, frames are typically arranged in fixed-size groups for the entire video stream [9].

Each group represents a logical entity for decoding purposes and are decompressed indepen-

dently. Frames within a group are also considered logical units and depend on each other

for decoding. Fig. 1 shows a sequence of MPEG encoded I, P and B frames for a group size

of 10. As a result, losses are sensitive to the particular frame that is corrupted or dropped.

For example, if an I frame at the head of a group is lost, all frames within its group must

be discarded as they are dependent on the I frame for decoding. Therefore, frame losses in

MPEG-encoded video are correlated within groups.
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Figure 1: MPEG Frame Dependencies

2.1 Time-Varying MPEG Traffic

MPEG compression also yields video streams that exhibit highly time-varying bandwidth

characteristics [7, 15]. In our example the video sources generate 30 frame/s with an image-

aspect ratio of 320×240 pixels. The size (in bits) of a video frame depends on the compression

algorithm and the activity within the video sequence. Fig. 2 shows the characteristics of

video traffic for 1,500 frames sampled as groups containing 10 frames. The average rate µλ

over all 1500 frames is 0.6369 Mb/s and the standard deviation σλ for the traffic rate is

0.2305 Mb/s with a sampling interval τ of 10 frames.
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Figure 2: Traffic Rate for MPEG Video

The burstiness of MPEG-compressed traffic and interdependency among frames affect

the ability of a disk to support concurrent access. This inter-frame dependency can cause a

disk to perform poorly when it supports several concurrent sessions. In the next section, we
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examine the impact of disk scheduling and its effect on MPEG data.

3 Disk Access Scheduling and Bandwidth Requirements

In this section we describe the scheduling constraints for the acceptance of a set of multimedia

sessions and the accompanying disk bandwidth requirements. Without any loss in generality,

we choose the round-robin service scheme to support real-time multiple stream retrieval for

a set of multimedia tasks as shown in Fig. 3.

For round-robin scheduling, we define a fixed length working period Tperiod during which

the scheduler switches among all multimedia sessions [5]. It retrieves the exact amount of

data necessary for each session to ensure continuous playout into the buffer. This keeps each

session busy until the next retrieval period when the buffer is ready to be refilled. (The

buffer management policies to ensure continuous playout are described elsewhere [8, 13].) If

session k displays m frames per second, the file system must read exactly m× Tperiod frames

for session k. Let S(k) be the size of these m × Tperiod frames. If R is the entire disk I/O

bandwidth available, each session k shares an interval T (k) where T (k) = S(k)
R

. As shown in

Fig. 3, the total interval used for multimedia sessions plus the disk seek latency should be

less than the working period Tperiod to accommodate the variances due to disk seek latencies

and MPEG traffic. In other words, the preset period Tperiod must be greater than the time

needed to transfer data from the disk for all sessions.

period

latency 

leftover
session 1 session 2

T         (1) T         (2)latency 

..
T

session n

T(i)

Figure 3: Round Robin Scheduling Model

To prevent starvation, the requirements for the length of Tperiod are [5]:

Tperiod ≥
n

∑

1

S(k)

R
+

n
∑

1

Tlatency(k). (1)
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In Eq. 1, n is the number of concurrent sessions from the disk. Tlatency(k) is the switching

latency from session k to k+1. We can rewrite Eq. 1 and derive the bandwidth requirement

R for retrieving n simultaneous sessions of time-dependent data as [5]:

R ≥

∑n
1 S(k)

Tperiod −
∑n

1 Tlatency(k)
. (2)

Eq. 2 represents an estimate of the sustained bandwidth the storage system must support

in order to support the n sessions.

To guarantee the delivery of an MPEG stream without losses, the scheduling algorithm

must reserve resources at the peak bandwidth. This approach is inefficient as it leads to

wasted disk bandwidth. However, a scheduling approach that exploits gains from statistical

multiplexing of sessions at the average bandwidth can suffer from missed deadlines and lost

data. Because MPEG frame losses tend to propagate, the fraction of frames that cannot

be decoded is greater than the fraction of lost data. These losses are estimated in the next

section.

3.1 Frame Loss Estimation for MPEG Data

Consider an MPEG sequence in which frames are grouped based on a predetermined order.

To simplify analysis, we assume that this group order is fixed for the stream under consid-

eration. Let SI , SP , and SB represent the average frame sizes and NI , NP , and NB be the

number of I, P, and B frames within a group, respectively. Also, the total number of frames

in a group is

N = NI + NP + NB

and the group size is given by

G = NISI + NP SP + NBSB.

Losses within the MPEG bit stream due to missed deadlines and network errors are bursty

by nature due to frame interdependency and the inability to exactly predict the beginning

of a loss. Let k represent the size of a burst loss. The number of groups spanned by a burst

is dependent on the first affected frame within the group in addition to the size of the burst.
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The probability that a particular frame-type within a group is at the head of a burst depends

on two factors: The frame type (I, B, or P) and its ordering within the group. From the

discussion above, frame sizes within a group can be defined by a vector VG,

VG = [S1, S2, S3, ...., SN ], Sj ∈ (SI , SP , SB).

If we assume that the occurrence of losses cannot be predicted in advance, then the

probability that a burst begins at frame j within the group can be specified as

pj =
Sj

G
, where

N
∑

j=1

pj = 1.

For a burst of size k beginning at frame j, the number of groups gj spanned by the burst

depends on the group size G. We derive the value of gj to be

gj =

⌈

k −
∑N

t=j VG[t]

G
+ 1

⌉

. (3)

In Eq. 3, the fraction denotes the number of groups spanned by the burst excluding the

beginning group. The unitary term is added to account for the initial group affected by the

burst.

From Eq. 3, the number of frames lost in the burst can be determined as

nj = (gj − 1)N + N − j. (4)

For groups in which the leading I frame is lost, the entire group is unrecoverable, ac-

counting for the first term in Eq. 4. The second term represents the frames lost within the

group at the beginning of the burst. The average number of frames lost in burst k is then

given by

N
∑

j=1

pjnj . (5)

When the number of groups spanned by a burst gj ≥ 2, all leading frames in the sub-

sequent burst-affected groups are lost. The frame loss value given in Eq. 4 is accurate to
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within a single frame. However, when gj = 1, data loss takes place within a single group.

Depending on the particular frame lost, some or all of the remaining data in the group can

be recovered. For example, if an I frame is corrupted, all data within the group are lost.

However, if data within a single B frame are corrupted, only one frame is lost and the re-

maining data can be decoded. The following analysis addresses this scenario and determines

frame dependencies within a group and their effects on frame loss.

To account for intra-group losses we define a vector

D = [d1, d2, .....dN ]

where dj = 0 if j is an I or a P frame. For a B frame, dj equals the sum of the sizes of

any immediately following B frames. For example, for the MPEG group shown in Fig. 1,

d2 is the size of the third frame and d3 is 0. If we assume that all burst errors occur at the

beginning of a frame boundary, the number of intra-group frames lost for bursts of size k

starting at frame j is given by

nj =

{

N − j + 1 : k > dj
⌈

dj

k

⌉

: k ≤ dj
(6)

The first part of Eq. 6 represents the case when an I or P frame is corrupted, thereby

making the entire group useless. The second part accounts for the case when only B frame

is lost, and the remainder of the data in the group can be recovered. Eq. 6 can then be

used to compute the average frame loss by substituting for nj in Eq. 5. Our assumption

simplifies the analysis and can yield reasonable results that help us understand the effects of

data loss on an MPEG stream. In reality, the actual frame loss will be the weighted average

of the values provided in Eqs. 4 and 6. However, this overly complicates analysis and is not

considered further in this paper.

The aforementioned analysis demonstrates the disadvantage in organizing MPEG data

in a contiguous fashion on a storage device. If the disk scheduler misses a deadline in the

scheduling cycle, the number of lost frames is usually greater than the fraction of lost data.

In the next section, we describe an MPEG stream reorganization and storage approach that

reduces these effects of missed server deadlines.
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4 Disk Storage Organization and Access Scheme

In this section, we propose a storage reorganization approach and access scheme that is

adapted to MPEG stream dependencies and time-varying characteristics. The proposed

mechanism provides a priority access mechanism that improves disk performance and mini-

mizes the probability of frame loss.

4.1 Storage Pattern Reorganization

To improve disk performance and accommodate the MPEG decoding algorithm, we propose

a fixed service period, Tperiod which is a multiple of the playout-time for an MPEG group.

For example, for a group containing 10 frames (Fig. 1) and a video source that generates 30

frames per second, the length of Tperiod is a multiple of 10/30 second. The file system will

read 30 × Tperiod frames or 3 × Tperiod MPEG groups per session.

I B B BB B B IPP

1 2 3 4 5 6 7 8 9 10 13

B B BB B BPP

14 15 16 17 1811 12

I I P P P P B B B B B B B B B B B BAH

P P

19 20

P P

1 11 4 7 10 14 17 20 2 35 68 91312 15 1618 19

MPEG Stream

Reorganized 
MPEG Stream

Figure 4: Storage Pattern for the Reorganized MPEG Frames

We can predefine a fixed length scheduling period Tperiod for a disk by analyzing the

traffic characteristics of the supported video streams. 3 Once the appropriate period length

is determined, we can define the number of frames or MPEG groups to be read every period.

We reorganize the MPEG frame sequence as shown in Fig. 4. In the reorganized storage

pattern, the most important data are placed at the beginning of the sequence. A denotes

the audio data and H denotes a header containing information about the subsequent storage

pattern (i.e., size of each frame). The reorganized pattern is then stored contiguously on

the disk. The contiguous layout reduces seek latencies during continuous retrieval of video

data. The header information helps the disk scheduler predict the access loads for subsequent

3This approach is reasonable for read-only VOD applications in which extensive preprocessing and analysis
can be applied prior to rendering of storage organization
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working periods and allows the scheduler to adapt quickly to any load changes and provide

the best service.

4.2 Priority Access Scheme

To take advantage of the MPEG stream reorganization we propose a disk scheduling ap-

proach. As shown in Eq. 1, the fixed period Tperiod must be greater than the time necessary

to transfer data for all sessions from the disk to prevent starvation. From Section 2 and Fig.

1 we know that the amount of data the must be read in Tperiod,
∑n

1 S(i) is not constant. To

ensure continuous playout, we can assign the peak rate for every session and guarantee that

starvation will not occur. However, as shown in Fig. 1, the MPEG video traffic is highly

time varying. In this example, the peak rate is almost 1.5 Mb/s but the average rate is

only 0.6369 Mb/s. It is inefficient to assign the peak rate for every session due to the high

peak/average ratio for bandwidth consumption.

The proposed file system can accept a set of sessions as long as the sum of their average

rates does not exceed the data rate of the disk subject to the constraints of Tperiod. This means

that several time varying MPEG video streams are multiplexed during the disk retrieval

phase. However, occasionly the combined rates of the multiplexed streams can exceed the

I/O rate of the disk. This results in some data starvation due to missed scheduler deadlines.

If p is the maximum starvation frequency that can be tolerated, we have

Prob[(
n

∑

1

S(i)

R
+

n
∑

1

Tlatency(i)) > Tperiod] < p. (7)

This means the probability that the preset period Tperiod is less than the time to transfer

data from disk is less than p. Tlatency(i) represents the seek latency when the disk switches

the service from session i − 1 to session i. Because the subsequent data for session i can be

placed anywhere on the disk, Tlatency is also a random variable. Chen and Little [5] derive

the average seek latency and the variance of the seek latency as follows. Let E(Tlatency) be

the average seek latency, σ2
latency be the variance of seek latency, E(S) be the average size of

storage pattern, and σ2
S be the variance of the size of storage pattern. The time to transfer

data from the disk Ttransfer is then

Ttransfer =
n

∑

1

S(i)

R
+

n
∑

1

Tlatency(i). (8)
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The mean E(Ttransfer) and variance σ2(Ttransfer) of time Ttransfer can be derived as fol-

lows:

E(Ttransfer) = n × (
E(S)

R
+ E(Tlatency)) (9)

σ2(Ttransfer) = n × (
σ2(S)

R
+ σ2(Tlatency)) (10)

From Eqs. 9 and 10, we know that Ttransfer is a sum of random variables. By the Central

Limit Theorem, if the number of sessions n is large enough, we know that the distribution of

Ttransfer can be approximated by a Normal distribution. We can plot the probability density

of Ttransfer (Fig. 5) with a mean value E(Ttransfer) and standard deviation σ(Ttransfer). If

the fixed length working period Tperiod and the number of session are given, we can predict

the frequency of starvation p, as shown in Fig. 5.

frequency of
starvation    

TperiodE(T        )

P
ro

b
a

b
ili

ty

p

1 - p 

transfer

Figure 5: Distribution of Ttransfer

4.3 Disk Scheduling in the Priority Access Scheme

As described in Section 4.1, we measure the size of every frame, encapsulate this information

in a header and place it in the storage pattern for the previous group. With the reorganized

storage layout, as soon as a period is complete the file system has sufficient information

about the requirements for the next period. The file system can then calculate the total size

of the data that need to be read for the next period and predict their total retrieval time. If

starvation will occur in the coming period, it is known beforehand and the system can make

adjustments.

When starvation occurs, priority access can be provided as follows. We first calculate

the time for the file system to transfer data from a disk as derived in Eq. 8. If the transfer

11



time Ttransfer is less than the fixed length working period Tperiod there is no starvation for

the next period and the file system has sufficient time or bandwidth to retrieve data for all

existing sessions. In this situation the file server scheduling process can ask the file system

to read S(i) of data for session i. S(i) is the size of the data for session i in this period

and the characteristics of S(i) are already known by the scheduler at the end of previous

period. If the transfer time Ttransfer is greater than the working period Tperiod, we predict the

occurrence of a starvation for the coming period. We then calculate the shortage time for

the file system for which it is unable to transfer data from the disk. We define the shortage

time Tfail as

Tfail = Ttransfer − Tperiod. (11)

If the amount of data the file system fails to read is Sfail, we determine Sfail = Tfail/R.

From Eqs. 8 and 11, we have

Sfail =
n

∑

1

S(i) + R
n

∑

1

Tlatency(i) − R × Tperiod. (12)

We can then reschedule the access scheme by dropping frames equitably among all n

sessions. As a result, any session i is allowed to read only S(i) − Sfail/n amount of data.

This means that every session drops Sfail/n of data and shares the impact of starvation. Since

we use a reorganization of the storage pattern on the disk, the file system will automatically

drop the less important frames. As shown in Fig. 4, the less important frames are placed at

the end of each storage pattern. Therefore, B frames will be dropped first, and the dropped

frames will be uniformly distributed across all retrieved blocks and among sessions.

5 Performance Evaluation

In this section we evaluate our proposed model by performing a series of experiments on a

set of video data. We encoded a video clip with an image-aspect-ratio of 320×240 pixels and

without audio at 15 frame/s and extraploated the resulting statistics to create a 30 frame/s

MPEG-I stream. The size of each MPEG frame was measured for the test set. Table 2

illustrates the video characteristics and the disk device parameters used in the experiments.
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Symbol Identification Value Units

E(Tlatency) average disk seek latency 35.9 ms
σ2

latency variance of disk seek latency 201.6 ms2

R normalized disk bandwidth 8 Mb/s
µλ average data rate for MPEG video 0.6369 Mb/s
σλ standard deviation of MPEG video traffic rate 0.2305 Mb/s

Table 2: Simulation Parameters

5.1 Performance Evaluation and Comparison

We first fixed the working period Tperiod to be 6 seconds, yielding storage patterns containing

180 MPEG frames each. We then measured the time for the file system to transfer data

from the disk by changing the number of sessions from 9 to 12 for 500 periods. For each

case we measured and plotted the value of Ttransfer used to read n video sessions from disk

(Fig. 6). We found that whenever more sessions were accepted the file system required more

time to transfer the data. For example, if the file system supports 8 or 9 sessions, Ttransfer

was always less than our preset working period Tperiod. Therefore starvation never occured

when there were 9 or fewer sessions supported. As we increased the number of sessions to

11, the average disk transfer time Ttransfer remained between 5.4 to 5.8 seconds. However,

on occasion, Ttransfer exceeded the preset working period and starvation occured.

Using the same data set we also studied the effects of increasing the number of supported

sessions on starvation frequency (Eq. 7). Figs. 6 and 7 show the frequency of starvation

for a range of supported sessions. Fig. 8 shows the average shortage time and the data loss

percentage for different number of sessions.

Additional simulations were performed to understand the effects of data loss on video

playback. For the MPEG encoding scheme, we know that B frames are decoded by referenc-

ing the previous and following P or I frames and have a higher compression ratio than P and

I frames. In our priority access scheme, we only drop B frames when starvation occurs. Typ-

ically, with MPEG-compressed video, we can expect the frame loss percentage to be higher

than the data loss percentage. Fig. 9 illustrates the average frame loss under starvation for

a range of supported sessions.

If the file system accepts 9 or fewer sessions there was no starvation. When the number of

sessions increased to 10, starvation occured about 0.15 % of the time. This implies that there

is a starvation every 667 periods (4,000 seconds) and the starvation is distributed across the

13



0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350 400 450 500

9  sessions 10 sessions

11 sessions 12 sessions

Period number

T
im

e
  
(s

e
c
o
n
d
s
)

T
im

e
  
(s

e
c
o
n
d
s
)

T
im

e
  
(s

e
c
o
n
d
s
)

T
im

e
  
(s

e
c
o
n
d
s
)

Period number

Period number

Period number

Figure 6: Effects of Traffic Multiplexing on Starvation
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entire period. During this starvation period three frames per session are lost as the video

object is played back at 30 frame/s. Because the storage pattern is reorganized, the three

lost frames are uniformly distributed across the 6 second period. In this case the file system

loses only one frame in two seconds.

For 13 sessions the average video rate µλ was 0.6369 Mb/s and the normalized disk

bandwidth was 8 Mb/s. The total bandwidth requirement for 13 sessions was 8.2797 Mb/s

which was higher than the available disk bandwidth. In this case the starvation frequency

was 55.17 % and starvation occured every two periods. During the starvation period 44

frames are lost over 6 seconds. This means that the file system can still provide 30 frame/s

45 % of the time and 23 frame/s 55 % of the time.

5.2 Considerations for the Selection of Tperiod

Fig. 3 and Eq. 1 show that the working period Tperiod must be greater than the sum of all

individual session retrieval times and seek latencies in order to transfer data from the disk

for all sessions. From Eq. 11 and Fig. 5, we know that if Ttransfer is less than the fixed

length working period Tperiod there is no starvation. However, this does not mean that we

can extend the length of the working period to the maximal value of transfer time Ttransfer

to prevent any starvation. Since the value of Ttransfer depends on Tperiod, if we extend the

length of period Tperiod, the file system needs to transfer more data for every session which

increases the length of transfer time Ttransfer. As shown in Fig. 3, if we extend Tperiod the

probability density of Ttransfer will shift to the right. In other words, when we change the

length of period Tperiod the shape for Ttransfer’s probability density will change and affect the

starvation frequency.

Fig. 10 shows a comparison of starvation frequency and frame losses for a range of

scheduling periods. We find that if Tperiod is very small (for example, less than one second), no

matter how many sessions there are, the starvation frequency and frame losses are extremely

high. As we increase the duration of Tperiod the starvation frequency and frame loss rates

diminish. The total latency
∑n

i=1 Tlatency(i) for switching the disk head between sessions is

primarily dependent on the number of sessions n rather than the duration of Tperiod. This

means that there is no change to the total latency
∑n

i=1 Tlatency(i) with Tperiod being 1 second

or 10 seconds. Most of the disk bandwidth is wasted on switching the disk head when Tperiod

is very small. This will introduce frequent starvation and frame losses.

We can improve the quality of video presentation for the system by decreasing the
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Figure 10: Starvation Frequency and Average Frame Loss Under Starvation

throughput or by extending the length of the scheduling period. When the length of period

is sufficiently long (e.g., greater than 6 seconds) the starvation frequency and frame loss rate

do not change significantly. At this point, even if we extend Tperiod, the improvement in the

quality of the video stream is limited because disk seek latencies become less important and

the variance in video data rates is reduced.

6 Discussion

Our earlier work demonstrated that a longer scheduling period requires more memory for

buffering data and introduces a larger response time. Our goal is to minimize the total cost

of such a system and still provide an acceptable level of service quality. We can improve

the loss behavior by extending the length of a period, but this leads to a longer response

delay. From the system’s perspective, the gains resulting from accepting more sessions by

extending the length of a period is offset by the increased buffering requirements. If a local

file server is expected to provide m sessions for one particular movie, the interesting problem

is to balance the different resources to minimize operational costs [11]. Our proposed model

provides an option that allows the file system the flexibility of tolerating some data loss

during the disk retrieval phase without degrading the quality of service dramatically. This

is impossible with conventional access schemes due to the characteristics of MPEG data.

With the proposed mechanism, we can optimize the length of Tperiod to yield reduced
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buffering costs and improved performance. For example, in Fig. 10, supporting 10 sessions

without starvation requires a Tperiod of 6 seconds using the traditional allocation scheme.

Using the priority access scheme we can tolerate some data loss and still provide acceptable

service. If we set the length of a period to be 3 seconds we only experience 10 % starvation

and lose only 2 to 3 frames per second. In this example, we can save 50 % of memory costs

and reduce the response time offered to the user to 3 seconds.

Our priority access scheme also provides a service scaling mechanism. If the file system

bandwidth is sufficient, we can provide the desired resources for all sessions. Whenever the

bandwidth is insufficient, the file system still has an option to accept new service requests

by linearly degrading the quality of existing sessions to take advantage of the gains from

statistical multiplexing. This means that the quality of the existing sessions will not degrade

abruptly when the file system has transient bandwidth shortages.
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Figure 11: Frame Loss Per Period without Priority Access Scheme: Tperiod

With the proposed storage reorganization and priority access schemes, the file system

has sufficient information to predict any starvation in advance. Without this scheme the

file system switches service among sessions period by period. If there is no starvation (the

length of period is enough to transfer data for all sessions), there are little performance gains

from the proposed approach. With starvation, however, when a period elapses the current

session must be preempted by the following session. All residual frames must be dropped.

Since the file system cannot predict starvation, the last few sessions in the period will absorb

any starvation. We illustrate this behavior in Fig. 11. In this example, if there are 10

sessions in a disk when starvation occurs, the last session will lose 16 consecutive frames

during the 6 second period while the other 9 sessions do not lose any frame. Moreover,
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the lost frames are contiguous, i.e., the last session suffers a blank period of 0.5 seconds.

As we increase the number of supported sessions to 13, the file system will lose 216 frames

during a period. One session will lose everything (180 frames) and another session will lose

36 contiguous frames. Even if these losses are distributed across all sessions, frame loss

propagation without reorganization causes the number of lost frames to be higher than with

reorganization and priority access.

7 Related Work

The problem of building storage systems for continuous media has seen a great deal of re-

cent research activity. Lougher and Shepherd [12] have described the general principles in

designing a continuous media file system. Gemmell and Christodoulakis [8] and Anderson

et al. [1] have established some basic principles for retrieval and storage of delay-sensitive

multimedia data. These principles can be used by a system designer to estimate hard-

ware requirements and to evaluate design strategies. Rangan et al. [13] have developed an

admission control algorithm for determining when a new concurrent access request can be

accepted without violating the real-time constraints of existing sessions. Chen et al. [6] show

an optimum grouped sweeping scheduling (GSS) procedure to support heterogeneous video

streams. Reddy and Wyllie [14] proposed a SCAN-EDF algorithm which can support larger

numbers of video streams. Related work on storage systems for continuous-media data on

disk arrays includes Keeton and Katz’s [10] placement scheme for multi-resolution video on

disk arrays for providing scalable services. Chang and Zakhor [2] have proposed a placement

strategy and an admission control strategy that provides scalable MPEG video service from

disk arrays.

Our work is most closely related to the work of Chang and Zhakor [2] on the storage

of MPEG compressed video on disk arrays. The authors use a MPEG data reorganization

access scheme similar to ours. However, our scheduling and storage policies make information

about the possibility of missed deadlines known a priori to the scheduler using an additional

header. This allows the scheduler to scale all sessions uniformly. Furthermore, it is significant

to study the performance of a single disk from the perspective of providing scalable services.

Our work complements the earlier work in this respect.
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8 Conclusion

When a video-on-demand file server transfers data from a disk, it must guarantee that real-

time multimedia data can be read at a sustained rate and satisfy the timing requirements.

Disk seek latencies and time varying traffic characteristics typical of VOD have a significant

impact on these systems.

In this paper we have proposed a MPEG frame storage reorganization to complement a

priority access scheme for video delivery from a single disk storage system. In the proposed

placement scheme, MPEG data are prioritized and organized contiguously on the disk. The

new placement policy enables the retrieval process to ensure that the most important frames

are delivered during periods of disk overload, improving the quality of video presentation.

Such a scheme is useful in building a file server that is tolerant of data losses and still

providing an acceptable quality of service. Moreover, this scheme can be easily extended to

support VCR-like functions such as fast-forward and fast-backward [4].

Performance evaluation indicates that the proposed mechanism reduces buffering require-

ments and improves response times significantly. Test results show the proposed scheme

yields a better throughput, and increases the quality of presentation. It is an efficient means

for supporting multiple sessions from a disk.
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