
A Survey of Technologies for Parsing and Indexing
Digital Video1

G. Ahanger and T.D.C. Little

Multimedia Communication Laboratory

Department of Electrical, Computer and Systems Engineering

44 Cummington Street, Boston University

Boston, Massachusetts 02215, USA

(617) 353-9877, (617) 353-6440 fax

gulrukh@bu.edu, tdcl@bu.edu

MCL Technical Report 11-01-95

Abstract–In the future we envision systems that will provide video information delivery

services to customers on a very large scale. These systems must provide customers with

mechanisms to select programs of their choice from live broadcasts. Customers should also

be provided with easy means of browsing and accessing pre-recorded digital data (e.g.,

distributed digital multimedia libraries), and downloading data from other information

sources. To be viable for such large information sets, these systems must understand

customer preferences and tailor the available information to the customer’s needs.

To support this vision, a number of issues must be addressed and obstacles overcome.

Intuitive interfaces, powerful query formulation and evaluation techniques, comprehensive

data models, and flexible presentation functionalities must be developed. To realize these

components, an effective query evaluation engine with the capabilities of query resolution

in different content-specific formats (e.g., by graphics, by image, by sound) and in different

domain-specific models (e.g., database of movies, database of newsclips) should be present.

Additionally, the digital video database will require an efficient indexing system for easy

access to the stored information. In this paper we discuss existing research trends in this

area and requirements for future data delivery systems. An overview of video indexing is

presented followed by a discussion on current indexing techniques.

Keywords: Content-based retrieval, multimedia applications, information filtering, digital

video, video parsing, segmentation, indexing, query formulation.

1In Journal of Visual Communication and Image Representation, (Special Issue on Digital Libraries),
March 1996, Vol. 7, No. 1, pp. 28-43. Portions of this work were presented at the IS&T/SPIE Symposium
on Electronic Imaging Science and Technology (Digital Video Compression and Processing on Personal
Computers: Algorithms and Technologies), San Jose, February 1994. This work is supported in part by the
National Science Foundation under Grant Nos. IRI-9211165 and IRI-9502702.

1 Introduction

Today’s technology cannot effectively deal with the demands made by burgeoning large

scale digital data delivery systems. In the past, information has been collected as discrete

units (e.g., numeric, alphanumeric, etc.) and retrieved using mechanisms such as Structured

Query Language (SQL) strings or hyperlinks as used in the World Wide Web (WWW).

In contrast, digital multimedia data are voluminous and contain such a vast amount of

information that new technologies are required to effectively retrieve data. Since the potential

for applications like live broadcast, video-on-demand, and digital libraries is enormous, the

challenges presented by these applications, though formidable, must be met. To do so we

must consider and understand the following issues:

• Why traditional database retrieval techniques are insufficient for multimedia retrieval

(e.g., why can we not just index and retrieve images using keywords?).

• How spatial visual data types differ from alphanumeric types in terms of data modeling.

• What the roles of the user and the system are in performing queries.

Visual data are perceived differently by different people. Because of the visual nature

of video data, we end up with numerous interpretations of the same data. To represent all

the different interpretations by keywords (text) is an impossible task as one cannot foresee

all possible interpretations of the data during indexing. Also, representation of a small

segment of video data by a large number of keywords will lead to space explosion during

indexing. Keywords cannot successfully represent the temporal nature of video data nor

do they support semantic relationships (inference rules, hierarchy, and similarity descriptors

(“like this”), e.g., find me the image containing vases similar to the given vase shape, find the

images containing colors similar to the given image). The large number of keywords necessary

to formulate a query makes the process of data retrieval long, tedious, and inefficient.

As the size of the database increases so do the problems faced by the user in retrieving

data. Often a user can use a priori knowledge of the database contents to retrieve data

efficiently. However, a large data space strains the user’s ability to understand the data

content [11]. Users need to explore large amounts of data to find the desired content. A

knowledge of the database schema and the data model are necessary to do so. Possessing

such detailed information about a large database is difficult. Therefore, we need to provide

the user with intuitive ways of understanding the contents of a database.

2

In addition to the problem of possessing knowledge about a large database, there is a

problem to store large amounts of video data. Due to the limited storage capacities of

existing storage devices, multiple storage devices must be used. Moreover, the data need

not be stored at a single site as illustrated in Fig. 1, therefore, it is important to be aware

of data existing at different sites [41].

Remote Multimedia Database

Backbone Network

Remote Multimedia Database

Local Multimedia Database

Information
Retrieval/Rendering
Engine

Meta Database

Figure 1: Distributed Databases

Only after the information are modeled and extracted from the data can a user possess

knowledge about the information in the stored data. Therefore, before the raw video data

can be used to issue queries they must be indexed by content and their indices stored as

metadata. Fig. 2 depicts the various stages of preprocessing that raw video data undergo.

First the video data should be broken into manageable segments and then their features

extracted (e.g., color, shape, size, texture, object) based on the information required by

the application model (e.g., database of movies, database of newsclips). The metadatabase

should be used to store the extracted information to speed up the data retrieval process

from the video archive. If some information about the video data content is not stored in

the metadatabase, the user should be able to extract the information on-the-fly, and store

them in the metadatabase.

In this paper we discuss different components that make up a successful video delivery

application (Fig. 2). In Section 2 we describe the issues and requirements for video indexing.

Existing video data models are discussed in Section 3. Image dynamics for compressed video

and their applications in modeling the data are discussed in Section 4. Section 5 discusses

methods for segmentation of video data into smaller units. In Section 6 we discuss the

techniques for data representation and organization. Finally in Section 7 we present an

example of how the integration of different aspects of the video computation mentioned can

be achieved. Section 8 concludes the paper.

3

Manual and/or Automatic Parsing

Video Data

Indexed Information

Metadatabase
Video Archive

On-The-Fly Indexing

Domain-Specific Extracted Information

Segmentation
Information
Extraction

Information Organization

Data Model

Domain Specific Information to Extract

Browser EngineQuery Engine

Query/Browser
Interface

Figure 2: Processes for Construction and Use of a Digital Video Library

4

2 Video Data Indexing

Using video as a primary multimedia data source requires effective ways of retrieving the

desired video data from a database. To do so, a model that classifies video data on the

basis of its semantic properties must be developed. Then the video data obtained based on

the model should be organized for easy access. We require a good indexing mechanism for

this purpose. The large information content present in a video data makes manual indexing

(information extraction) labor intensive, time consuming and prone to errors. The errors

introduced are generally of two types. The first are perceptual, made by the person indexing

the data and the second are simple errors introduced due to level of alertness, ambient

conditions, fatigue, motivation, etc. Two primary approaches, pre-processing the video data

and dynamic interaction with the data form the basis for indexing in these systems. The first

approach uses pre-extracted indices, i.e., they are created a priori by manual or batch-mode

(manual/automatic) processes. The second approach is much more flexible but as automatic

parsing techniques are used, it is difficult to achieve and requires significant computational

power.

A number of visual systems have been proposed for the retrieval of multimedia data.

These systems fall broadly under four categories: query by content [12, 23, 29, 30, 34], iconic

query [8, 17, 69], SQL query [53, 57], and mixed queries [1, 17, 41, 58]. The query by content

is based on images, tabular form, similarity retrieval (rough sketches) or by component

features (shape, color, texture). The iconic query represents data with “look alike” icons

and specifies a query by the selection of icons. SQL queries are based on keywords, with

the keywords being conjoined with the relationship (AND, OR) between them, thus forming

compound strings. The mixed queries can be specified by text and as well as icons. All of

these systems are based on different indexing structures as discussed in Section 6.

The interpretation of video data depends on the perception of the viewer. A single image

can convey different meanings to different people depending on what a person is looking for.

For example, consider the image in Fig. 3. It can be interpreted as a picture of a busy street,

a picture of people walking, a picture of a chapel, a picture of cars moving, or a train [1].

Therefore, a flexible process for video indexing is required.

To browse and retrieve data from a large multimedia data source the system must support

a strong access technique. As the most complex form of multimedia data is video data, to

develop an application for accessing information (e.g., digital libraries) we must understand

the properties of digital video data for indexing purposes. The adaptation/indexing process

5

Figure 3: Photograph of a Busy Street

for video can be subdivided into five steps, i.e., modeling, segmentation, extraction, representation,

and organization. As mentioned before, video data are broken into logical/temporal inter-

connected segments. In the extraction process the content information is retrieved and then

represented as text, strings, or data tokens. In the last stage the extracted information is

modeled based on domain-specific attributes.

3 Video Data Modeling

In a conventional database management system (DBMS), access to data is based on distinct

attributes of well-defined data developed for a specific application. For unstructured data

such as audio, video, or graphics, similar attributes can be defined. A means for extracting

information contained in the unstructured data is required. Next, this information must be

appropriately modeled in order to support both user queries for content and data models for

storage.

From a structural perspective, a motion picture can be modeled as data consisting of

a finite-length of synchronized audio and still images. This model is a simple instance of

the more general models for heterogeneous multimedia data objects. Davenport et al. [16]

describe the fundamental film component as the shot: a contiguously recorded audio/image

sequence. To this basic component, attributes such as content, perspective, and context can

be assigned, and later used to formulate specific queries on a collection of shots. Such a

6

Application Information Model

Domain Specific Information to Extract

Requires

Figure 4: First Stage in Video Data Adaptation: Data Modeling

model is appropriate for providing multiple views on the final data schema and has been

suggested by Lippman and Bender [40], Bender et al. [6], and by Loeb [42, 43].

Smith and Davenport [64, 65] use a technique called stratification for aggregating collections

of shots by contextual descriptions called strata. These strata provide access to frames over

a temporal span rather than to individual frames or shot endpoints. This technique can

then be used primarily for editing and creating movies from source shots. It also provides a

quick query access and a view of desired blocks of video. Fig. 5 shows an example of this

stratification technique.

Elvis and JFK seen hand in hand

Pulp Fiction wins 15 oscars

Dinesh gets an award

Hillary dances with Remo in India
BU campus in chaos after coup

Terriers find cure for cancer

news03/15/95 | 14833 |

news03/15/95 | 14941 |

news03/15/95 | 15156 |

news03/15/95 | 15421 |

news03/15/95 | 15687 |

news03/15/95 | 15789 |

news03/15/95 | 16094 |

news03/15/95 | 16211 |

news03/15/95 | 16420 |

news03/15/95 | 16600 |

news03/15/95 | 17100 |

news03/15/95 | 14700 |

news03/15/95 | 14561 |

news03/15/95 | 14321 |

news03/15/95 | 14445 |

President visits Iraq

Possible cure for AIDS

Contact made with extraterrestrial

First space colony established on Mars

Motaba the new terror

Proof discovered for four color theorem

Wearable computers: the look of the future ?

Telephone translator succeeds

AP1 AP2 Logo

AP1 AP2 Logo

AP1 Logo

AP1 Logo

AP1

AP1

Scientist Award
Scientist Award

Taj Mahal gets a face lift New Delhi

New Delhi Hillary Dance

BU Students

BU Lab Award

 AP2 Logo

 AP2 Logo

 AP2 Logo

AP1 -- First Anchor Person
AP2 -- Second Anchor Person

Figure 5: Example of Stratification on Newscast Video

Because of the linearity of the medium we cannot get a coherent description of an item but

as a result of the stratification method the related information is lumped together. The linear

integrity of the raw footage is erased resulting in contextual information which relates the

shot with the environment. A method which retains this contextual information is required.

In Fig. 5, the first column is the tape identification number, the second column contains the

7

frame number, the third column is the content marker and the fourth column contains the

keywords. With keywords, we can consistently find related strings of words. The keywords

“AP1” and “AP2” remain constant while the content markers change, therefore the keywords

provide the context to the content marker. The patterns formed in the figure after the frame

numbers are sorted illustrate the contextual relationship among the continuously recorded

video frames. Tracing this pattern provides us with information about shots, e.g., where

and what was shot. As shown in Fig. 5, each layer or stratum represents discrete distinctive

contents of the medium. When these threads are layered one on top of another they produce

a descriptive strata from which an inference about the content of each frame is drawn.

Rowe et al. [58] have developed a video-on-demand system for video data browsing. In

this system the data are modeled based on a survey of what users would query for. Three

types of indices were identified to satisfy the user queries. The first is a textual bibliographic

index which includes information about the video and the individuals involved in the making

of the video. The second is a textual structural index of the hierarchy of movie, i.e., segment,

scene, and shots. The third is a content index which includes keyword indices for the audio

track, object indices for significant objects and key images in the video which represent

important events.

The above model does not utilize the semantics associated with video data. Different

video data types have different semantics associated with them. We must take advantage of

this fact and model video data based on the semantics associated with each data type.

4 Information Extraction

For video data to become “usable,” (i.e., accessed through an application) information

contained in the data needs to be extracted (6). The information at the physical (pixel) level

can be extracted by parsing the data automatically, manually, or a combination of the two

(hybrid). Automatic extraction depends heavily on techniques (e.g., image processing tools)

used in computer vision. Content of unstructured data such as imagery or sound is easily

identified by human observation; however, few attributes lead to machine identification.

Therefore, we are more dependent on hybrid (i.e., combination of automatic and manual)

extraction techniques. The shortcomings of automatic extraction techniques can be handled

manually.

We need to define distinct attributes of video data for content-based retrieval of the data.

8

Manual and/or Automatic Parsing

Video Data
Video Archive

Domain-Specific Extracted Information

Segmentation
Information
Extraction

Domain Specific Information to Extract

Figure 6: Second Stage in Video Data Adaptation: Information Extraction

The information contained in the data is extensive and diverse, therefore, extracting the data

can be a difficult task. It is easier to extract information from smaller data segments. Hence,

depending on their dynamics, video data must be segmented into smaller logical units. In

the next section we discuss the dynamics of video data in detail.

4.1 Video Scene Dynamics

The data comprising a video stream can be modeled as a sequence of still digital frames. The

still frames are comprised of pixels. A 640x480 image “still” contains 307,200 such pixels. If

pixels are used to compare successive frames for the purpose of detecting scene transitions,2

the resulting process would be extremely slow and require significant time. However, when

a compression scheme such as specified by the JPEG standard [70] is applied to the frames,

a significant amount of information about the shots in the frames can be extracted. This

is due to short-term temporal consistency within the frames of a shot. Because there is

little change in the overall image content of a shot, the compressed frames of the shot are

similar in size (in bytes), i.e., frames within a single scene exhibit consistent intraframe image

complexity. Therefore, by studying the file size dynamics of the compressed frames, we can

find transitions from one shot to the next. However, a filtering scheme based purely on

size will fail when two shots of similar complexity follow each other. It may also erroneously

detect changes when none exist. When such situations occur, more complex algorithms must

be employed. The image size dynamics for two sample JPEG-compressed video sequences

are shown in Fig. 7 [18].

2We use “scene transition” to refer to any change (scene or shot) in the video data stream.

9

1

2

3

4

5

6

x10 4

0 200 400 600 800 1000 1200

Talking Head

Action Movie "Lobster"

Frame Number

F
ra

m
e

 S
iz

e
 (

b
y
te

s
)

Figure 7: Image Size Dynamics for JPEG-Compressed Movie

Fig. 7 illustrates the differences in the characteristics of compressed video for two different

videos sequences. The more dynamic (bursty) sequence is from a movie clip with significant

action (motion and complex image sequences shot over water). The second, less bursty

sequence is from a video-taped classroom and is representative of “talking head” video

dynamics. This sequence has little motion compared to the action movie. Consequently,

the scene and shot transitions are more easily identifiable in the first case where changes are

abrupt and quite prominent. Two different kinds of scene changes are illustrated in Fig. 8.

The first is a “merge” and “dissolve” where the images are superimposed over each other at

a shot boundary. This yields a composition of two images at the scene transition which is

difficult to compress, and results in a spike in the compressed frame size plot. The second

type of change is a “cut.” In this case, an abrupt change from one frame to the next due to

the cut causes a positive or negative step in the compressed frame size plot.

An number of people are working on techniques for automating the identification of shot

transitions and the generation of indices for their location [36, 37, 38, 48, 72, 74]. Two stages

have been proposed for this task:

• Shot detection: Video data have been isolated into meaningful segments to serve as

10

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

x10 4

0 200 400 600 800 1000 1200

Cuts

Merge/Dissolve

Avg Size

Frame Number

F
ra

m
e
 S

iz
e
 (

b
y
te

s
)

Figure 8: Illustration of Various Scene Transitions

units to be indexed. This is achieved by detecting the camera transitions. There are

two type of transitions, abrupt transitions or camera break and gradual transitions e.g.,

fade-in, fade-out, dissolve, and wipe.

• Feature extraction: The semantics of the video content are extracted during this stage.

Video data are hierarchical in nature, (i.e., video, scenes, shots and frames) and this

property is exploited when indexing the video. Fundamentally, most approaches use the

concept of partitioning the continuous video data into sequences for indexing. Video are

segmented primarily on the basis of camera breaks or shots, therefore, each sequence is

a segment of data having a frame or multiple consecutive frames. Automatic isolation of

camera transitions requires support of tools that provide accurate and fast detection. Abrupt

camera transitions can be detected quite easily as the difference between two consecutive

frame is so large that they cannot belong to the same shot. A problem arises when the

transition is gradual, the shot does not change abruptly but over a period of few frames.

The difference between consecutive frames is not so large as to declare it a camera break.

The gradual transitions become more difficult to detect because the frame content shares

the same semantic properties as frames with object motion or special camera effects such as

wipe, dissolve, fade-in, fade-out.

11

5 Video Scene Segmentation

Seyler [61] developed a frame difference coding technique for television signals. The technique

is based on the fact that only a fraction of all picture elements change in amplitude in

consecutive frames. Since then a number of digital video data segmentation techniques

based on this concept have been developed. A number of metrics have been suggested for

video scene segmentation for both the raw data and compressed data. The metrics used to

detect the difference between two frames can be divided broadly into four classes: pixel or

block comparison, histogram comparison (of gray levels or color codes) [36, 48, 72], using

the DCT coefficients in MPEG encoded video sequences [2, 63, 74], and the subband feature

comparison method [37]. Some of the methods are discussed below.

5.1 Pixel-Level Change Detection

The change between the two frames can be detected by comparing the differences in intensity

values of corresponding pixels in the two frames. The algorithm counts the number of the

pixels changed, and the camera break is declared if the percentage of the total number of

pixels changed exceeds a certain threshold [36, 48, 72]. Mathematically the difference in

pixels and threshold calculation can be represented by Eqs. 1 and 2. In Eq. 1, Fi(x, y) is

the intensity value of the pixel in frame i at the coordinates (x, y). If the difference between

the corresponding pixels in the two consecutive frames is above a certain minimum intensity

value, then DPi(x, y), the difference picture, is set to one. In Eq. 2, the percentage difference

between the pixels in the two frames is calculated by summing the difference picture and

dividing by the total number of pixels in a frame. If this percentage is above a certain

threshold T, a camera break is declared.

DPi(x, y) =

{

1 if |Fi(x, y) − Fi+1(x, y)| > t
0 otherwise

(1)

∑X,Y

x,y=1
DPi (x, y)

X ∗ Y
∗ 100 > T (2)

Camera movement, e.g., pan or zoom, can have the effect of a large number of pixel

changes and hence a segment will be detected. Fast moving objects also have the same

12

effect. If the mean intensity values of the pixel and its connected pixels are compared [72]

then the effects of camera and object motion are reduced.

5.2 Likelihood Ratio

Detecting changes at the pixel level is not a very robust approach. A Likelihood ratio

approach is suggested based on the assumption of uniform second-order statistics over a

region [36, 47, 72]. The frames can be subdivided into blocks and then the blocks can

be compared on the basis of the statistical characteristics of their intensity levels. Eq.

3 represents the formula that calculates the likelihood function. Let µi and µi+1 be the

mean intensity values for a given region in two consecutive frames and Si and Si+1 be the

corresponding variances. The number of the blocks that exceed a certain threshold t are

counted. If the number of blocks exceeds a certain value (dependent on the number of

blocks) a segment is declared. A subset of the blocks can be used to detect the difference

between the images so as to expedite the process of block matching.

λ =

[

σi+σi+1

2
+

(

µi−µi+1

2

)2
]2

σi ∗ σi+1

(3)

DPi(k, l) =

{

1 if λ > t
0 otherwise

This approach is better than the previous approach as it increases the tolerance against

noise associated with camera and object movement. It is possible that even though the two

corresponding blocks are different they can have the same density function. In such cases

no change is detected.

In another block matching technique that has been proposed by Shahraray [63], a typical

frame is divided into twelve non-overlapping blocks. Block matching is performed on the

image intensity values and the matched parameters are normalized between the values of

zero and one where zero indicates a perfect match. The match coefficient between the two

images is defined as in Eq. 4. Let i be the block number, K the total number of blocks, li

the element of the ordered set of the match values, and ci a predetermined coefficient for

each block.

13

IM =

K
∑

i=1

cili (4)

Methods for detecting gradual scene transition and inter-shot scene changes induced by

the camera are also explained in the paper by Shahraray but no performance measures have

been given to evaluate the efficacy of these techniques.

Histogram Comparison The sensitivity to camera and object motion can be further

reduced by comparing the gray level histograms of the two frames [48, 72]. This is due to

the fact that two frames with not much difference in their background and some amount of

object motion have almost the same histograms. The histogram is obtained from the number

of pixels belonging to each gray level in the frame. In Eq. 5 G is the number of gray levels,

j is the gray value, i is the frame number, and Hi(j) is the histogram for the gray level j.

G
∑

j=1

|Hi (j) − Hi+1 (j) | > t (5)

If the sum is greater than the given threshold t then a transition is declared.

Histogram comparison using color code is also suggested [48, 72]. A color code value is

derived from the three color intensities. To reduce the bin size, instead of representing the

code by 24 bits, the upper two bits of each color are used to compose the color code. The

j in the above equation is replaced by the code value. The color histogram metric is more

robust as it eliminates the necessity of converting the color level to gray level.

An χ2-test comparison of color histograms is proposed by Nagasaka and Tanaka [48].

The function uses the square of the difference between the two histograms so as to strongly

reflect the difference.

G
∑

j=1

|Hi (j) − Hi+1 (j) |2

Hi+1 (j)
> t (6)

14

The χ2-test enhances the difference between the camera breaks and also small changes

due to camera or object motion [72]. Therefore, this method may not be more efficient than

the gray and color histogram comparison techniques.

5.3 Twin-Comparison

Special camera effects make it difficult to detect camera breaks by means of any of the above

methods and transitions can go undetected. This is because the threshold set in the above

methods is higher than the difference found between the frames in which transition takes

place due to special effects. Lowering the threshold does not solve the problem because the

difference value due to the special effects can be smaller than the ones which take place

within the shot. For example, object motion and/or camera motion might contribute more

changes than the gradual transition. Making the value of the threshold even smaller will

lead to false detections due to camera and object motions. The beginning and end frames

for the gradual transitions need to be detected, the frames in the transition can be declared

as a separate segment.

T
l

T
h

F
s

F
e

T
h

F
s

F
e

Frame

Frame

Figure 9: Illustration of Twin-Comparison

The twin-comparison method [72] takes into account the cumulative differences between

the frames for gradual transitions. This method (Fig. 9) requires two cutoff thresholds,

one higher threshold (Th) for detecting abrupt transitions and a lower one (Tl) for gradual

15

transitions. In the first stage a higher threshold is used for detection of abrupt transitions.

In the next stage a lower threshold is used on rest of the frames, any frame that has the

difference more than this threshold is declared as potential start (Fs) of the transition. This

frame is then compared with subsequent frames and the difference added. Usually this

difference value increases and when this value increases to the level of the higher threshold

camera break is declared at that frame (Fe). If the value falls between the consecutive frames

then the potential frame is dropped and the search starts all over. There are some gradual

transitions in which the difference falls below the the lower threshold. The user can set a

tolerance value which will allow a certain number of consecutive frames to fall below the

threshold.

The gradual transitions so detected might include special effects due to camera panning

and zooming. A commonly used technique in computer vision, optical flow is used to detect

the camera movements. Motion vectors are computed to detect the changes due to pan and

zoom.

5.4 Detection of Camera Motion

To detect the camera motion, optical flow techniques are utilized. Optical flow gives the

distribution of velocity with respect to an observer over the points in an image. Optical flow

is determined by computing the motion vector of each pixel in an image. The fields generated

by zoom, pan and tilt are shown in Fig. 10. Detecting these fields helps in separating the

changes introduced due to the camera movements from the special-effects such as wipe,

dissolve, fade-in, fade-out.

As seen in the Fig. 10 most of the motion vectors between consecutive frames due to

pan and tilt point in a single direction thus exhibiting a strong modal value corresponding

to the camera movement. Disparity in direction of some of the motion vectors will result

from object motion and other kinds of noise. Thus, a single modal vector is exhibited with

respect to the camera motion. As given by Eq. 7, a simple comparison technique can be

used to detect pan and tilt. Pan or tilt are detected by calculating the differences between

the modal vector and the individual motion vectors [72]. θl be the direction of the motion

vectors and θm the direction of the modal vector. If the sum of the differences of all vectors

is less than or equal to a threshold variation Θp then a camera movement is detected. This

variation should be zero if no other noise is present.

16

Right PanLeft Pan Up TiltDown Tilt

Zoom out Zoom in

Figure 10: Optical Flow Field Produced by Pan, Tilt and Zoom

N
∑

l

|θl − θm| ≤ Θp (7)

Motion vectors for zoom have a center of focus, i.e., focus of expansion (FOE) for zoom-in

and focus of contraction (FOC) for zoom-out. Due to the absence of noise, it is easy to detect

the zoom because the sum of the motion vectors around the FOC/FOE will be zero. But, it

is difficult to find the center of focus of zoom since it could be present across two consecutive

frames. Zhang et al. assume [72] that the FOE/FOC lies within a frame, therefore, it is not

necessary to locate it for vector comparison. A simple comparison technique can be used,

the vertical vectors from the top (V top
k) and the bottom row (V bottom

k) can be compared for

magnitude and horizontal vectors from the left-most (U top
k) and right-most (U bottom

k) vectors

at the same row can be compared. In the case of zoom, the vectors will have opposite

signs, and the magnitude of the difference of these components should exceed the magnitude

of the highest individual component. This is due to the fact that in every column the

magnitude of the difference between these vertical components will exceed the magnitude of

both components.

|V top
k − V bottom

k | ≥
(

|V top
k |, |V bottom

k |
)

(8)

|U top
k − U bottom

k | ≥
(

|U top
k |, |U bottom

k |
)

(9)

17

When both Eqs. 8 and 9 are satisfied, a zoom is declared. Thus the camera movements

can be separated from the gradual transitions detected by other techniques (Section 5.3).

5.5 Using DCT Coefficients in MPEG Encoded Video

In this method the compressed video data are used for detecting camera breaks [2], and the

amount of the data to be processed is reduced considerably. Compression of the video is

carried out by dividing the image into a set of 8x8 pixel blocks. The pixels in the blocks

are transformed into 64 coefficients using the Discrete Cosine Transform (DCT), which are

quantized and Huffman entropy encoded. The DCT coefficients are analyzed to find frames

where camera breaks take place. The coefficients in the frequency domain are mathematically

related to the spatial domain therefore, they can be used in detecting the changes in the

video sequences.

Given 8x8 blocks of a single DCT-based encoded video frame f, a subset of blocks is

chosen a priori. The blocks are chosen from n connected regions in each frame. Again a

subset of the 64 coefficients for each block is chosen. The coefficients chosen are randomly

distributed among the AC coefficients of the block. Taking coefficients from each frame a

vector is formed.

Vf = {c1, c2, c3,}

The vector Vf represents the frame f of the video sequence in DCT space. The inner

product is used to find the difference between the two frames. In Eq. 10 Vf is the vector of

the frame being compared, Vf+1 is the vector of the successor frame.

Ψ =
~Vf

~Vf+1

| ~Vf || ~Vf+1|
(10)

A transition is detected when 1 − |Ψ| > t, where t is the threshold.

Zhang et al. [74] have also experimented with motion based segmentation using the

motion vectors in the MPEG compressed data as well as DCT coefficients. Meng et al. [45]

extend this concept further by performing more detailed operations on the MPEG/MPEG-

2 compressed data. The compressed data consists of I-, P- and B-frames. An I-frame

18

is completely intra-frame-coded. No motion compensation is performed. A P-frame is

predictively coded with motion compensation from past I- or P-frames. Both these frames

are used as a basis for bi-directionally motion compensated B-frames.

I B B P B B P B B P B B P B B I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Forward Prediction

Backward Prediction Forward Prediction

Figure 11: A Typical MPEG Compressed Video Sequence

If a break occurs on a B-frame, most of the motion vectors will come from the following

anchor frame and very few will come from the previous anchor frame (refer to Fig. 11).

Based on the ratio of backward and forward motion vectors a scene cut is detected. P-

frames have only forward motion compensation, therefore when a scene change occurs

here then the encoder cannot use macroblocks3 [31] from the previous anchor frame for

motion compensation. Based on the ratio of macroblocks without motion compensation

to macroblocks with motion compensation the scene break is detected. Since I-frames are

completely intra-coded without motion vectors, any of the previous methods can be used for

break detection.

5.6 Segmentation Based on Object Motion

Video data can also be segmented based on the analysis of encapsulated object motion [38].

The dynamic-scene analysis is based on recognizing the objects and then calculating their

motion characteristics. Objects in video data are recognized either by their velocity or by

their shape, size, and texture characteristics.

The motion which we perceive is the effect of both an object and camera motion. Camera

motion information can be exploited in the scene segmentation process based on object

motion. For example, if the camera is in motion then the image has nonzero relative velocity

with respect to the camera. The relative velocity can be defined in terms of the velocity of

the point in the image and the distance from the camera. For segmenting moving-camera

3The four 8 by 8 blocks of luminance data and the two, four, or eight corresponding 8 by 8 blocks of
chrominance data coming from a 16 by 16 section of the luminance component of the picture.

19

scenes, the component of the motion due to camera motion should be removed from the total

motion of an object. Accumulative-difference pictures [33] can be used to find areas that

are changing (usually due to object motion) and hence imply scene segmentation. Velocity

components of the points in an image can be used for segmenting a scene into different moving

objects. This is due to the fact that points of an object optimistically have the same velocity

components under certain camera motions and image surfaces [49]. Eq. 10 can be used for

calculating the image intensity velocity, where I(x,y,t) is the image intensity, ∂I/∂x and

∂I/∂y denote the image-intensity gradient, and dx/dt and dy/dt denote the image velocity.

dI/dt = ∂I/∂x ∗ dx/dt + ∂I/∂y ∗ dy/dt + ∂I/∂t (11)

If the image intensity velocity changes abruptly, a scene change can be declared. This

method is much more computationally intensive as an object must be tracked through a

sequence of frames. This is much more difficult in the presence of noise. Hough transforms

have also been used to segment the scene into different moving objects [22], however this

technique is not robust in the presence of noise.

5.7 Segmentation Based on Subband-Coded Video Data

Lee et al. [37] have developed a method for feature indexing of subband coded video.

Subband coding refers to a technique in which the input signal is decomposed into several

narrow bands by splitting the it with the help of low-pass and high-pass filters. Temporal

segmentation is performed on the lowest subband. Four different metrics for segmentation

of video data have been developed as follows:

1. Difference of histogram: measures absolute sum of the histograms of two frames.

2. Histogram of difference image: measures the histogram of difference between two

frames.

3. Block histogram difference: block histogram difference is obtained by computing histograms

of each block and summing the absolute difference of these block histograms between

the two frames.

4. Block variance difference: same as 3, except this method uses the block variance.

20

5.8 Segmentation Based on Features

Work on feature-based segmentation is being done by Zabih et al. [71]. The segmentation-

process involves analyzing intensity edges between two consecutive frames. During cut and

dissolve operations, new intensity edges appear far from the old ones due to change in content.

Thus, by counting the new and old edge pixels, cuts, fades, and dissolves are detected and

classified. Canny’s edge detector is used in their algorithm. The image is smoothed by a

Gaussian matrix and the gradient thresholded by a certain value. Motion compensation

is also provided in the algorithms to give better results in presence of camera and object

motion.

Hampapur et al. [28] use a model-driven approach to digital video segmentation. Chromatic

scaling models are used to classify editing effects in the video production. This model is used

by feature detectors for finding editing effects. Otsuji et al. [54] have proposed a cut detection

method that uses an isolated sharp peak detecting filter.

The techniques mentioned above segments video with varying degrees of accuracy and

robustness. The effectiveness of an algorithm also depends on the kind of video being

segmented. If an animated video is used then the scene changes are usually abrupt, i.e., there

are few camera effects or light flashes present. Any simple algorithm can be successfully used

to segment this type of video data. Whereas, if a video contains complicated camera motions

and effects (e.g., dissolves, wipes, fades, zooms) sophisticated algorithms must be used. The

performance of these algorithms depends greatly on the noise level in the digitized video

during processing, e.g., sudden changes in lightning, etc. A proper threshold has must be

established such that no camera breaks lower than the threshold are missed or no false breaks

are detected. Basically, a compromise between speed and robustness must to be made. The

processing time can be reduced either by reducing spatial resolution or by reducing temporal

resolution. For spatial resolution only a subset of pixels are used which leads to information

loss, which can result in camera break detection failure. For temporal resolution frames are

skipped and a subset of frames is used for detection. This speeds up the process and at

the same time it helps in detecting gradual camera breaks, as the difference between the

frames across the skipped frames is greater than the lower threshold. But if a large number

of frames are skipped then it can lead to many false detections.

Zhang et al. [72] use a multi-pass approach for reducing overall processing time. In

this approach a fast pass is made with a lower threshold along with temporal resolution

reduction. The breaks detected are declared as potential break candidates. In the second

21

pass the processing is restricted to the vicinity of these breaks. The authors compared the

twin-comparison techniques, pair-wise pixel, likelihood ratio, Histogram comparison grey

and color, and χ2-test using the twin comparison method and the multi-pass method. They

found that the histogram comparison, based on gray level and color gave high accuracy and

the computation time was considerably reduced using the multi-pass system. Approximately

90% of the breaks and transitions were detected. Contrary to Nagasaka et al. [48] the χ2-

test did not do so well in terms of either speed or accuracy. Performing segmentation on the

compressed data is faster than uncompressed data. None of these methods work when there

is substantial change in the intensities (camera motion, object motion, light flashes) between

pairs of frames. Histogram methods are not effective in the presence of motion. Hampapur

et al. [28] do not use histogram methods, rather they compute the chromatic difference

between consecutive frames. Their method detects dissolves if the change due to the editing

is much more than the change due motion. The feature-based method [71] is much more

robust than the previous methods in detecting dissolves in the presence of motion, but does

not handle sudden changes in brightness. Also, motion compensation techniques do not

handle multiple object motion.

6 Data Representation and Organization

Much work has been done in automating indexing and searching of data in databases (e.g.,

text [59], automated offices [44, 68], newspapers and magazines [35], archives and libraries

[46, 51], image databases [9, 12, 23, 24, 25, 52]). Faloutsos [19] has discussed retrieval

methods for text as well as formatted data. Some of the methods are summarized below as

they relate to digital libraries.

• Full Text Scanning: A complete document is scanned for the specified strings. If a

query is a composition of a number of strings in conjunction, then more than one step

is required to satisfy the strings in the boolean function.

• Inversion of Terms: This is a keyword approach to accessing data. Contents of a

document can be described by an array of words. The data organization is divided

into two components, the index and the data records or data leaves. The information

is indexed and the data is stored in leaves. The structure can be a hash table, tree, or

any combination of these.

22

• Multiattribute Retrieval Methods: These approaches involve superimposed coding techniques.

If, for some data, n attributes are chosen, then each attribute is hashed to a fixed-length

bit pattern. A pre-specified number of bits are set to 1’s and then these n patterns are

superimposed to get a resulting bit pattern. This pattern is called a signature. This

signature then can be used to locate a data record. Multiattribute Hashing [27] and

Signature Files [20, 21] are some of the multiattribute attribute retrieval methods.

• Clustering: In clustering similar data are grouped together into clusters. The reasoning

behind this technique is that similar data are pertinent to the same request. Each

document is represented by a n-dimensional vector, where n is the number of attributes

of the data. Using a similarity matrix, these vectors are clustered. The data are

retrieved by comparing a cluster descriptor and a query descriptor.

Full text scanning time is linearly dependent on the size of the text document, the greater

the size of the document and the database the greater is the search time as it is a sequential

access method. There are no extra storage overheads for indexing structures in this method

as there are in inverted files. On the other hand, inverted files provide speedy data access

mechanisms, though it is expensive to update the index structure. Inverted files incorporate a

random access mechanism, i.e., the indices direct the search to the small part of the database

containing the item. The index structure is a file, so if the file grows larger it can slow down

the search. Therefore, another index is built on top of the existing index and the resulting

hierarchy speeds up the access.

B-trees [15] are an example of an inverted file. This general-purpose index mechanism

was developed in the late 60’s when people were competing for access mechanisms. Each

node in B-tree of order n consists of 2n keys and 2n+1 pointers. The advantage of this tree

lies in the fact that deletion and addition of records always leave it balanced unlike binary

trees which become unbalanced (long paths and some short paths) on random insertion and

deletion. There are other variations of B-tree. B∗-tree [4, 15] increases the storage utilization

as the splitting of the node is delayed until the two sibling nodes are full. This not only

utilizes the space efficiently but also speeds up the access process. In B+-tree [15] all the

keys reside in the leaves. Therefore, during sequential access, no node will be visited twice

and, at most, space for one node is required in the memory. The number of accesses are also

reduced, requiring only access for the next consecutive operation. The index part is only the

guide to the leaf nodes, therefore, there is no need for using actual keys in the index which

requires considerable space. As the space utilization is reduced, the number of keys in the

nodes can be increased. The branches per node increase but at the same time the depth

23

of the tree decreases. Thus the data access time is reduced considerably. Other variations

of the B-tree have been suggested, such as compressing the keys and the pointers, Binary

B-trees, and Multiway trees [4, 15]. The B-tree is a one-dimensional key ordering structure

designed for single key access. Thus it is of not much use in indexing multi-dimensional

video data.

Multidimensional data structures have been developed to overcome the shortcomings of

the B-tree. Pixel-based data structures have been suggested by [14]. This is a gridded

data structure where pixel information from each grid cell is stored as a record. Relational

databases have also been used in pictorial queries [9] as well as video queries [41, 58]. Chang

et al. [12] have used 2-D strings to represent pictures in a pictorial database. Images are

projected into a 2-D coordinate system and a 2-D string is derived which preserves the

spatial knowledge of the objects in an image. Lee et al. [39] have further extended the

2-D string method. Along with the 2-D string, a signature is associated with each image.

Instead of processing the 2-D string file, the image signature preselector prunes a large set of

signatures whose 2-D strings will not satisfy the query. After this step the remanent strings

are processed, making the processing more efficient. Bimbo [8] has extended the 2-D strings

to represent 3-D scenes which seems more relevant to video data as scene description can

also be made by including reference to the relative depth of an object.

Quadtrees [60] have been used as multi-indexing structures for large databases. The

quadtree is a multidimensional generalization of a binary tree which utilizes the grid file

mechanism, but quadtree has number of limitations. First, at each node all the keys have

to be tested, second, there are number of null links that use space resources, and third, the

node sizes tend to be large. K-d trees [7] have been developed to overcome some of these

deficiencies. However, both the structures suffer from page faults [26], i.e., when a node

is referenced which is present in a page but not in the memory cache a fault occurs. In

these tree structures, the pointers have to be followed with great potential for page faults.

This problem can be overcome by using methods that collect the pointers into sets which

correspond to the storage units (pages) of the disks. The access to these sets (buckets) can

be organized by use of a directory to help in address calculation. This technique is called

the bucket method [60]. The goal of this method is to ensure efficient access to the disk data.

The nodes in the B-tree can be used as buckets, but B-tree nodes do not correspond to a n-

dimensional space. Video data require a multidimensional indexing structure for the various

attributes they can be indexed under, and due to the size of the video data the contents of

the tree nodes will be considerably large. Therefore, a multidimensional indexing structure

using bucket methods will be appropriate for the video data such that, page faults do not

24

occur while reading the data. Robinson [56] developed a k-d-b-tree structure to overcome the

limitation of B-tree. It uses k-d-tree partitions to arrange the contents of each B-tree node.

But the performance of the B-tree cannot be ensured. Chang et al. [10] adapted the 2-D

strings to a quadtree data structure and came up with a new structure called 2-D-H string.

This structure is used to represent hierarchical symbolic pictures by employing new spatial

relation operators. Again, this structure also provides limited capabilities for indexing the

video data as not all of the features can be organized by this structure.

Nievergelt and Hinterberger [50] proposed a variation of the grid method called grid files.

Grid files handle range queries. This structure adapts very well to insertion and deletion

and therefore, can retrieve records with a maximum of two disk accesses. Jagadish [32] uses

rectangles for feature extraction of the spatial data. The 4k vectors thus derived are then

indexed by using grid files, k-d-b-trees, etc. Voronoi diagrams [3] have also been widely used

to represent the spatial data using the nearest-neighbor rule. Spatial data objects are not

represented very well with point data. R-tree [26] and its family (R+-tree [67] and R∗-tree

[5]) overcome this limitation. The R-tree is a derivation of the B+-tree that stores complete

multidimensional objects without transformation or clipping. But the R∗-tree is designed

with optimization of area covered by a directory rectangle, i.e., the dead space between

the bounded rectangles is minimized such that the maximum information can be stored. It

maximizes the space by minimizing the margins of the rectangle. The margin is the sum of

the lengths of a rectangle, objects with the smallest margins are squares, thus by minimizing

the margin the directory rectangles will have a more quadratic shape and more rectangles can

be incorporated. The overlaps between the directory rectangles are reduced which decreases

the number of the paths to traverse.

In the QBIC project [23] the retrieval of images is based on color, texture and shape as

basic image feature. The indexing system is derived by computing the numerical index keys

based on color distribution, color histograms and segmentation based on main color regions.

These index keys are organized by used the R∗-tree structure, which is more robust for the

higher dimensions and is much faster. Zhang et al. [74] have also used the same techniques in

their tools for video indexing and retrieval. They essentially utilize the spatial information

for indexing the representative frames and ignore the temporal information in the video.

Higher level indexing is based on event indexing, e.g., a zooming sequence is retrieved by

processing the motion vectors.

The tree type of indices identified for video-on-demand system by Rowe et al. [58] are

organized using a relational database. The Chabot project [52] also uses a relational database

25

to store and retrieve images.

In the next section we discuss few examples of how various video data types can be

indexed for storage and retrieval.

7 Examples

Consider a system designed to retrieve digital video data from a large repository (newscast,

instruction, video conferencing, and surveillance). For a video to be in a user accessible

format (queriable), raw video data must be processed several times to extract information

for content based retrieval. Before the process of segmentation and feature extraction is

applied we are required to model the video data. However, the semantics of interpretation

are different for different video data types. In movie data each scene is logically connected

to the previous and the following scene but in surveillance video data does not possess such

semantics. Likewise, not every video data has camera breaks in it; segmentation based solely

on camera breaks is not possible. But video data must be segmented for better management

of data and disk utilization. Refer to Fig. 2 for the model of video data indexing. A model

for the data is developed and based on this model the video data are broken down into

manageable segments. This is be achieved by applying any of the algorithms mentioned in

Section 5. For example, the color histogram method can be used for detecting abrupt scene

changes and the twin comparison method can be used for detecting gradual transitions. If

required, the false detections due to camera effects can be eliminated by using the optical flow

techniques. After segmentation, feature (content) information contained in these segments

must be extracted. Some of the features like shape, color, and texture information can be

retrieved by known image processing methods. Some examples of how video data belonging

to different data types can be modeled and segmented are given below.

Example 1 Consider a newscast video data. A news session consists of a number of

disjointed news items presented sequentially. There is usually little logical connection between

them, the news items can be presented in any order without effecting the overall presentation.

Therefore, the access mechanism is much more effective if a segment consists of a complete

news item. These segments can be indexed based on their content. Various queries can

be performed on the newscast video data, e.g., retrieve clips of some important event as it

evolves, retrieve clips of a favorite newscast, retrieve clips of sports news in which a favorite

baseball team is mentioned, and retrieve field clips of events happening in a certain country.

26

Before performing such queries, the information needed for retrieval of these clips from the

database must be extracted from the video data. The query for a certain important event

from a particular broadcast station requires the segments to be indexed with the information

pertaining to the event.

Example 2 In a distance learning application the information can have a more rigid

structure. They are composite in nature with temporal associations. For example, consider

a database consisting of course material on various subjects. Each course is composed of

various topics and each topic is further composed of sub-topics. Each topic or sub-topic is

taught in a temporal sequence, e.g., “before” or “after.” One or more than one topic can

be taught per class. Querying for a course does not involve complicated indexing but if the

user tries to retrieve a topic taught in a course on “networking” which was taught after the

“protocols” topic then a more complicated query has to be formulated. For such a query an

indexing structure which encompasses both the temporal as well as the content is required.

Example 3 Many high security areas, public places, and buildings are equipped with

surveillance cameras. A large amount of video data from these sources can be stored in a

database on a daily basis. There are no camera breaks present in the recorded data and

segmentation based on camera breaks does not apply. If the segments are made based

on content change, then can get a break every few frames as the content can be very

dynamic. Therefore, the video can be segmented based on activity. Some of the times

the recorded material do not contain information of much importance, hence, data which

do not contain very useful information can be removed. Hierarchy, generalization, and

specialization concepts cannot be employed because semantic flow does not exit from one

event to another. Prominent information in each segment (events, people) and the time

associated with the segments can be indexed. Queries based on timing information; retrieve

clips taken at 5 P.M. on Saturday, March 1993 can be executed. Queries based on events;

retrieve clips in which people are running across the camera view, can be executed. Queries

based on different camera views; get the clips from the camera situated near the back door,

can also be executed.

27

8 Conclusion

Existing systems treat video data as having rigid hierarchical structures, i.e., scenes, shots,

and frames. Video data can be retrieved based on the information content present in the

scenes or shots and the bibliographic data associated with the video. This is true for certain

kinds of data (movies) but we cannot apply such a generic model to all video data types. Each

video data type has different associated semantics. Treating all video data types using a rigid

hierarchical structure is not effective in the retrieval of video data. For example, segmenting

the newscast video data based on the camera breaks is not useful. The user might try to

retrieve data via a news item which might involve several scenes (scene of the anchor person

talking about the item and a field view of the item). The user will likely retrieve data on an

event basis, i.e., or entires story. The event could happen over a number of days by a number

of broadcast stations. Therefore, we would require more information than is present just in a

single shot or a scene. Future applications should exploit the different semantics associated

with individual data types. While developing a video data retrieval system we need to take

a bottom-up approach, we must first understand the semantics present in the data type and

then model the data. The applications must be built around the video data rather than

tailoring the data to an application. This results in efficient and effective data retrieval

mechanisms. It also resolves many issues such as the accuracy of the segmentation process

which will not only segment the video data based on camera breaks but also try and identify

the types of camera breaks. If a suitable data model is utilized for an application, we can

identify the places where the data should be segmented and this would reduce considerably

the amount of time for segmentation of the video data. We will also know what features

need to be extracted from the data, thereby reducing the information to be stored. Simple

indexing techniques can be used for modeling the metadatabase so we will not require very

large multi-dimensional indexing structures.

Emerging information retrieval technologies that have significant content in digital video

form will require access to large “virtual” libraries [66]. The demand for such systems is

continually increasing and these systems must be able to acquire large amounts of data,

store them and then make them available to customers. Hence, the indexing process should

be fast and efficient, and allow effective data access.

28

References

[1] G. Ahanger, D. Benson, and T.D.C. Little, “Video Query Formulation,” Proc.

IS&T/SPIE, Conference on Storage and Retrieval for Image and Video Databases, Vol.

2420, February 1995, pp. 280-291.

[2] F. Arman, A. Hsu, and M-.Y. Chiu, “Image Processing on Compressed Data for Large

Video Databases,” Proc. 1st ACM Intl. Conf. on Multimedia, Anaheim CA, August

1993, pp. 267-272.

[3] F. Aurenhammer, “Voronoi Diagrams - A Survey of a Fundamental Geometric Data

Structure,” Computing Surveys, Vol. 23, No. 3, September 1991, pp. 345-405.

[4] R. Bayer and K. Unterauer, “Prefix B-Trees,” Proc. ACM Trans. on Database Systems,

Vol.2, No.1, March 1977, pp. 11-26.

[5] N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger, “The R∗-tree: An Efficient

and Robust Access Method for Points and Rectangles,” Proc. of ACM SIGMOD, May

1990, pp. 322-331.

[6] W. Bender, H. Lie, J. Orwant, L. Teodosio, and N. Abramson, “Newspace: Mass Media

and Personal Computing,” Proc. Summer 1991 Usenix Conf., Nashville, Tennessee,

June 1991, pp. 329-348.

[7] J.L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,”

Communication of the ACM, Vol. 18, No. 9, September 75, pp. 509-517.

[8] A.D. Bimbo, M. Campanai, and P. Nesi, “A Three-Dimensional Iconic Environment

for Image Database Querying,” IEEE Trans. on Software Engineering, Vol. 19, No. 10,

October 1993, pp. 997-1011.

[9] N.S. Chang, and K.S. Fu, “Picture Query Language for Pictorial Data-base Systems,”

IEEE Computer, November 1981, pp. 23-33.

[10] S. Chang, and Y. Li, “Representation of Multi-resolution Symbolic and Binary Pictures

Using 2DH Strings,” Proc. IEEE Workshop Languages for Automation, 1988, pp. 190-

195.

[11] S.K. Chang, “Visual Reasoning for Information Retrieval from Very Large Databases,”

IEEE Workshop on Visual Languages, October 1989, Rome, Italy.

29

[12] S.K. Chang and T. Kunii, “Pictorial Database Systems,” IEEE Computer, Ed. S.K.

Chang, November 1981, pp. 13-21.

[13] S.K. Chang, Q.Y. Shi, and C.W. Yan, “Iconic Indexing by 2-D Strings,” IEEE Trans. on

Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 3, May 1987, pp. 413-427.

[14] M. Chock, A.F. Cardenas, and A. Klinger, “Database Structure and Manipulation

Capabilities of the Picture Database Management System (PICDMS),” IEEE Trans.

on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 3, July 1984, pp. 484-

492.

[15] D. Comer, “The Ubiquitous B-Tree,” Computing Surveys, Vol. 11, No. 2, June 1979,

pp. 121-137.

[16] G. Davenport, T.G. Aguierre Smith, and N. Pincever, “Cinematic Primitives for

Multimedia,” IEEE Computer Graphics & Applications, July 1991, pp. 67-74.

[17] M. Davis, “Media Streams: An Iconic Visual Language for Video Annotation,” Proc.

IEEE Symposium on Visual Languages, Bergen, Norway, 1993, pp. 196-202.

[18] E. Deardorff, T.D.C. Little, J.D. Marshall, D. Venkatesh, and R. Walzer, “Video Scene

Decomposition with the Motion Picture Parser,” IS&T/SPIE, Vol. 2187, February 1994,

pp. 44-55.

[19] C. Faloutsos, “Access Methods for Text,” Computing Surveys, Vol. 17, No.1, March

1985, pp. 49-74.

[20] C. Faloutsos, “Signature Files: Design and Performance Comparison of Some Signature

Extraction Methods,” Proc. ACM SIGMOD, May 1985, pp. 63-82.

[21] C. Faloutsos and S. Christodoulakis, “Description and Performance Analysis of

Signature File Methods for Office Filing,” Proc. ACM TOIFS, Vol.5, No.3, July 1987,

pp. 237-257.

[22] C.L. Fennema, and W.B. Thompson, “Velocity Determination in Scene Containing

Several Moving Objects,” Computer Graphics and Image Processing, Vol. 9, No. 4,

1979, pp. 310-315.

[23] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkhani, J.

Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by Image and Video

Content: The QBIC System,” IEEE Computer, Vol. 28, No. 9, September 1995, pp.

23-32.

30

[24] W.I. Grosky, P. Neo, and R. Mehrotra, “A Pictorial Index Mechanism for Model-Based

Matching,” Data and Knowledge Engineering, Vol. 8, 1992, pp. 309-327.

[25] V. Gudivada, V. Raghavan, and K. Vanapipat, “A Unified Approach to Data Modeling

and Retrieval for a Class of Image Database Applications,” Multimedia Database

Systems: Issues and Research Directions, S. Jajodia and V. Subrahmanian, eds.,

Springer-Verlag, New York, 1995.

[26] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. ACM

SIGMOD, 1984, pp. 47-57.

[27] R.A. Gustafson, “Elements of the Randomized Combinatorial File Structure,” Proc.

of the ACM SIGIR Symposium on Information Storage and Retrieval, April 1971, pp.

163-174.

[28] A. Hampapur, R. Jain, and T. Weymouth, “Digital Video Segmentation,” Proc. 2nd

ACM Intl. Conf. on Multimedia, pp. 357-364.

[29] T. Hamano, “A Similarity Retrieval Method for Image Databases Using Simple

Graphics,” IEEE Workshop on Languages for Automation, Symbiotic and Intelligent

Robotics, University of Maryland, August 29-31, 1988, pp. 149-154.

[30] K. Hirata, and T. Kato, “Query By Visual Example,” Proc. 3rd Intl. Conf. on Extending

Database Technology, Vienna, Austria, March 1992, pp. 56-71.

[31] ISO/IEC, “Information Technology - Generic Coding of Moving Pictures and Associated

Audio Information,” ISO/IEC DIS 13818-2, 1994.

[32] H.V. Jagdish, “A Retrieval Technique for Similar Shapes,” Proc. ACM SIGMOD, May

1991, pp. 208-217.

[33] R.C. Jain, “Segmentation of Frame Sequence Obtained by a Moving Observer,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, Vol. 6, No. 5, 1984, pp. 624-629.

[34] T. Joseph and A.F. Cardenas, “PICQUERY: A High Level Query Language for Pictorial

Database Management,” IEEE Trans. on Software Engineering, Vol. 14, No. 5, May

1988, pp. 630-638.

[35] P. Kapustka, “WAIS Offers Publishing Products,” Open Systems Today, May 10, 1993,

pp. 6.

31

[36] R. Kasturi and R. Jain, “Dynamic Vision,” Computer Vision: Principles, Eds. R.

Kasturi, R. Jain, IEEE Computer Society Press, Washington, 1991, pp. 469-480.

[37] J. Lee and B.W.Dickinson, “Multiresolution Video Indexing for Subband Coded Video

Databases,” Proc. IS&T/SPIE, Conference on Storage and Retrieval for Image and

Video Databases, San Jose, CA, February 1994.

[38] S.Y. Lee and H.M. Kao, “Video Indexing – An Object Based on Moving Object and

Track,” Proc. IS&T/SPIE, Vol. 1908, 1993, pp. 25-36.

[39] S.Y. Lee and M.K. Shan, “Access Methods of Image Database,” Intl. Journal of Pattern

Recognition and Artificial Intelligence, Vol. 4, No. 1, 1990, pp. 27-44.

[40] A. Lippman and W. Bender, “News and Movies in the 50 Megabit Living Room,” Proc.

Globecom ’87, Tokyo, Japan, November 1987, pp. 1976-1981.

[41] T.D.C. Little, G. Ahanger, R.J. Folz, J.F. Gibbon, A. Krishnamurthy, P. Lumba, M.

Ramanathan, and D. Venkatesh, “Selection and Dissemination of Digital Video via the

Virtual Video Browser,” Journal of Multimedia Tools and Applications, Vol. 1 No. 2,

June 1995, pp. 149-172.

[42] S. Loeb, “Delivering Interactive Multimedia Documents over Networks,” IEEE

Communications Magazine, Vol. 30, No. 5, May 1992, pp. 52-59.

[43] S. Loeb, R. Hill, and T. Brinck, “Lessons from LyricTime: A Prototype Multimedia

System,” Proc. 4th IEEE ComSoc Intl. Workshop on Multimedia Communications,

Monterey, CA, April 1992, pp. 106-113.

[44] C. Meghini, F. Rabitti, and C. Thanos, “Conceptual Modeling of Multimedia

Documents,” IEEE Computer, Vol. 24, No. 10, October 1991, pp. 23-30.

[45] J. Meng, Y. Juan, S. F. Chang, “Scene Change Detection in a MPEG Compressed Video

Sequence,” Proc . IS&T/SPIE, Vol. 2419, February 1995.

[46] E. Messmer, “Internet Retrieval Tools Go on Market,” Network World, February 15,

1993, pp. 29-77.

[47] N.H. Nagel, “Formulation of an Object Concept by Analysis of Systematic Time

Variation in the Optically Perceptible Environment,” Computer Graphics and Image

Processing, Vol 7. 1978, pp. 149-194.

32

[48] A. Nagasaka, and Y. Tanaka, “Automatic Video Indexing and Full-Video Search for

Object Appearances,” Visual Database Systems, II, Eds. E. Knuth, and L.M. Wegner,

Elsevier Science Publishers B.V., 1992 IFIP, pp. 113-127.

[49] V.S. Nalwa, “A Guided Tour of Computer Vision,” Sponsoring Ed. P.S. Gordon,

Addison-Wesley Publishing Company Inc., Reading, 1993.

[50] J. Nievergelt, H. Hinterberger, and K.C. Sevcik, “The Grid File: An Adaptable,

Symmetric Multikey File Structure,” ACM Trans. on Database Systems, Vol. 9, No.

1, pp. 38-71, March 1984.

[51] P.J. Nofel, “40 Million Hits on Optical Disk,” Modern Office Technology, March 1986,

pp. 84-88.

[52] V.E. Ogle, “Chabot: Retrieval from a Relational Database of Images,” IEEE Computer,

Vol. 28, No. 9, September 1995, pp. 40-48.

[53] J.A. Orenstein, and F.A. Manola, “PROBE Spatial Data Modeling and Query

Processing in an Image Database Application,” IEEE Trans. on Software Engineering,

Vol. 14, No. 5, pp. 661-629, May 1988.

[54] K. Otsuji, and Y. Tonomura, “Projection Detecting Filter for Video Cut Detection,”

Proc. 1st ACM Intl. Conf. on Multimedia, Anaheim CA, August 1993, pp. 251-257.

[55] R. Rao, J.O. Pedersen, M.A.Hearst, J.D. Mackinlay, S.K. Card, L. Masinter,

P.K. Halvorsen, and G.G. Robertson, “Rich Interaction in the Digital Library,”

Communications of the ACM, Vol. 38, No. 4, April 1995, pp. 29-39.

[56] J.T. Robinson, “The K-D-B-tree: A Search Structure for large Multidimensional

Dynamic Indexes, Proc. ACM SIGMOD, April 1981, pp. 10-18.

[57] N. Roussopoulos, C. Faloutsos, and T. Sellis, “An Artificial Pictorial Database System

for PQSL,” IEEE Trans. on Software Engineering, Vol. 14, May 1988, pp. 639-650.

[58] L.A. Rowe, J.S. Boreczky, C.A. Eads, “Indexes for User Access to Large Video

Databases,” Proc. IS&T/SPIE, Storage and Retrieval for Image and Video Databases

II, CA, February 1994.

[59] G. Salton, “Automatic Text Processing - The Transformation, Analysis and Retriaval

of Information by Computer,” Addison-Wesley Publishing Company, 1989.

33

[60] H. Samet, “The Design and Analysis of Spatial Data Structures,” Consulting Ed. M.A.

Harrison, Addison-Wesley Publishing Company Inc. 1989.

[61] A.J. Seyler, “Probability Distribution of Television Frame Difference,” Proc. Institution

of Radio and Electronics Engineers Australia, Vol. 26, No. 11, November 1965, pp.

355-66.

[62] D.G. Severance and G.M. Lohman, “Differential Files: Their Application to the

Maintenance of Large Databases,” Proc. of ACM TODS, Vol. 1, No. 3, September

1976, pp. 256-267.

[63] B. Shahraray, “Scene Change Detection and Content-Based Sampling of Video

Sequences,” Proc. IS&T/SPIE, Vol. 2419, CA, February 1995.

[64] T.G. Aguierre Smith, and G. Davenport, “The Stratification System: A Design

Environment for Random Access Video,” Proc. 3rd Intl. Workshop on Network and

Operating System Support for Digital Audio and Video, La Jolla, CA, November 1992.

[65] T.G. Aguierre Smith, and N.C. Pincever, “Parsing Movies in Context,” Proc. Summer

1991 Usenix Conf., Nashville, Tennessee, June 1991, pp. 157-168.

[66] Stanford Digital Libraries Group, “The Stanford Digital Library Project,”

Communications of the ACM, Vol. 38, No. 4, April 1995, pp. 59-60.

[67] M. Stonebraker, T. Sellis, and E. Hanson, “An Analysis of Rule Indexing

Implementations in Database Systems,” Proc. of the First Intl. Conf. on Expert

Database Systems, April 1986, pp. 353-364.

[68] D. Tsichritzis, S. Christodoulakis, P. Economopoulos, C. Faloutsos, A. Lee, D. Lee, J.

Vandenbroek, and C. Woo, “A Multimedia Office Filing System,” Proc. 9th Intl. Conf.

on VLDB, Italy, October 1983.

[69] K. Tsuda, M. Hirakawa, M. Tanaka, and T. Ichikawa, “IconicBrowser: An Iconic

Retrieval System for Object-Oriented Databases,” Proc. IEEE Workshop on Visual

Languages, Italy, October 1989, pp. 130-137.

[70] G.K. Wallace, “The JPEG Still Picture Compression Standard,” Communications of

the ACM, Vol. 34, No. 4, April 1991, pp. 30-44.

[71] Ramin Zabih, Justin Miller, and Kevin Mai, “Feature-Based Algorithms for Detecting

and Classifying Scene Breaks,” To Appear in Proc. 4th ACM Intl. Conf. on Multimedia,

San Francisco, California, November 1995.

34

[72] H.J. Zhang, A. Kankanhalli, and S.W. Smoliar, “Automatic Partitioning of Full-Motion

Video,” ACM/Springer Multimedia Systems, Vol. 1, No. 1, 1993, pp. 10-28.

[73] H.J. Zhang, C.Y. Low, Y. Gong, and S.W. Smoliar, “Video Parsing Using Compressed

Data,” Proc. IS&T/SPIE, Image and Video Processing II, February 1994, pp. 142-149.

[74] H.J. Zhang, C.Y. Low, Y. Gong, and S.W. Smoliar, “Video Parsing Using Compressed

Data,” Proc. IS&T/SPIE, Image and Video Processing II, February 1994, pp. 142-149.

35

