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Abstract–Segmentation, video data modeling, and annotation are indispensable operations

necessary for creating and populating a video database. To support such video databases,

annotation data can be collected as metadata for the database and subsequently used for in-

dexing and query evaluation. In this paper we describe the design and development of a video

annotation engine, called Vane, intended to solve this problem as a domain-independent

video annotation application.

Using the Vane tool, the annotation of raw video data is achieved through metadata

collection. This process, which is performed semi-automatically, produces tailored SGML

documents whose purpose is to describe information about the video content. These docu-

ments constitute the metadatabase component of the video database. The video data model

which has been developed for the metadata, is as open as possible for multiple domain-

specific applications. The tool is currently in use to annotate a video archive comprised of

educational and news video content.
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1 Introduction

In recent years interest in digital communications has substantially increased due to advances

in end-user applications and the publicity of the Internet. The use of digital video is not far

behind, although the infrastructure, particularly bandwidth, is not yet sufficient to compete

with existing television technology. The availability of video as an accessible media leads to

a new set of applications including video conferencing, video-telephony, movies-on-demand,

and distance learning.

Most of these applications, however, assume the viability of constructing substantial

databases of video content. A video database system, as defined here, is an entity which

provides fast and efficient storage and retrieval of digital video across multiple application

domains. For example, the common functional requirements for digital news video or movie

storage and delivery are provided by such a system. In this context we expect domain specific

information models to be associated with each application; however, significant common

functionality will exist and be supported by a video database system.

The primary distinction of a video database by our definition is the ability to rapidly

locate and retrieve video content. In contrast, an archive of video tapes is fraught with

latencies that render most applications not viable. This “fast access” enables new applica-

tions of video information such as personalized news-on-demand and educational reuse of

classroom instruction that would otherwise be content or feature-deficient. (For example,

our experience found many students asking for a synopsis of a lecture rather than to re-

view a two-hour video tape.) The goal of a video database application is to provide this

fast access to the information in the video data. To accomplish this objective; however, an

approach to characterizing this information must be developed. The video content (i.e., the

information embedded in the video data) must be extracted from video data, stored, and

managed. Techniques for this process can be static or dynamic, and manual or automated.

Due to our desire to construct working systems, we focus on pragmatic alternatives. This

steers us towards semi-automated techniques that apply shot boundary detection coupled

with human annotation. Moreover, our motivation has been to create a tool for collecting a

reusable universe of annotated, interconnected multimedia documents that can subsequently

be translated, indexed, and stored in any database in any format. That is, we sought to

“front-load” a multimedia database rich in video content.

There are existing solutions for providing video data collection and annotation (e.g.,

references [4, 10]). However, because of the complexity of the problem, most of the proposed
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solutions are domain-specific, being optimized to work only on specific video content such as

news, instruction, or specific categories of movies. To incorporate cross-domain annotation

functionality in our annotation tool, we make use of SGML (Standard Generalized Markup

Language). One important property of SGML for use in representing video data is its ability

to define nested structures as required for hierarchical models of video data. Moreover, SGML

context rules, even if very strict, are highly customizable through definitions in the DTD

(document type definition)for video. Therefore, we establish a common nested structure

across domains and simultaneously consider the properties of different domains. This is

achieved by associating a DTD with each domain. All of the DTDs have common elements

or objects, but the attributes associated with these elements differ with each domain. The

metadata, therefore, exist in an SGML-compliant format, making it easy to make post-

annotation changes or enhancements to the annotated data without requiring a redefinition

of the end-application data model. The collected data can also be readily translated to

alternative representations (e.g., relational, object-oriented, or deductive data models), thus

making it straightforward to populate a video database.

With this context, and the desire to construct a usable system, we set out to develop

the Vane annotation tool. An additional requirement was to render an annotation solution

that would not be bound to a particular application domain, yet could deal with, or could

be tailored to, the nuances of each. The result is a system built on these concepts that can

be used/tailored for any annotation and subsequent data model. The novelty in the work is

the generic, flexible model and representation for capturing video content in a reusable way,

and the subsequent implementation.

The remainder of the paper describes our technical solution to this problem. In Section 2

we introduce basic technologies required as a foundation for the annotation solution. In Sec-

tion 3 technologies related to our work are discussed. In Section 4 we discuss the annotation

tool. Section 5 describes the translation of collected annotations to a relational database

format. Section 6 concludes the paper.

2 The Fundamentals of Video Annotation

When video and audio signals are brought into a digital system, they yield a format that is

very different from alphanumeric data. Textual information supports concepts of alphabeti-

cal ordering, indexing, and searching on words or phrases. In contrast, video and audio data

yield a format that does not provide straightforward access to its content. Ordering of the
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basic units for audio and video (sample and frame, respectively) is temporal. The analogous

indexing or searching based on pattern matching is a much more difficult task, one that has

yet to prove as complete and successful as vector-space text indexing.

Because of the lack of satisfactory techniques for extracting information from raw video

or audio content, we seek alternative schemes for achieving the same goal of supporting

indexing and query of content. Fig. 2 illustrates the overall process of video annotation that

we describe here [1].

For simplicity, we define the following terminology used throughout the paper. Raw

digital video and audio data are aggregated and called video data. The content of the video

and audio are referred to as video information, but are captured as metadata. Thus, video

information describes the content of video data stored in the video database.

Video data, at a finest grain, are represented as individual frames (a finer decomposition

is not significant in the context of video content as a whole). As such, any segmentation

and feature extraction applicable to still images is relevant identification of the information

contained in each still. We therefore, focus our attention on the information that is ob-

tained by the juxtaposition of stills (i.e., shots), and the associated sound track, in a video

composition.

The process of isolating small units of the video (segments) is also called segmentation.

This process achieves a partition of the entire video stream into collections of frames whose

characteristics are common. The criterion for automated segmentation is usually consis-

tency in compressed-domain data size. Unfortunately, this does not guarantee a perfect

mapping of frame collections to video information, nor does it guarantee the finest grain of

decomposition, nor overlapping sets as is associated with stratification [20].

The next step in the process of video database construction is identification of the contents

of the video or information extraction from the raw video data. Even if the logical partition

of a video stream can help in dealing with raw video data, it is still very difficult to extract

information from the raw data on-the-fly. All approaches reviewed from recent literature

support the idea that in order to achieve fast data retrieval through queries, video information

must be extracted from the raw video data and then stored in a different, more readily usable

format which constitutes the input for the query engines. Information can be extracted

automatically or manually. The new format must contain references to points in the physical

video data so that a particular video segment (e.g., a news item, a movie), or a part of it,

can be easily retrieved from the video database.
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Of course, a suitable model must exist to bin the extracted information or to otherwise

represent it in a manner that will lead to fast and efficient retrieval. Subsequently, the video

information can be stored in this representation in the act of video database population.

2.1 Video Segmentation

Before starting the annotation process, raw data are partitioned into elemental units called

shots. These shots are essentially sequences of contiguous frames formed by a continuous

recording process. However, because this definition yields some difficulties for edited material

(shot boundaries are vague) and surveillance footage (shots correspond to interesting events),

it can be modified to describe a contiguous sequence of frames whose content is common.

Starting from this segmentation, shots can be used to build up a logical units called scenes,

which are collections of contiguous shots (Fig. 1), and sequences, which are groups of scenes.

Cut Cut Cut Cut

Shot Shot Shot

Scene

Figure 1: Segmentation of a Video Stream.

Shot detection within the raw data can be performed automatically using video segmen-

tation techniques (e.g., [2, 9, 14, 15, 16, 24]). As a shot consists of one or more frames

recorded contiguously and representing a continuous action in time and space [6], it can

be completely defined by the timing of its beginning and ending points. This reduces the

partitioning task to detecting shot boundaries (cuts) and identifying them by start and stop

frame numbers. A variety of segmentation techniques can achieve this goal.

2.2 Information Extraction

The operation of a video database implies the management of a large quantity of raw video

data. The presence of this raw data does not significantly assist in indexing and search.

In contrast, video information assists this process. Data that characterize the informa-
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tion contained in video data can be called metadata [5, 8, 11, 12]. Although any suitable

representation can be used to represent metadata, text is commonly used. In the Vane

implementation we make use of SGML markup to represent video metadata.

The problem becomes one of identifying information contained in the video data and asso-

ciating them with tokens (metadata). Not surprisingly, humans are quite good at extracting

information from video data, whereas it is difficult to get the same performance from an au-

tomaton. In the annotation process, a viewer takes notes, albeit biased, of the content of the

video stream. During this process, the annotator can be assisted by a computer to provide a

more regular representation to capture domain-specific information. For example, a football

announcer might use a football-specific metadata schema to capture information about goals

scored. In this role, the computer, and the annotation process, provides a consistent and

repeatable process for collecting metadata for the application domain.

As metadata are also intended to be applied to query formulation as well as to information

capture, they should facilitate indexing and searching techniques on the video content. That

is, the metadata component of the video database system can be treated as a conventional

text (token)-based database system. This in turn will provide random and direct access to

the raw video content. Thus it is possible to search the annotation/metadata as well as

locate specific video data elements.

Three types of indexing identified by Rowe [19] are bibliographic, structural, and content-

based. The first one, which reflects the conventional method to catalog movies and papers,

covers the annotation of objective fields such as title, keywords, and author. Structural

indexing, in contrast, is based on a logical segmentation of the video data. For each of

these three elements, a data model identifies a unique set of attributes whose values must be

annotated according to the elemental video content. Thanks to a hierarchical organization,

structural indexing is useful for the visualization of essential information and for fast searches.

Content-based indexing is used when the annotation must be focused on objects that appear

in the video, irregardless if they are people or things. Supporting one or more of these

indexing schemes means building different structures for metadata, and leads to a different

implementation of the annotation process.

At the end of the annotation process, raw video data should be indexed to support

retrieval by the multimedia system/application for which they are intended. Requested

information can be identified within the metadata which will also provide references and

links to the archive where the video data are stored.
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2.3 Related Work

We believe that with current technologies video information must be converted to metadata

to support effective database queries. Different approaches can be found in the literature for

this process. The following is a summary of are related techniques.

Tonomura et al. [22] propose Structured video computing. Here the video stream is first

analyzed and then automatically decomposed into shots. Each shot is indexed using features

called video indices which are extracted from the video data. These indices include attributes

such as camera information and representative colors. Subsequently, two different structures

are built: a link structure that maintains relations between the shots and a content structure

consisting of the textual descriptions related to the corresponding components of the video

data.

Smith and Davenport [6, 21] propose partitioning video information into overlapping

segments rather than disjoint shots. This technique facilitates multiple interpretation of

segment content due to the overlap. The segments are called strata. With this scheme

the concept of an object become more significant, as the objects, represented as strata, are

independent of a strict hierarchical organization offered by a simple shot decomposition.

Tools have also been developed that consider image texture in the annotation and feature

extraction process. Most rely on image processing and pattern recognition techniques. One

example is vision texture [18] which extends the text-based concepts of sorting and similarity

of alphanumeric data to the domain of images, video, and audio. With this scheme a user

labels a part of an image, or of a video, and a texture model is used to propagate the label

to other “visually similar” regions.

Metadata are commonly expressed using text-based tokens because of their ease of ma-

nipulation. An unusual approach is proposed by Davis [7] using icons. This approach, called

media streams uses system-provided animated icons to describe elemental actions. Here the

annotation step is performed by matching shot contents with one of the icons. Composition

of icons can also achieve complex representations of shots.

Carreira et al. [4] developed a system to organize video for stored video delivery ap-

plications. The system, called the Video Broadcast Authoring Tool (VBAT) uses a simple

hierarchical organization and graphic user interface that facilitates the collection of meta-

data. A post-processing step allows the VBAT to generate a video “table of contents” in

HTML for subsequent viewing and video launch from a Web browser. The VBAT does not
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make use of content-based indexing techniques.

3 Related Technologies

A number of related technologies are used in the construction of our annotation engine. In

this section we introduce these technologies as essential for understanding how the Vane

tool is constructed. These related technologies are the SGML standard used in metadata

collection, Tcl/Tk used in interface design, and the MPEG video compression standard.

3.1 SGML

In the early 1980s, the International Standards Organization (ISO) proposed the Standard

Generalized Markup Language, (SGML–ISO 8879), as a means for managing and organizing

information. It was designed to increase the portability documents among computers and

text-processing systems.

One of the tenets of SGML is the separation of document content from its rendering. This

division is achieved with text markup: a series of instructions, mixed and embedded in the

text of the document to provide the system with necessary processing rules for interpretation

during presentation. Procedural markup is used in most electronic publishing systems, giving

a typesetter the necessary directions to fit document text on the rendered page. SGML

makes use of generic markup, also known as descriptive markup, rather than focusing on

how the text should appear on the page. Generic markup defines the purpose of the text

in a document. Data are broken into elements, that represent object semantics within the

overall system. Elements are organized in a strict logical structure defining a hierarchical

model for the document. To understand how SGML works, the relationship between the

content and the structure of a document is viewed as two layers:

• Structure: The DTD, or Document Type Definition, establishes a document struc-

ture. It provides a framework for the types of elements that constitute a document. It

also defines the hierarchy of relationships within the elements and sets the context rules

that must be followed to ensure a consistent and logical structure in the documents.

• Content: Tagging is used to isolate the content within the document: by using start

and end tags, logical elements can be delineated. With SGML, it is possible to associate
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attributes of arbitrary types to any element: user-defined or enumeration, numbers and

strings. Elements can also be nested within other elements to define the organization

of the document. As tags should strictly respect the set of context rules defined in the

DTD, SGML parsers are required to ensure consistency and correctness of a document

with respect to its DTD.

In summary, SGML enables the efficient storage and reuse of information, information

sharing amongst users and applications, and information maintenance in storage. We apply

SGML as a format to capture and characterize video information as metadata in the Vane

tool.

3.2 Tcl/Tk

Tcl/Tk is a language developed by Ousterhout [17, 23] for rapid construction of user in-

terfaces. It is comprised of the Tcl (Tool Command Language), a string-based command

language and interpreter for the language, and the Tk (Tool Kit) which associates the X

windows toolkit to Tcl. The latter defines Tcl commands that support the creation and

manipulation of user interface widgets, extending the core of Tcl itself.

Tcl and Tk together also provide all functionalities of shell programs plus the ability

to create graphical user interfaces (GUIs). They provide a high-level interface to a GUI

toolkit, giving the possibility of implementing new interface design in a short time and

hiding all the details faced by languages as C. As it is an interpreted language it does not

need compilation, allowing programs to be tested and debugged quickly. For performance

enhancement, libraries supporting new functions can be developed in C and pre-compiled

for use with the developed application. In addition, there now exist Tcl/Tk interpreters that

function within the context of Web browser software, making it possible to execute Tcl/Tk

scripts in a platform-independent manner.

3.3 MPEG

A set of compression techniques developed by the Moving Pictures Experts Group (MPEG)

have become a standard for the delivery of digital video for applications such as Video-on-

Demand. At the moment they encompass: MPEG-1 (ISO/IEC 11172: Coding of moving

pictures and associated audio - for digital storage media at up to about 1.5 Mb/s), MPEG-2
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(ISO/IEC 13818) and MPEG-4 (an evolving standard). Their video and audio specifications

give the semantics and syntax of encoded video and audio streams. The system specifications

address the combination of audio and video into a single stream and their synchronization.

The video coding algorithms used are lossy compression schemes. The basic MPEG en-

coding scheme uses the prediction of motion from picture to picture, the use of Discrete

Cosine Transforms, quantization, and Huffman coding to organize the redundancy in spatial

directions. Pictures are encoded to yield three different frame types: I-frames which are

encoded independently from other pictures, thus offering moderate compression but provid-

ing random access points into the compressed video data; P-frames whose encoding is based

on the motion-compensated prediction from a past I or P-frame; and B-frames which are

encoded by using of both past and future picture compensation [3, 13].

Each of these technologies is applied in the Vane tool, which we describe next.

4 The Video Annotation Engine (Vane)

In Section 2 we described the fundamental role of annotation in the process of organizing and

building a video databases. We also highlighted the difficulties that can be encountered due

to encompassing multiple application or video content domains. One of the key objectives

for the Vane tool is to accommodate different application domains from a common basis, i.e.,

via extensibility and customization rather than by a comprehensive but inflexible solution.

To this end, we have designed the Vane tool to be a domain-independent application

with the ability to support different domain-specific data models without rewriting the tool

itself. This has been accomplished through the use of SGML and an exploitation of its

unique characteristic of separating the context rules from the information content. This will

be illustrated in Section 4.1.

In the design of Vane we incorporated a high-level semi-automatic annotation process

which is intended to extract the content and semantic value of a raw video stream. Fully-

automatic techniques, which are still in their early stage of experimentation and which

are implemented with image pattern/image recognition algorithms were not considered re-

liable enough to be used in a practical manner for large video data sets (e.g., hundreds of

hours/gigabytes of video data). Current technology in this domain facilitates the retrieval

of pictures from image archives using color and texture analysis. Efforts also seek to identify

objects and track their movements within a video stream. However, these are not appropri-
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Figure 2: Data Flow in the Video Annotation Process.

ate for our objectives. None are able to make the computer sensitive to the semantic value of

a video. More sophisticated techniques are required to recognize the information expressed

within raw video data. As illustrated in Fig. 3, we integrated a segmentation tool into Vane

so that shot detection is automatically performed when the annotation of new video data is

initiated.

In our implementation, the lack of knowledge by the system is compensated by the

presence of a human (the annotator), whose role is fundamental in the collection of video

information. The Vane tool, however, has been developed to support and assist the annotator

as much as possible so that annotation is expedited and leads to canonical representation

of information as metadata within the application domain. It is therefore semi-automated.

Finally, the Vane tool supports the playback of digital video in MPEG format with the

conventional video shuttling functions.

The design of the Vane tool is decomposed into two parts dealing with metadata issues

and user interface issues. The metadata issues include the definition of the format used for

metadata, the specifications for its syntax and the tools necessary to deal with them. The

user interface issues focus on assisting the annotator in the collection of video information

as metadata. We describe these next.

4.1 Video Data Modeling

Before constructing the annotation tool, a suitable video data model was required. Our ob-

jective was to provide a flexible metadatabase able to be accessed by search engine and able

to retrieve all interesting information sought (e.g., to support operations like information

personalization). During the annotation process relevant content of the video must be ex-

tracted and annotated without loss of information. The optimization of the search engine to
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browse the whole metadatabase, or only a subset of it, leads to a system which can perform

with different granularities and be able to satisfy different application needs. We model video

information such that we can maintain both structural and content information. Such an

approach must comprehend all types of indexes outlined by Rowe [19] (i.e., bibliographical,

structural and content based) and indexes must be strictly associated to the objects they are

expected to describe. Therefore, we define the metadata as structural metadata and content

metadata as explained below:

Structural Metadata: Video structure includes media-specific attributes such as record-

ing rate, compression format, and resolution; and cinematographic structure such as frames,

shots, sequences, and the spatio-temporal characterization of represented objects. These are

further decomposed as:

• Media-specific metadata: Describing implementation-specific information (e.g., video

compression format, playout rate, resolution).

• Cinematographic structure metadata: Describing creation-specific information

(e.g., title, date recorded, video format, camera motion, lighting conditions, weather;

shots, scenes, sequences; object spatio-temporal information).

Structural annotations organize linear video sequences as a hierarchy of frames, shots,

and scenes [6]. This decomposition constitutes the simplest video structural model.

Content Metadata: Video content metadata are concerned with objects and meaning in

the video stream that appear within or across structural elements. Content metadata are

further decomposed as:

• Tangible objects: Describing objects that appear as physical entities in the media

stream (e.g., a dog, a disc).

• Conceptual entities: Describing events, actions, abstract objects, context, and con-

cepts appearing in or resulting from the media stream (e.g., running, catching, tired,

master).

Therefore, our annotation tool supports two types of objects: structural objects and

content objects. The structural objects represent shots, scenes, sequences, format, etc. and
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the content objects represent the unstructured information. However, the content objects

can be restricted by the structural boundaries. We include the concept of timeline so that

content objects can represent strata as defined earlier [20] (Fig. 6).

In the requirements for the video data model we include object-oriented support, porta-

bility, embedded support for links and cross-references, and support for database query.

Given these requirements, the choice of SGML as the means to express and maintain

metadata is natural. It is a text-based representation that is both lightweight and robust.

Dealing with text is more straightforward and computationally less expensive than working

directly with the time-dependent video or audio data, and intuitive concepts such as “equal

to” and “similar to” are easily implementable. Moreover, SGML context rules, even if very

strict, are highly customizable through the settings within a DTD. Furthermore, through its

ELEMENT structure, object-oriented representation of concepts can be pursued. The advan-

tage of operating with objects is that the metadata text file annotating the movie content

will be easier to access and browse during database searches and data export. The support

for links and cross-references is embedded in the SGML syntax, thanks to the ID attribute

and the reference element REF, that can be associated with any element. All references are

resolved during the post-processing achieved during data export when populating a database

tailored to the application domain. The hypermedia link mechanism is useful to provide the

user with other material related to the content of the video stream.

In SGML, the content of a document is separated from its structural definition. For this

reason it is also possible to build a system that facilitates a dynamic document definition

according to the annotator’s needs and to the domain of the content to be annotated (we

consider video content, which is unusual for SGML). Thus, it is possible, and we have

achieved, a dynamic GUI based on a dynamic DTD. Each DTD for an application domain

will have a common basis. Subsequently, tailored DTDs have augmentations reflecting the

domain dependencies. In this manner we reduce the dependency of the system on the

application domain allowing modifications to have little or no impact on the data model,

database, or annotation engine.

The ability of SGML to nest several elements inside one another allows us to easily define

a structured view of the video content. For example, a shot description can be nested inside

a scene description.

It is clear that in this scenario where several types of video can be annotated the Vane

tool will have to deal with different documents constituting the annotations. Each will refer
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Figure 3: Data Flow in the Vane Tool.

to its own DTD. To ensure the consistency of SGML documents with the context rules

specified by their own DTDs, we applied an SGML parser in the input stage of the tool.

Among its functions is the notification of mismatches between the opened annotations and

the corresponding DTD.

4.1.1 Model Design

Given SGML as the language to represent video content, the video content model itself

must be designed following the specifications given above. The analysis of the video content

follows a structural decomposition. The object representing the whole video stream can be

considered the largest container in which all objects are encompassed. Its subsequent logical

decomposition is performed using the basic structural decomposition as sequences, scenes,

and shots. The choice of three levels of video content results in the most straightforward

generic decomposition. Additional levels, in our experience, yield excessive fragmentation

and do not provide significant additional information. Subsequent query operations on a

finer-grain decomposition would operate at a level which is not obviously useful. Moreover,

at a finer grain, there can be an excessive burden on the metadata management system with

the number of components represented. All three structural layers need not be annotated.

For example, it is reasonable to only annotate shots and scenes.

The step following the identification of the three levels of the video information model

is the organization of identified objects. Our approach proposes a hierarchical structure

in which the shots, commonly representing the smallest unit of information comprise the
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leaves while scenes and sequences form intermediate nodes of the hierarchy. Therefore,

the decomposition of the content of the video reflects the logical organization of the objects.

Scenes are groups of shots whose content is considered common and, consequently, sequences

are collection of scenes (Fig. 1).

The data model also includes support for objects that encompass unstructured content

data. This is achieved by annotating start and stop frames in which an object appears.

A content object can belong to audio, video, graphics types or any composition thereof.

For example, in the newscast domain an anchor person might reference a celebrity without

showing the individual. We can annotate the individual associated with the audio medium.

If desired all the annotations belonging to a particular object can be grouped together to

form a stratum. Each object can be conceptually associated with any shot, scene, or segment

by analyzing the time-line boundaries.

Consider the domain of educational video for this scheme. As instructional video typically

follow an hierarchical organization (e.g., a lesson plan), they are organized in a hierarchical

structure of topics and sub-topics and map well to the proposed model. A possible logi-

cal decomposition of educational video content can follow the following scheme: sequences

represent daily class recordings, scenes represent topics within a class or lecture, and shots

represent individual topics of a lesson. This logical decomposition simplifies the work of

the annotation in its regular structure and facilitates the task of creating the query engine

supporting the end retrieval application.

The basic purpose of Vane in this context is to provide infrastructure for collecting,

annotating, and identifying structure and content in video data that will facilitate authoring

and indexing at a later stage.

4.1.2 DTD Design and Syntax

We applied these aforementioned concepts in the creation of a baseline DTD with the fol-

lowing syntax:
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<!ELEMENT FULLDOC - - (ABSTRACT? , CATEGORY? , REF* , SEQUENCE*, OBJECT*)>

<!ELEMENT SEQUENCE - - (ABSTRACT? , REF* , SCENE*)>

<!ELEMENT SCENE - - (ABSTRACT? , REF* , SHOT*)>

<!ELEMENT SHOT - - (ABSTRACT? , REF* , TRANSCR?)>

<!ELEMENT OBJECT - - (REF* , OBJECT*)>

<!ELEMENT ABSTRACT - - (#PCDATA & REF*)*>

<!ELEMENT TRANSCR - - (#PCDATA)>

<!ELEMENT REF - O EMPTY>

<!ELEMENT CATEGORY - - (EDU | NEWS | MOVIE | DOC | SPORT)>

The previous lines constitute the basis of the definition of an SGML document. Each

object and its role is defined as follows. An object is identified by an ELEMENT definition

which is delimited by angle brackets. The element FULLDOC, which represents the whole

video data stream, is defined in the first line. SEQUENCE, SCENE and SHOT assume the obvious

interpretation. All elements except REF have both start and stop tags. REF, instead, has only

the start tag. The content model for the element is enclosed in parentheses. For each of the

possible contained elements, an occurrence indicator is also expressed. FULLDOC can have

at most one or possibly no ABSTRACT - ? occurrence indicator. As expected, a FULLDOC can

also have one or more SEQUENCEs as represented by “*”. To support stratification, content

OBJECTSs are considered part of FULLDOCs and each OBJECT can be composed of sub-objects.

In the same manner, we specify that a SCENE can have one or more nested SHOT elements.

With this set of rules expressed above, we ensure that if, by error, a shot contains a scene

then an error message results when the SGML document is checked by the SGML parser.

Other definitions of the content model include the reserved word #PCDATA, which means that

the element being defined may contain any valid character data. We choose this option for

the elements ABSTRACT and TRANSCR which are to be expressed by plain text. The CATEGORY

element, in contrast, can assume only one of the values expressed in the defined list. The

same syntax is used to define the possible sub-categories.

Once the object definition, or element in the SGML terminology, is completed a set of

attributes linked to each of these objects must be defined. The objects ABSTRACT, CATEGORY,

REF, TRANSCR, even if defined as SGML elements, are meant to be attributes of the elements

which contain them. They are not meant to be instantiated as stand-alone elements but

are to be linked to any of the three elements that comprise the hierarchical structure. For

the four main structural elements, FULLDOC, SEQUENCE, SCENE, and SHOT, we define a list of

pre-defined attributes following the classification scheme of Section 4.1. For example, startf

and stopf are attributes of the cinematographic structure indicating starting and ending

frame numbers for a particular sequence. Combined with the frame rate attribute (frate)
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of the FULLDOC, they are used to recover the time reference from the raw video data file.

The file attribute keeps the information describing where the raw video data are stored.

The current implementation assumes that the file is stored locally but can be extended to

support network scenarios. Finally, in the SHOT element, we introduce the transcr attribute

to report the dialogue (e.g., closed captioning) present in the corresponding raw video data.

Another important attribute common to each element is the ID. This attribute constitutes

the element identification and provides a mechanism for expressing cross-references. Its value

is computed with a specific automatic coding. For example, the ID of the fourth shot of the

second scene belonging to the first sequence will be: DOC1.SEQ1.SEC2.SHT4. Therefore, the

shot position inside the hierarchy is comprehensible from the ID itself. If, instead, a reference

to that shot is required, we use the REF element.

An example of a DTD used for news video annotation is shown in Appendix A. News

consists of sub-categories (e.g., politics, sport, foreign, local) that are further subdivided.

Upon loading a new video data file to be annotated, shots and shot breaks are located

automatically by a cut detection algorithm. Because news delivery follows a single timeline,

all shots belonging to a news item are contiguous. Therefore, we can associate a news

item with the “scene” component. References to similar news items in other documents

are stored as REFs. Additional content information about the news video is annotated as

OBJECTs, whose attributes include name, type, metatype, time and date of creation, source

from where obtained, and the popularity of a particular object (popularity is associated with

news items for use in personalization).

4.1.3 Dynamic Interface and Metadata Definition

In the previous section we presented the baseline DTD used by Vane. This DTD is extended

for different application domains. As long as the syntax is correct, Vane is designed to adapt

to different DTDs without reconstruction or recompilation. The following are a few examples

of modifications to the DTD that the Vane tool will recognize:

• Category Definition. As the CATEGORY attribute can assume only one value among

a discrete set of possibilities (an enumeration), it was designed to keep the list of

possibilities open to further additions. The same operation can be performed on each

sub-category expansion (pull-down). CATEGORY, SUBCATEGORY and any other elements

for which a set of possible values has been predefined, are shown by the interface as

pop-up menus.
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• Attribute Order. The order of the attributes expressed in the attribute list of each

element reflects the order of the entries presented by the interface. For a better cus-

tomization of the annotation tool, the order can be changed and replaced with the one

that best suits the annotator’s needs.

• Attribute Definition. Any other attribute considered relevant for the description of

the video content in the domain under consideration, can be added to the main four

elements: FULLDOC, SEQUENCE, SCENE and SHOT. The interface of the tool will adapt

itself accordingly to what is specified in the resultant DTD.

4.1.4 The Role of the Annotator

The delineation of shots within an entire video data stream (e.g., a movie) is performed

automatically by the segmentation algorithm provided with the tool. Here we assume that

each camera break corresponds to change in the content of the video. (If not, the annotator

can make corrections.) At this point the human annotator is required in the process and the

delineated shots can be grouped on a logical basis. For example, in the educational domain

the shots related to a lesson topic can be aggregated into the same “scene.” Similarly we

group related scenes into sequences. This activity is performed by the human expert with

steering by the Vane tool. Forming such aggregates is possible when the related data are

present as a contiguous set of frames. Subsequent reorganization (repurposing) of shots and

scenes from the complete of pre-annotated content can be achieved at a later authoring

stage. In this educational domain, shots that have the same title (e.g., in a lesson) can be

automatically grouped together into a scene. The annotator also has opportunity to use the

OBJECT representation of the content to encompass unstructured annotation data beyond

enumerated fields.

The human annotator is clearly important in our annotation system. This leads to an

apparent drawback of the subjective nature of human observation. To relieve the system from

the dependence on this subjective factor, multiple annotations of the same video data can

be obtained by different annotators. Afterwards, they can either be combined into a single

annotated document or stored in the metadatabase and processed during the database search,

merging the results obtained. Therefore, multiple interpretation can lead to additional detail

available to support information retrieval.

Note however, if the validity of the information collected by the annotator is in question,

it only bears on the retrieval process. That is, it in no way jeopardizes the validity of the
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raw video data. Once accessed, the raw data can be interpreted by the user.

4.2 The Vane Interface

The Vane user interface is the key component which links the video archive and the meta-

database with the human annotator. It must provide meaningful and complete dialog boxes

to the annotator to allow the insertion of relevant information. Moreover, it must be con-

sistent with the metadata format and the document definition specified for the current

annotation. The same is true for any query or browsing interface provided to the end-user,

but with perhaps a more limited video of the database contents. Among the specifications

of the video data model, we require the capability of dynamic definition and extension of

the document. If new indices and new fields are entered in the document definition, the

interface must be able to “build itself” accordingly, so that the annotator is steered to input

information considered important to the application domain (Fig. 4). However, the interface

presented is also consistent across domains. This characteristic increases the usability of the

tool as a front-end to a multimedia database system and potentially decreases the learning

time for an annotator.

Interface

Metadatabase

Interface
Builder

DTD

Video Archive

Figure 4: Role of the Interface of the Vane Tool.

The interface handles both raw video to be annotated and SGML documents already

stored in the metadatabase. Outputs, on the other hand, are SGML documents, as the tool

leaves the video archive untouched and does not perform any physical segmentation on the

raw video data (video files are maintained as single entities). In the current implementation

of Vane the video formats accepted as input to the tool are MPEG-1 video and MPEG-1
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system streams. However, there are no specific dependencies on the MPEG-1 format. To be

able to access video data at random points, we maintain offsets to groups of pictures (GOPs)

in an associated file. Whenever an annotator wants to play a video segment, the start and

end frames and the GOP size of the segment are passed to the video delivery engine to

initiate playout.

We designed the graphical user interface taking in consideration all the aspects investi-

gated in the previous section. We decided to depict the aforementioned hierarchical structure

by three colored horizontal bars in which each represents a level in the hierarchy (Fig. 5). For

complete correspondence between the levels and for “at a glance” visualization of relations

between the levels, each is represented with the same time scale. The longer the duration

of a video, the longer the bars will be. This provides the ability to expand and shrink the

time scale to fit the entire time-line onto the working area. The units on the time axes can

either be number of frames, or time in hours, minutes, and seconds. A fourth bar has also

been designed to represent the entire video stream is associated with the “full document.”

Its purpose is to summarize the main metadata for the current stream annotation and to

provide an overview of the current tags.

Sequences

Entire Video

Scenes

Shots

Figure 5: Design of the Interface.

A bottom-up approach is typically applied when a video stream is annotated from scratch.

The annotation begins following automatic segmentation. As annotation proceeds, shots are

aggregated to scenes and ultimately sequences. Object annotation is graphically represented

by additional bars in the sequence, scene, and shot hierarchy.

The shot boundary segmentation algorithm we developed for Vane is based on the anal-

ysis of the sizes of the frames. As I, B and P-frames use different compression schemes, they

cannot be compared. Therefore, only I-frames are compared by the algorithm. The conse-

quence is an error as large as one half of a GOP size which is tolerable for most information

retrieval applications.
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Graphically, segmentation results in a division of the shot bar. This concept is applied

to the other bars as well, and the set of frames between two contiguous breaks is called a

segment. An intuitive method for visualizing these segments was designed so that the start

and stop points (frames) can be seen very easily. On each bar, we implemented colored

arrows to identify breaks. On the shot bar arrows show the starting and ending frame of

each shot; on the scene bar arrows indicate where shots are grouped together into scenes; on

the sequence bar arrows show the aggregation of scenes. The top bar acts as a time ruler

where references for each cuts are reported to have a complete view over the current logical

decomposition (Fig. 5). We also found it useful to offer the ability to visualize any element

attribute on the bars based on user preference. For example the “category” of the video can

be seen on the top bar, the name of the sequences on the second, the ID on the third and

the keywords on the fourth.

Figure 6: Screen-shot of the Vane Tool.

Separate dialog boxes, dynamically built using the scheme illustrated in Fig. 4, have been

designed to let the annotator fill in all the fields defined in the current DTD. According to the

domain, the different DTD will indicate a different interface for the collection of metadata.

In addition, the top level, representing the video itself, can be annotated. The type of
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information that can be associated with it are bibliographical indices. All media-specific

data on the video such as title and video category, or technical information as compression

format or frame rate are required at this level.

The interface facilitates splitting shots to create multiple shots from an existing one. This

action, which is often used during annotation, is called break segment. The inverse operation,

joining two contiguous elements (“join segments”) is also supported. Arrows, which represent

breaks, are draggable in different position along the bars providing an simple method to

change the start and stop frame of the elements (e.g., to tweak automatic segmentation

results).

During the annotation, a simple means to create hypermedia links between different

elements is provided. Link references can be placed inside transcripts and abstracts using

SGML. These are facilitated by interface tools that do not require the annotator to memorize

SGML commands and syntax. A similar reference scheme is used for objects.

4.3 Vane Implementation

The Vane code is written using the Tcl/Tk scripting language described earlier. This choice

was due to the large number of platforms which support this development environment. We

used an SGI Indy running IRIX 5.3 for development and video playback. This platform

allowed us to capture video in other formats as well, via built-in video capture hardware.

Fig. 6 shows a screen shot of the interface in the main window after an annotation file,

previously constructed, has been opened. In this particular case, the associated DTD applies

to the educational domain.

Color coding is used again to help the user in identification of the relationships among

the elements. Thus, the color of a bar is the same used for the arrow in the lower level

and for the vertical mark on the first bar, the one related to the entire video. In this way,

yellow vertical marks on the first bar indicate the presence of a shot (yellow bar) in that

position; red marks indicate scenes while blue stands for sequences. An overview of the

entire annotation can be obtained by the analysis of the first bar. A time ruler is drawn here

with two different scales (frames per second and hours, minutes and seconds). Note that the

object view is separate from the hierarchy. The content objects are represented along the

timeline in the color green.

To change the structure of the tree representing the annotation, new arrows, correspond-
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Figure 7: The Annotation Window.

ing to breaks, can be inserted and existing arrows can be moved or deleted. These actions

can be performed using the toolbar on the left and acting subsequently on the bars. For

example, after the “joining operator” has been picked up, the cursor changes and the user

has only to click on the arrow that must be erased. The annotation data present on the

left segment will then be merged with the one belonging to the next element. The result

constitutes the data of the joined segment.

Zoom-in and zoom-out options allow different depth of magnification for the views. When

the zoom does not allow a global view, the working area can be shifted via a horizontal scroll

bar. To change the start or the stop frame of an element (sequence, scene or shot), the

corresponding arrow can be moved simply selecting and dragging it along the bar. When

this action is performed, a vertical line appears and follows the movements of the arrow

so that the precise position of the cursor can be read on the ruler. At the bottom of

the window, we also added a status bar which keeps track of the mouse position. This bar

provides information such as the frame number, the field name and the identification number

of the currently pointed element.

Each segment identified in the annotation can be selected by a mouse click. Subsequently

it appears as a dedicated dialog box. Fig. 7 shows the dialog box for the annotation of the

whole video. In this example the fields that can be edited are related to the aforementioned

educational DTD. A different DTD would result in a different automatic construction of the

windows. The “Abstract” button will pop-up an additional window where the abstract of

the segment can be entered. For the shot element we have also included a transcript window.
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Objects belonging to unstructured data or defined as content objects are annotated by

identifying the segments to which they belong. Each object in the interface is represented by

a line and by clicking on a line a dedicated dialog box appears in which any data (description,

type, origin, medium) concerning an object can be annotated.

5 Mapping of SGML Content to a Database Schema

After video data have been collected and annotated, the resultant annotations are stored

as metadata using SGML. This is a convenient format for encapsulating collected metadata

and supporting reuse. However, it is a bulky format that is not tailored to application needs.

For example, one might seek to create search indices on the objects represented in a video

database as well as keywords found in the audio transcripts. Such a scenario is appropriate

for accessing on-line news video. In this case, an appropriate database schema can be defined

that is far more efficient in space and access time than the raw SGML format. An additional

feature of this approach is the ability to support changes in the end-application requirements.

For example, because the the raw content and format is comprehesive, it can be translated

to different output formats such as HTML 2 or HTML 3 by changes in the translator, not

the content.

Based on an end-application requirement, the translation process can be defined. This

will include mapping of tags to fields in a database schema, populating the data fields, and

resolving hypertext references. In the following we describe one translation process that has

been constructed to support SQL queries. The translator is called sgml2sql.

Sgml2sql is a conversion tool written to parse the SGML output of the Vane tool and

to populate an SQL database. The sgml2sql implementation is modular in nature, built

with the premise of supporting enhancements at the production side of the conversion. For

example, a change of the database manager affects only the module which interfaces with

the database.

Sgml2sql is written in Perl 5 and uses the DBD/DBI (database interface) to commu-

nicate with the database. Currently we are using the mSQL-DBD package and the mini SQL

database. However, the choice of DBMS is not significant for our functionality. Sgml2sql

first runs an SGML parser on the SGML file under conversion. The parser checks the SGML

file and its associated DTD file for any inconsistencies. If no errors are found at this stage

then the tool reads the DTD-to-database-map file, consisting of a mapping between various
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Figure 8: Sgml2sql Conversion Tool Architecture

table attributes to the fields in the database. An example of the mapping between an DTD

and database schema in Fig. 9 for an instructional database application is shown in the

Table 1.

As seem in the table, metadata about the “fulldoc” (complete video document) is mapped

to “course,” scenes are mapped to “topics,” and objects are mapped to “object” in the

database schema. Some of the attributes of the video document such as format, medium,

frame rate, video file name, GOP metadata file name are mapped to the physical layer schema

(Fig. 10) for providing information to the video playout engine on how the data should be

handled. We populate the “course-topic” field by assuming that all the topics in the video

document belong to same course. This assumption is based on the fact that all video data

which we are annotating are already authored, but if a topic from any other course is to be

added or existing topic is to be deleted then this can be achieved in a separate authoring

process. The “scene” start and stop frames are utilized to populate the “topic-object” table

in the database. By comparing the start and stop frame boundaries of an object and the

topics we can find which object belongs to what topic. In the future, if any changes to the

database schema are made, only the map file needs to be changed. After loading in the

relevant contents from the SGML annotation file, the database interface module writes the

appropriate fields to the database.

6 Summary

The goal of this work is to facilitate the construction of large and useful video databases

supporting fast access to raw video content. To this end, the Vane annotation tool was
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Table 1: Map Between SGML and DB

SGML Attribute DB field

fulldoc.id course.course id

fulldoc.courseid course.title id

fulldoc.name course.title

fulldoc.tutor course.instructor

fulldoc.gopsize save for physical map.gop size

fulldoc.frate save for physical map.frame rate

fulldoc.mtype save for physical map.mtype

fulldoc.session course.session

fulldoc.mformat save for physical map.mformat

fulldoc.gopfile save for physical map.mfilename

fulldoc.year course.year

(fulldoc).category course.subcategory

(fulldoc).sequence IGNORE

(fulldoc).object new object table entry

sequence.(except SCENE) IGNORE

scene new topic entry, new course topic entry

scene.id topic.topic id

scene.name topic.title

scene.keyword topic.keywords

scene.imgfile topic.image file

scene.frame topic.frame num

scene.time topic.time

scene.date topic.date

scene.populaty topic.popularity

scene.startf SAVE FOR POST PROCESS

scene.stopf SAVE FOR POST PROCESS

(scene).ref new object and topic object entry

(scene).abstract topic.abstract

(scene).transcr uniquely-named file

(scene).shot IGNORE

shot.* IGNORE

object new object

object.id object.object id

object.name object.name

object.type object.type

object.metatype object.meta type

object.time object.time

object.date object.date

object.medium object.medium

object.origin object.origin

object.populaty object.popularity

object.file new physical map

object.startf physical map.start frm

object.stopf physical map.stop frm
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Figure 9: Instructional Domain Application-Specific Schema
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Figure 10: Physical Layer Schema
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designed and constructed to provide a domain independent solution to metadata collection

using SGML as a basis for the metadata model. In operation the tool interprets input DTDs

to generate a view on a content model for a video domain and presents an interface tailored

to that domain. In this manner, a single instance of the tool is appropriate for databases of

news, educational materials, entertainment, or other video.

Vane is currently in use in the capture and annotation of a data set of over 500 hours of

instructional video existing on VHS tapes at Boston University.
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A News Video DTD

<!--Document Type Definition for Generalized WYSIWYG Example (FULLDOC)-->

<!ELEMENT FULLDOC -- (ABSTRACT?,CATEGORY?,REF*,SEQUENCE*,OBJECT*)>

<!ELEMENT SEQUENCE -- (ABSTRACT?,REF*,SCENE*)>

<!ELEMENT SCENE -- (ABSTRACT?,REF*,SHOT*,TRANSCR?)>

<!ELEMENT SHOT -- (ABSTRACT?,REF*,TRANSCR?)>

<!ELEMENT OBJECT -- (REF*,OBJECT*)>

<!ELEMENT ABSTRACT -- (#PCDATA & REF*)*>

<!ELEMENT TRANSCR -- (#PCDATA)>

<!ELEMENT REF -O EMPTY>

<!ELEMENT CATEGORY -- (NEWS)>

<!ELEMENT SCCATOGR -- (POLITICS | SPORT | FOREIGN | LOCAL)>

<!ELEMENT NEWS -O EMPTY>

<!ELEMENT SPORT -O EMPTY>

<!ELEMENT POLITICS -O EMPTY>

<!ELEMENT FOREIGN -O EMPTY>

<!ELEMENT LOCAL -O EMPTY>

<!ATTLIST NEWS subcat (morning | mid-day | evening) morning>

<!ATTLIST SPORT subcat (basket | soccer | football | ski | baseball) basket>

<!ATTLIST FULLDOC
id CDATA #IMPLIED

keyword CDATA #IMPLIED

anchor CDATA #CURRENT

producer CDATA #IMPLIED

location CDATA #IMPLIED

language CDATA #IMPLIED

annotat CDATA #CURRENT

country CDATA #IMPLIED

videofile CDATA #REQUIRED

creadate CDATA #IMPLIED

creatime CDATA #IMPLIED

frate (30 | 24 | 15) 30

mtype (col |BW) col

mformat (mpg | cosmo | qt | par | avi) mpg

startf NUMBER 1

stopf NUMBER #REQUIRED>
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<!ATTLIST SEQUENCE
id CDATA #IMPLIED

name CDATA #REQUIRED

keyword CDATA #CURRENT

file CDATA #CURRENT

startf NUMBER #REQUIRED

stopf NUMBER #REQUIRED>

<!ATTLIST SCENE
id CDATA #IMPLIED

name CDATA #REQUIRED

keyword CDATA #CURRENT

populaty CDATA #IMPLIED

startf NUMBER #REQUIRED

stopf NUMBER #REQUIRED>

<!ATTLIST SHOT
id CDATA #IMPLIED

name CDATA #REQUIRED

keyword CDATA #CURRENT

startf NUMBER #REQUIRED

stopf NUMBER #REQUIRED>

<!ATTLIST REF

target CDATA #IMPLIED>

<!ATTLIST OBJECT
id CDATA #REQUIRED

name CDATA #REQUIRED

type CDATA #IMPLIED

metatype CDATA #IMPLIED

time CDATA #IMPLIED

date CDATA #IMPLIED

medium CDATA #IMPLIED

origin CDATA #IMPLIED

populaty CDATA #IMPLIED

startf NUMBER #REQUIRED

stopf NUMBER #REQUIRED>
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