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Abstract

Recent developments in digital technology have enabled a class of video-

based applications that were not previously viable. However, digital video

production systems face the challenge of accessing the inherently linear and

time-dependent media of audio and video, and providing effective means

of composing them into a cohesive piece for presentation. Moreover, there

are no appropriate metrics that allow for assessment of the quality of an

automatically-composed video piece. Techniques presently available are lim-

ited in scope, and do not account for all the features of a composition. This

dissertation presents metrics that evaluate the quality of a video composi-

tion. In addition, it proposes techniques for automatic composition of video

presentations as well as improvements in access to digital video data.

Yet another challenge faced by video production systems is the customiza-

tion of the presentation to suit user profiles. For instance, certain elements

of video compositions, such as violence and indecent exposure, are undesir-

able for some audiences. Also, playout time of a composition can be longer

than specified by the user. In such cases, not only would some of the data

need to be dropped, the integrity and cohesiveness of the composition must

vii



also be maintained. This dissertation presents techniques for maintaining

cohesiveness of a composition under playout time constraints.

Using automatic composition techniques proposed in the dissertation, a

video piece is produced. The quality of a manually-produced broadcast news

video composition is evaluated using the metrics, yielding reference values of

video composition quality. The same metrics are used to evaluate the quality

of the video piece produced using automatic composition techniques. A com-

parison of the two indicates that the quality of the automatic composition

is very similar to that of the manually produced video composition; in some

cases it is superior. These results also verify the assumptions on which the

automatic composition techniques are based.

In addition to the metrics and the video composition techniques, a method-

ology to improve the recall and retrieval of a digital video production system

is proposed. Two search techniques are used: transitive search and union-

based search. The proposed methodology is implemented as part of a dig-

ital news video production system. An analysis of the performance of the

methodology shows an increase in recall by 23% when the transitive search

technique is used, and an increase of 48% when the union-based search tech-

nique is used, as compared to a keyword-based search technique.
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Chapter 1

Introduction

Several factors influence recent advances in digital video-based communi-

cation systems. These include developments in digital technology, federal

regulations, and industry-based efforts. Developments in digital technology

include higher network bandwidth, streaming-enabled data transfer proto-

cols, large-scale storage servers, digital video capturing equipment, video

compression techniques, and high-end multimedia-enabled workstations, all

of which are contributing significantly to the development of digital video-

based communication systems. In a bid to expedite the move from analog to

digital technology, the federal government, through the FCC, is also support-

ing regulation to convert television stations to digital broadcast [71]. Finally,

recent industry-based developments, such as the integration of Web-based

technology with television [26, 71], and Microsoft’s Broadcast Architecture

for Windows that claims to allow user choice of content from varied sources,

are also supporting and promoting the development of digital based commu-
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nication systems. Indeed, the combined effect of all these diverse efforts of

technology, state, and industry portends well for the imminent development

of digital video-based communication systems.

Remote Network

Remote Network

Local Network

Network Backbone

Video Data Repository 

Video Data Repository 

Video Data Repository 

End User

Digital Video
Production
System

Figure 1.1: A Video-Based Communication System

Digital video-based communication systems (Fig. 1.1) are expected to

support such video-based applications as newscasting, sportscasting, and

distance learning. Since such applications provide automatic access to lin-

ear and time-dependent video and audio media, use of digital video-based

technology can potentially open up interesting editorial opportunities both

within (e.g., a scene of a movie) and across multiple instances of the medium

(many movies). Thus, a video that has been used to create a movie or a

news story need not be confined to a single rendering; it can also be used in

multiple contexts without involving an extensive re-production process. In

other words, once an access is achieved, additional manipulation of the video

media is possible to produce a narrative, or a series of episodes collected as
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a chain in a storyline [19].

In conventional production systems, a human decides which video seg-

ments should be used and how a narrative should be assembled. The pro-

duction of a complete video piece involves three phases: pre-production,

production, and post-production. In the pre-production phase, before cre-

ating a video, an underlying concept or storyline is developed that serves

as a guide for production efforts. For example, in electronic news gathering

(radio or TV broadcast), a storyline is developed based on a current event

or other cultural, social, political, or experimental curiosity [63]. Shots that

create a beginning, middle, and end of a story are formalized conceptually.

Once these items are determined, they are scripted. Thus, a script contains

detailed instructions of how and what is to be shot and serves to minimize

effort in the shooting process. In electronic news gathering (ENG), a script

can span many news items and can consist of many pages of text.

The next phase in conventional production systems is the production

phase, which involves the shooting of raw video footage. The location is

prepared, equipment is set up, and lights are arranged. A shot is composed

while taking care of balance and symmetry. Then the actual film shooting

occurs and information about the shot is logged. The process is repeated until

all desired footage is complete, including shots recorded to provide continuity

between core pieces.

The final phase is the post-production phase, in which the raw video

is manipulated and prepared for distribution. In ENG, or documentary-

making, a post-production script is prepared that describes all the relevant

3



information. The script can be written before or during editing. This script

is read (e.g., by an anchor person) in conjunction with the edited video.

Usually the pre-recorded video shots are delivered to an editing point where

shots or frames are cut and composed for the final piece.

Of the three stages involved in conventional video production, digital-

based video communication systems can fully automate only the post-production

stage. Presently, some degree of automation in the post-production phase

is provided by a variety of personal-computer-based solutions that aid the

human operator. Segments can be easily recorded and manipulated with

special effects such as wipes, dissolves, fading in/out, distorting, and em-

bossing. Digital video editing packages such as Adobe Premier, Kohesion,

and MediaStudio provide robust tools for commercial and professional use

[86]. In addition to functions for selection, transitions, and trimming, opera-

tions including ripple and rolling edits, multiple-track selection, jog, shuttle,

and play enable large amounts of footage to be quickly edited.

However, in order to support dynamic video composition and delivery,

we require automatic selection and manipulation of video segments from an

archive, which the digital-based video technology can provide. Two types of

manipulation of video media are possible: first, we can shuffle segments in

a composition based on some user-defined criteria; and second, in addition

to shuffling segments, we can dynamically compose a segment (i.e., com-

pose various content objects to create a segment) [59]. In our work we only

consider segment manipulation to compose video and not the creation of a

segment itself.
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Before we can realize our vision of dynamic and automatic composition

of video, at least three issues need to be resolved: information requirements,

information extraction methodology, and video composition techniques. A

semi-automatic system requires information about content for editing and

composing a video piece. The system also requires techniques for composi-

tion. Therefore, identifying the information sufficient for editing and com-

position, determining how the information should be extracted, and creating

techniques for cohesive video composition are issues that need to be addressed

in order to develop a digital video production system.

A typical digital video production system (DVPS) requires a video data

model and ontology, a mechanism for information extraction, a mechanism

for interactive query, a user model, and a mechanism to compose and cus-

tomize data. (Fig. 1.2 illustrates a functional view of a DVPS). We summa-

rize these components as follows:

Data Model & Ontology: An ontology establishes the domain-specific con-

cepts required and the relationships among the concepts [53]. The con-

cepts represent both content as well as structural information [22]. A

data model represents the concepts/information and the relationships

[30, 88].

Information Extraction: Based on the data model/ontology, concepts/information

are extracted and stored as metadata. Information can be extracted

manually, automatically, or by combination of the two [7]. Automatic

extraction depends heavily on image processing tools [10, 13, 16, 37, 38,

5



A Video Production System

Information
Composition/
Customization

Video Data
Delivery

Query Matching/
Information
Retrieval

User Preference/
Feedback

Query/
Feedback

Information
Extraction

Data Model/
Ontology

Metadata

User Profile

Data Archive

Figure 1.2: Functional View of a Digital Video Production System

39, 43, 49, 65, 67, 73, 94]. Information within unstructured data such as

video is easily identified by human observation; however, few attributes

can be identified by a machine. Therefore, we are more dependent on

hybrid extraction techniques.

User profile: A user profile represents information about user behavior and

preferences [47]. Canonical and descriptive are the two main classes of

user models. The canonical model requires a formal encoding of a cog-

nitive (semantic) user model [48, 57]. These models are hard to acquire

and their complexity hides the represented semantics from the user. De-

scriptive user models can be automatically created by observing user

behavior [70]. Their content is a mapping from previous document

accesses and does not require any semantic processing. However, a

large number of observations is needed to be able to draw high quality

6



conclusions.

Interactive Query: Interactive query is a process of formulating a query

and matching the query with the available metadata [8]. Several tech-

niques have been proposed for retrieval of video data using visual meth-

ods, most of which fall within the three categories of query by example

(QBE), iconic query (IQ), and keyword-based query [15, 18, 23, 33, 35,

38, 41, 44, 69, 89, 90, 91]. QBE queries are formulated using sample im-

ages, rough sketches, or component feature of an image (outline of ob-

jects, color, texture, shape, layout). These queries make extensive use

of image processing and pattern recognition techniques. In keyword-

based and iconic query extracted concepts are used for matching the

query.

Composition and Customization of Video Data: We define video com-

position as a process of assembling video segments into a logical and

thematically correct depiction of a storyline. Video can be composed

using visual ranked-based, text rank-based, temporal-based, and rules-

based techniques [3, 31, 64, 72, 78, 92]. Visual and text ranked-based

composition techniques utilize weights assigned to the concepts within

visuals and audio data for assembly. In a temporal composition data

are assembled based on temporal relations of concepts within their con-

tents (e.g., “retrieve a video piece in which Blair is waving before he

presents a speech”). In rules-based composition additional content-

based and structure-based constraints are imposed on a composition
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(e.g., topics should be introduced before discussing them in detail).

Based on a user profile or system requirements a composition can be

tailored or customized. We divide customization into three categories:

content-based, structure-based, and time-based. In content-based cus-

tomization only required information is provided and the rest is fil-

tered [64, 72]. In structure-based customization only requested parts

of a structure are composed (e.g., headlines of the latest news). Time-

based customization deals either with the relative position of segments

on a timeline (e.g., “retrieve news sports, and then stocks”) or the

playout duration (e.g., “recap news for two minutes”) [3, 72].

In this dissertation, we address the issues related to composition and

customization techniques. Existing composition techniques are not adequate

for producing a narrative. These techniques are ranked-based and content-

rule-based; the temporal dependency of video data and their domain-specific

structure are not considered, hence, utility of these techniques is limited and

does not always result in a correct narrative (e.g., retrieve all information

about the gondola accident in Italy from start to end). Furthermore, a

video presentation can be comprised of single composition, or, as seen in Fig.

1.3, a presentation can consist of multiple pieces of composed video, (e.g., a

newscast presentation is comprised of individual news items). Therefore, we

require techniques that help create a presentation with multiple compositions.

As part of this work, we present a query and selection technique that retrieves

data from a corpus (universal set) and forms an individual candidate set for
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composition.

Data
Universe

Selection 2

Candidate
Set 1

Candidate
Set 2

Candidate
Set 3

Video Composition 1

Video Composition 2

Video Composition 3

Selection 1

Selection 3

Seg1 Seg2 Seg3

Seg1 Seg2

Seg1 Seg2 Seg3 Seg4

Figure 1.3: Process for Composition of a Video Item

Besides accomplishing automatic composition, the quality of these com-

positions must be compared with man-made compositions. However, we are

not currently aware of any metrics that can evaluate a composition.

This dissertation attempts to fill this gap. In particular, we we focus on

metrics for evaluation of a composition and techniques for composition and

customization of digital video. To this end, we directed an investigation into

the features of manually composed video pieces. To support the composition

techniques, we implemented a prototype DVPS for newscasts called Canvass

(Customized Access to News Video Archive Storage System). During imple-

mentation, we also observed the information semantics within related video

data. Based on these observations we propose a hybrid retrieval technique

presented as part of a system implementation.
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1.1 Contributions

The following are the main contributions of this work:

• We propose a methodology for composition of video pieces. The method-

ology includes instance-based and period-based. “Retrieve the latest

news” is an example of an instance-based composition and “retrieve all

the news about the Pope’s visit to Cuba” is an example of a period-

based composition. The instance-based narrative is composed along a

storyline while maintaining the structure of the domain. The period-

based narrative is composed along a storyline, the facts are presented

in the order they developed, and the structure of the domain is main-

tained.

• We propose a set of metrics that best reflect characteristics of a compo-

sition. The characteristics include amount of information presented to

a user in a composition, thematic flow in a composition, temporal flow

in a composition, content progression in a composition, period span

coverage by a composition, and domain-specific structure of a compo-

sition.

• We propose a novel four-step hybrid approach for retrieval and compo-

sition of video that improves the recall of related data. The information

tends to vary among related segments. For example, it is common in

broadcast news items that once an event is introduced, in subsequent

scenes the critical keywords are alluded to but not specifically men-
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tioned. Related segments will not have common critical keywords, but,

scenes may share other keywords. Not all directly related segments

are necessarily retrieved if a search is made on a person’s name. Simi-

larly, related video segments can have different visuals. The proposed

approach overcomes these limitation of video data semantics.

In brief, we propose metrics that comprehensively represent a composi-

tion and quantify the quality of a video composition, composition and cus-

tomization techniques for video data that are based on content, time, and

structure. In addition, we propose a hybrid technique for retrieval of related

video segments. The proposed techniques are demonstrated and evaluated

using newscast video data.

1.2 Organization of the Dissertation

The remainder of this dissertation is organized as follows: In Chapter 2 we

discuss existing techniques for evaluation and composition of digital video

composition and their limitations. In Chapter 3 we propose a set of met-

rics that are used to evaluate an automatic digital video composition and

evaluate the quality of broadcast news. In Chapter 4 we propose techniques

for composition and customization of a digital video. In Chapter 5 we eval-

uate a composition achieved by the proposed techniques and compare the

quality with that of broadcast news. In Chapter 6 we discuss the concepts

behind the implementation of a news DVPS. In Chapter 7 we discuss the

system architecture and implementation of a news DVPS. The news DVPS
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is implemented to support the composition and customization techniques. In

Chapter 8 conclusions and directions for future work are presented.
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Chapter 2

Background and Related Work

Synopsis

Several different metrics and techniques are used for evaluation, information

retrieval, and presentation. In this chapter, we discuss these metrics and

techniques, and highlight their limitations in video composition. In partic-

ular, we describe the existing metrics that are used for evaluation of both

text and discrete multimedia data (e.g., images and video segments) retrieval

systems. We also describe the existing segment-based, pre-assembled, and

dynamically-assembled video presentation techniques as well as the features

(e.g., theme, time, and structure) that should be considered during dynamic

assembly of video data. Finally, we describe the existing customization tech-

niques including content-based, time-based, structure-based, and cost-based

video. In each case, we highlight the limitations of the metrics and techniques

in video composition, and identify specific areas of deficiency in evaluation
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and composition of a video piece.

2.1 Metrics for Performance Evaluation of In-

formation Retrieval Systems

Information retrieval (IR) systems support access to large data corpora in-

cluding, text, images, graphics, audio, and video data. Information retrieval

systems mainly use metrics proposed by Salton [79] to evaluate data retrieval

performance. The metrics measure recall (R) and precision (P) of an infor-

mation retrieval system. These metrics remain valid for IR; however, these

metrics are oriented towards Boolean evaluation (i.e., a retrieved object either

matches a query or it does not) and do not consider the degree of similarity

between the user criteria and retrieved results. Recall measures the ability

of the system to retrieve all relevant data. Precision measures the ability of

the system to present relevant data.

R =
number of items retrieved and relevant

total items relevant in collection

P =
number of items retrieved and relevant

total retrieved

In addition to the above metrics, ranked evaluation metrics are also used

to measure retrieval performance. In this case, a retrieved object does not

exactly match the query but has a degree of similarity. Narasimhalu et al.

[66] have proposed metrics for retrieval of multimedia objects. Their metrics

measure the rank, order, spread, and displacement of retrieved objects. These

metrics are summarized below.
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Order: Order quantifies the ability to sequence data items in the retrieved

set. In the example below the system retrieves data in an incorrect

order.

Example 1.

Correct response: o1, o2, o3, o4, ....

Actual response: o2, o4, o3, o1, ...

Rank: Rank measures the degree of relevancy of the retrieved set to the query.

In the example below the rank of individual objects in the retrieved set

is less than the actual rank.

Example 2.

Correct response: o1, o2, o3, o4, ....

Actual response: o7, o2, o4, o3, o1, ...

Spread: Spread measures the shift in the position of a data object in the

retrieved set as compared to the correct position. This is illustrated in

Example 3.

Example 3.

Correct response: o1, o6, o2, o3, o4, ....

Actual response: o1, o2, o8, o9, o3, o4, ...

Displacement: Displacement measures the position of a data object in the

retrieved set as compared to its correct position. This is illustrated in

Example 4.

Example 4.
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Correct response: o1, o2, o3, o4, ....

Actual response: o1, o2, o4, o3, ...

After the degree of similarity has been established in retrieval, the order-

ing becomes trivial as segments are re-ordered to create a narrative. Spread

and displacement metrics are another means of specifying the performance of

recall and ranking of the system, and provide little added information about

the performance of the system.

The ranked-based/approximate/fuzzy retrieval systems use similarity as-

sessment techniques to match data with a query. Most of these techniques are

based on distance measure in some perceptual space. The most commonly

used measurement is the Euclidean metric [14].

d(o1, o2) =
√

(x2 − x1)2 + (y2 − y1)2,

where o1 and o2 are objects to be measured and x and y represent their

feature space.

Salton proposed a cosine similarity metric for measuring the similarity

between two document vectors in the multidimesion feature space t;

cosine( ~doci, ~docj) =

∑t
k=1(Termik × Termjk)

√

∑t
k=1(Termik)2 ×∑t

k=1(Termjk)2
(2.1)

This metric measures the cosine of the angle between the two documents.

The numerator of the cosine metric gives the sum of matching terms (or

term weights) between the two documents. The denominator is a product

of the lengths of the two documents and acts as a normalizing factor. If the

16



evaluation is not binary, each term in a vector is represented by a weight

evaluated by various weighting schemes. Most commonly used schemes are

term frequency and inverse document frequency. Term frequency is based on

the notion that the terms that occur more frequently have some relation to

the content of the texts. Term frequency makes no distinction between the

terms that occur in every document of a corpus and terms that occur in only

a few. Inverse document frequency calculates the weight of a term based on

the concept that the importance of a term increases with its frequency in a

document but decreases with the number of documents (DocFreq) for which

its is assigned. The weight of term k in document i is:

weightik =
Freqik

DocFreqk
. (2.2)

Many variations of the inverse document frequency weighting schemes are

used [85] to calculate term weight. For example,

weightik = Freqik × (log2
n

DocFreqk
+ 1)

Transcripts associated with video data can be indexed (weights assigned)

and represent a keyword vector with which a query is matched. A similarity

value can be assigned between a transcript vector and a query. Brown et

al. [20] use transcript data to deliver news data. In the Informedia project

[91] transcripts are used to extract video segments for browsing. Wachman

[90] correlates transcripts with the scripts of situation comedies. The script

discloses who says what and the transcript specifies the precise position in
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the video data where it was said; hence, video can be automatically indexed

with characters, shots, and scenes.

In addition, concepts/information contained within visuals can be used

for retrieval. Based on the concept vectors, cosine metrics can be used to

evaluate similarity among video segments.

Though many of the previously mentioned metrics can be used to evaluate

the performance of a retrieval system, they are not useful in evaluation of a

video composition. However, a DVPS is not only required to retrieve data but

also to achieve a composition. A storyline, or a theme, must be maintained

in a composed piece. Therefore, a new set of metrics is required to quantify

a DVPS’s composition performance.

Next, we discuss segment-based, pre-assembled, and dynamically assem-

bled presentation techniques for video data. Since our focus is on dynamically

assembled video data, we review the existing work in this domain and discuss

its limitations.

2.2 Video Data Composition Techniques

There are three types of techniques used to present video data. First, video

data can be presented as discrete segments with no established relationship

among the segments. Second, video data can be pre-assembled, (e.g., video

segments assembled for a particular movie delivery). Lastly, enough infor-

mation can be made available to the system to assemble data on-the-fly for

delivery. These presentation techniques are summarized below.
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Segment-based presentation: This is a trivial presentation of informa-

tion, in which information is presented in the form of discrete video segments

(Fig. 2.1). Discrete segments are retrieved from a heap (e.g., “retrieve all

the clips that have Clinton playing Saxophone”), and presented to the user.

The relationships between various segments (clips) are not evaluated.

Entity: Clinton
Entity: Saxophone
Action: Playing

Query: Retrieve all clips with Clinton playing the saxophone

results 

Clips

1 2 3

Figure 2.1: An Example of a Segment-Based Retrieval

Pre-assembled presentation: In this presentation technique, the content

is pre-orchestrated [5]. In other words, the information about segments com-

posing a presentation and their order are stored as metadata. Fig. 2.2 shows

that the information about topics and the order they need to be presented

are stored as metadata. Depending on a query, respective paths are traversed

to retrieve information. For pre-assembled video data there is little freedom

of customization or reorganization.

Dynamically-assembled presentation: The sequencing of video seg-

ments in a presentation or a narrative is achieved on-the-fly (Fig. 2.4). In
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Query: Retrieve advanced level of "learning to drive"

Advanced
Start

End

Results
Advanced Level

Beginner
Start

End

Figure 2.2: An Example of a Pre-Assembled Retrieval for a Lesson Plan

a dynamic-assembly, instead of having information about a complete narra-

tive, information about the content in a narrative is stored. The information

within individual video clips is used to compose and customize a narrative.

Query: retrieve Weather and Finance

Analyse &
Compose

News Database

Heap of Weather 
 and Finance Clips

Assembled Clips

Figure 2.3: An Example of a Dynamically-Assembled Retrieval for a News-

cast

Once content is selected for assembly and a chain is formed, the content is

mapped to the timeline called spatio-temporal mapping. The spatio-temporal

mapping of the structures can belong to one of the three scenarios described

below.

1. Structures in one creation time reference are mapped to a playout time-

line as shown in Fig. 2.4. Video clips containing desired concepts or
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information are excerpted from a recorded storage medium (e.g., tape,

digital file) and are ordered on a timeline for playout. The clips are

arranged in the order they are created.

0 Creation Timeline

Clinton

Chirac

Hand Shake

Speech

Dinner
Clinton

Hillary

Tape 1

Concepts/
Entities

Storage 
Medium

Excerpted 
Clips

Relation 
in Time

Figure 2.4: Spatio-Temporal Mapping in One Time Reference

2. Structures across multiple references (tapes) of the creation timeline are

mapped to a playout timeline. Multiple references can overlap in time,

that is, more than one reference can have information from the same

period on the creation timeline. In Fig. 2.5 we show the references in

two media overlapping.

3. Structures in creation reference can be shuffled and mapped to the

playout timeline. Once the structures are selected from a single or

multiple time reference the structures can be shuffled in presentation

time to satisfy a query. This is shown in Fig. 2.6.

Some techniques to achieve dynamic composition of video data have been

accomplished. ConText [31] is a system for automatic temporal composition
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0
Creation Timeline

Tape 1

Tape 2

Clinton and Chirac Clinton Giving Speech

1

2

1

2

Clinton

Chirac

Speech

Clinton

Hillary

Speech

Clinton

Concept/
Entities

Storage 
Media

Excerpted
Clips

Relation
in Time

Figure 2.5: Spatio-Temporal Mapping Achieved by Structures from Multiple

References
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Creation Timeline

1

3

2

1 32

Playout Timeline

Rendered/Assembled

Clinton

Chirac

Handshake

Speech

Dinner
Clinton

Hillary

Tape2

Tape1

0

Concepts/
Entities

Storage
Media

Excerpted
Clips

Relation
in Time

Rendering
for Playout

Clinton & Chirac
shaking hands

Clinton & Hillary
having dinner with Chirac

Clinton
giving speech

Figure 2.6: Spatio-Temporal Mapping Achieved by Shuffling the Structures

of a collection of video shots. It lets users navigate semi-randomly through a

collection of documentary scenes associated with a limited range of content

metadata describing character, time, location, and theme. The next scene

shown to the user is determined based on a scoring of all available scenes.

This scoring aims to obtain the preferred continuity and progression of detail

in the presentation. This is made possible by establishing a present context

consisting of metadata found in already-played shots or shots chosen by a

user. Each metadata entry is associated with a relevance score. The theme,

or storyline, is maintained by human intervention and is not completely au-

tomated.

ConText demonstrates how cognitive annotations of video material can

be used to individualize a viewing session by creating an entirely new ver-

23



sion through context-driven concatenation. This dynamic reconstruction can

include video material made in a totally different context, thus performing

a repurposing of the material. The temporal ordering in a composition is

maintained by scoring the weights given to the keywords representing differ-

ent types of information.

AUTEUR [64] is an application that is used to automatically generate

humorous video sequences from arbitrary video material. The composition is

based on the content describing the characters, actions, moods, and locations;

as well as the information about the position of the camera with respect to a

character, such as, close-up, medium, and long range shots. Content-based

rules are used to compose shots.

Oomoto and Tanaka [68] use the concept of video object and the video

model that consists of hierarchical composition of video based on content or

descriptive information associated with the clips. Weiss et al. [92] propose

composition based on video algebra. The video model used is similar to the

previous work [68]. In addition they propose composition using algebraic

operation, like union, concatenation, and intersection.

A number of systems have been proposed for delivery of news video data.

These systems simply filter pre-composed news video. Agora [42], an appli-

cation developed at Bell Labs, uses filtering of multi-channel broadcast news

based on a user profile and closed-caption data. The Network Multimedia

Information Services [28] system uses start and stop boundaries supplied

with individual news items that can be browsed on the Web using an in-

dex. Shararay et al. at Bell Labs developed an application that maps the
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transcripts of the broadcast news with the associated video frames [82]. Tran-

scripts can be browsed via the WWW browser. Brown et al. [20] also have

a system that uses closed-caption text to filter information leading to the

playout of associated clips.

The above composition techniques rely only on content for composition.

Besides content, structure and time are also critical elements in a composi-

tion. A structure depicts cinematographic rules like establishing a starting

scene, intermediate scenes, and a closing scene. Time maintains the tem-

poral sequence of events, and is important for presenting information in the

correct time-series. A news item, for instance, is a series of sub-events or

a cause and effects chain, in which the time series must be maintained. In

this dissertation we present composition techniques that take all the three

features of content, structure and time into consideration.

Various types of information customization techniques have been pro-

posed. These techniques use content, time, and cost specification and are

discussed next.

2.3 Video Data Customization Techniques

In dynamic assembly of content it is possible to adapt the retrieved infor-

mation to an individual’s specification and a system’s capabilities. Cus-

tomization effects the retrieval, scheduling, and composition of a set of data

[47]. Information for customization can be acquired either by implicit or

explicit techniques. For explicit techniques [48] a user profile is acquired
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from the user directly. For implicit techniques [70, 84, 93] a user profile

is acquired by observing the behavior of the user (e.g., information about

a user’s content preference and the order of the presentation). Techniques

based on user profile [56], society or community profile to which a user be-

longs [54, 55, 70, 76, 83], and economics or cost and benefits of production

and consumption [55] are used to achieve customization. These techniques

are summarized below:

Politics

Sports

Stocks

Crime

Weather

Today’s News 

Query: Retrieve today’s news

User profile

Content

Filter
Stocks Sports

   Stocks

   Sports

Heap

No Ordering

Specified

Figure 2.7: An Example of Content-Based Customization

Content-based customization: Only the preferred information is com-

posed and rest of the information is dropped (content filtering) (Fig. 2.7).

Cost-based customization: Both the content provider and a user can

specify cost parameters (e.g., quality of picture or price/unit time). Content

provider is concerned with the profits while a user wants the best deal for

minimum cost. Cost-based customization can depend on the value of in-

tellectual property, network bandwidth, transmission time, data resolution
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required, or the age of the content (e.g., latest information is priced high).

Structure-based customization: We define this type of customization as

filtering based on structural unit type (e.g., field shots). Fig. 2.8 illustrates

an example of a structure-based customization, where only headlines are

retained in the final composition.

Politics

Sports

Stocks

Crime

Weather

Today’s News 

Query: Retrieve today’s headline news

User profile

Content 

Filter

    Stocks

    Sports

& StocksSports

Heap
Heap

Structural Mapping

Stocks
Sports

Headline Introduction Body Headline Introduction Body

Stocks Sports
Headline

0 Timeline

Figure 2.8: An Example of Structure-Based Customization

Time-based customization: There are two types of time-based customiza-

tion: customization based on playout order and duration.

Temporal order: Customization is achieved by specification of the rel-

ative position of segments on a timeline as shown in Fig. 2.9. Depending
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upon the specifications, selected clips are mapped on a timeline for the play-

out. Initially, clips that match user profile are retained while the rest are

filtered/dropped. Next, based on the temporal preference (i.e., stocks before

sports), segments are mapped on the timeline for the playout.

Politics

Sports

Stocks

Crime

Weather

Today’s News 

Query: Retrieve today’s news

User Model

Content 

Filter

Sports

& Stocks

Heap

Heap

Spatio-
Temporal
Map 

Temporally Ordered

Stocks 
before
Sports

StocksSports

Figure 2.9: An Example of Time-Based Customization

Time duration: Customization is achieved by specification of the play-

out duration (e.g., the query “re-cap today’s news for two minutes”). If the

playout duration of the available data is more than the requested duration,

some data need to be dropped. Currently the customization is achieved

by imposing rules on content or information contained in video clips. For

example, proof of a theorem cannot be presented before the problem state-

ment. Ozsoyoglu et al. [72] impose content-based rules/constraints to drop

or include the segments in a composition. A shortcoming of the content-
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based rules approach is the requirement of a set of rules for each and every

scenario. The number of rules increases with the number of scenarios. It

will not be possible to establish content-based rules when there are real-time

requirements between acquisition and delivery of the incoming data.

The limitations of dropping data based on constraints imposed on content

can be overcome by imposing rules based on the structure of an application

domain. The advantage of this technique is that we require only a single set

of rules that do not change (e.g., in news you cannot present details of a story

without an introduction; or details can be dropped but not the introduction).

Further, Ozsoyoglu et al. [72] present algorithms for composing a mul-

timedia (text, graphics, video, etc.) presentation in a specified duration.

Depending on the content-based rules, first the multimedia data are com-

posed in sub-presentations and then the proposed algorithms based on the

requirement of the maximum number of windows to be open at any time and

the total duration of the presentation are used to compose the multimedia

presentation. This work has not been specifically targeted to the composi-

tion of video data and the authors do not discuss the quality of a resulting

multimedia presentation.

Smith and Kanade [87] use a skimming technique to reduce the playout

time of a composition for browsing. They identify significant audio and

video information to create a synopsis. This work is more like creating a

table-of-contents rather than a cohesive composition. Significant audio and

video segments do not possess complete information, rather, indication of

the available information.
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Kamahara et al. [45] propose automatic program composition for a news-

on-demand system. They present techniques for recomposition of data under

the playout time constraints. They break a broadcast composition into unit

data, where a unit data corresponds to data between two successive shot

boundaries. Depending on the time specification, each unit is sequentially

played out and stopped when time runs out, thus stopping at an arbitrary

point in a composition. Therefore, this technique does not provide a cohesive

composition.

In a composition, even if segments are dropped to adjust the playout

time, the the resulting composition should still be a complete and cohesive

composition. Furthermore, since segments consist of concepts from multiple

perspectives, the time-constrained compositions should maintain the abil-

ity to present as much information from different perspectives as possible.

In addition, the time-constrained composition should be able to cover as

much creation period as possible. Therefore, we require composition and

customization techniques that take these features into account. In addition,

we require means to evaluate the quality of resulting compositions to compare

them with manually composed video. These issues are discussed in detail in

subsequent chapters.

2.4 Summary

In this chapter we have reviewed several existing metrics and techniques

that are used for evaluation, information retrieval, and presentation of a
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video composition. In each case, we have highlighted the limitations of these

metrics and techniques, and have identified specific areas of deficiency in

evaluation and composition of a video piece. A general conclusion of our

survey is that while many of the existing metrics can be used to evaluate the

performance (recall & precision) of a retrieval system, they are not sufficient

for evaluating the quality of video compositions. Similarly, we find that the

existing composition techniques rely only on content for composition, and

do not consider structure and time which are the other critical elements in a

video composition.

Our review of the existing metrics and techniques for video composition

has identified new areas for innovation and has highlighted specific areas for

improvement. In particular, we find that the existing metrics that we are

aware of offer little in terms of evaluation of a video composition. Existing

metrics are useful only for retrieval of information, but do not consider var-

ious features like theme, temporal continuity, and structure in digital video

production systems. Therefore, there is a need for development of a new set

of metrics for evaluating the performance of a DVPS.

Our review shows that the existing video composition techniques are

content-based only. In other words, while these techniques compose a video

piece by finding the similarity among the concepts associated with video

segments, they do not incorporate creation time and structure features. Cre-

ation time plays a critical role in maintaining temporal integrity of a video

piece. For example, it is important that in a newscast the facts are presented

in the correct chronological order since a news item can last over a time-
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period. Similarly, since not all segments of a video piece are alike, the overall

structure of the composition is affected by the placements of these segments

in the composition. For example, some segments are good candidates for

staring a narrative while others better describe the event associated with the

narrative. By not considering creation time and structure features of a video

composition, existing techniques produce an inferior video piece. Therefore,

there is a need for improvement in these aspects of video composition tech-

niques.

In subsequent chapters we propose a set of new metrics for evaluation of

a video composition. In addition, we also propose improved composition and

customization techniques for digital video production systems.
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Chapter 3

Metrics for Evaluation of a

Composition

Synopsis

In this chapter, we discuss the features that represent a video composition.

These features include information contained in a composition, information

flow in a composition, temporal ordering of content in a composition, struc-

ture of information, and creation time period of content in a composition.

Based on this feature set, we formulate a set of metrics that are used to quan-

tify a dynamic video composition. We demonstrate the use of these metrics

with help of examples. The proposed metrics are used to evaluate the quality

of manually composed news broadcast videos, and the results establish the

baseline reference values for automated news video compositions.
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3.1 Introduction

To convey a story using the video medium requires a succession of video seg-

ments corresponding to concepts of its narrative. The narrative also has a

main concept, or focus, called the story center. Therefore, a story is achieved

by the composition of a succession of video segments mapping concepts or

threads that include the story center and multiple related concepts. To quan-

tify the character of the video segments, we identify some fundamental at-

tributes, or the feature set, of video narratives.

The first attribute is temporal continuity, which characterizes the sequenc-

ing of segments in time. A video composition is created by composing infor-

mation about a story or story center; it shows changes as the story develops

and progresses. In other words, a composition is a chain of cause and effects.

Therefore, the position of a particular cause or effect in a composition is

very important. The information needs to be presented along a timeline, for

example, a scoring time series in a game. The quality of the composition is

also effected by the position of a segment on a timeline. We cannot trans-

pose older facts to a position in future without first introducing a change in

context.

The next attribute is thematic continuity, or the smooth flow of con-

veyed information between consecutive segments. In a composition different

views or perspectives are present about a story or story center. For exam-

ple, multiple views of an event are presented in a news item (e.g., field shots

and interviews). Therefore, there are different sets of segments that present
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Figure 3.1: Schematic of Threads in a Composition

domain-relevant information but by different vehicles. The sets possessing

temporally-ordered segments are called threads, where each thread contains

information from a different perspective about an event. Fig. 3.1 graphically

illustrates this concept of threads. Each thread induces a thematic jump,

or shift in the theme of the story. Hence, the segments associated with the

threads must be ordered to maintain overall continuity in theme throughout

a composition.

Another attribute is period span coverage. The lifespan of an event can

vary from a single day to many years. A composition can encompass this

entire period or a subset of this period. We describe and quantify this cov-

erage as period span coverage. We also consider the continuity of types of

assembled components of the composition. For example, a news item has

structure that consists of an introduction, a body, and an end. A composed
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video piece should conform to such a domain-dependent structure. This at-

tribute is described as structural continuity.

Content progression in a composition also plays an important role. A

consumer must be able to assimilate the contents of each segment within its

duration, yet should not be presented with unnecessary content. This must

be balanced with the exclusion of information that can be lost when segments

are shortened or dropped from a composition. Here we define information as

the sum of the concepts encompassed in the composition.

The feature set for characterizing video compositions consists of informa-

tion, thematic continuity, temporal continuity, structural continuity, period

span coverage, and content progression. Next, we formulate techniques to

quantify these attributes. The symbols used in this chapter and later chap-

ters are summarized in Tables 3.1, 3.2, 3.3, and 3.7.

3.2 Metrics

We propose a metric for each attribute in the feature set. The formulation

of the metrics assumes the existence of a candidate set Sa of segments for

a composition. That is, the candidate set of segments Sa from the universe

of available video segments, S, satisfies a particular selection criterion. Ul-

timately, the candidate set yields a composition set Sc which, when ordered,

comprises the final video composition. Intuitively, Sc ⊆ Sa ⊆ S.

To support characterization of the video segments, we define a tuple <

b, ~W, d >, where b is the creation time and date of the segment, d is the
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Table 3.1: Symbols Used to Define Segments and Sets

Symbol Description

s Segment

S Universe of video segments

N Size of the segment universe

b Creation time and date of segment s

C Universe of concepts

d Playout duration of a segment s

Sa Candidate set

Na Size of the candidate set

Sc Composition set

Nc Size of the composition set

Sk
c kth set of composition segments (multiple compositions)
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playout duration of the segment, and ~W is an ordered set of concepts for the

segment with respect to the universe of concepts, C, contained in S.

Sets Sa and Sc are refinements on S that lead to the composition. These

refinements are performed in practice by database queries performing simi-

larity matching between user-input interest criteria and the set of concepts

associated with each segment in S. The concepts associated with each seg-

ment are established during annotation (upon inclusion in S).

Table 3.2: Symbols Used to Define Concept Vectors

Symbol Description

~W Concept weight vector for a segment

wi Weight associated with concept ci

w̄a
i Average weight associated with a concept ci for a candidate set

w̄c
i Average weight associated with a concept ci for a composition set

~Ca Centroid vector for a candidate set

~Cc Centroid vector for a composed set

To simplify the mathematics, we make two assumptions about S. First,

we assume that both |S| and |C| are constant during evaluation. Second, we

assume that S has a chronological order of creation times. This property can

be achieved by the mapping M from the set of natural numbers to segments

in S, where M is one of the permutations of the set of natural numbers:

∃M : M ⊂ SN : (∀i : 1 ≤ i < N : bM(i) ≤ bM(i+1)), (3.1)

where N = |S|, SN is a symmetric group of permutations of degreeN , and

38



M is as defined above. The relation M permits segments to be chronologi-

cally ordered by creation time independently from subscript values. For the

remainder of the paper, our use of the term “consecutive segments” implies

this property of adjacency in creation times.

The metrics are described below:

Table 3.3: Symbols Used to Define Metrics

Symbol Description

In Information

etc Temporal continuity

ethc Thematic continuity

ecp Content progression

esc Structural continuity

eps Period span

β Forward jump weight for temporal continuity

δ Forward jump tolerance

λ Dissimilarity threshold

τ Similarity threshold

ρ Fast change threshold

% Slow change threshold

Dt Target temporal span

Da Achieved temporal span

39



Information

This metric measures the amount of information, or the sum of the concepts

represented in a composition (these associated segments comprise the com-

position set (Sc)), as compared to the information available in the candidate

set (Sa). We calculate the amount of information in a composition as follows.

We define ~W = [w1, w2, w3, ..., w|C|] as the concept weight vector char-

acterizing the weight of each concept in the concept universe associated

with a segment s. (These weights are defined at the time that s enters

S through manual or automatic techniques.). A centroid vector is defined

as ~C = [w̄1, w̄2, w̄3, ..., w̄|C|] where each w̄ represents the average weight of

a concept from the represented segments in the set. Subscripts a and c are

used to describe candidate or composition sets in this notation. Therefore,

w̄a
i =

1

Na

∑

∀s∈Sa

wi

represents the average weight of concept wi for elements in the candi-

date set Sa that form the centroid vector ~Ca. The centroid vector for the

composition set ( ~Cc) is similarly defined on Sc.

To evaluate the information metric, we measure the similarity of infor-

mation between ~Ca and ~Cc using the cosine similarity metric proposed by

Salton [79]. This technique measures the distance between the two vectors

in the concept space of dimension n:

cosine( ~A, ~B) =

∑n
k=1(ak × bk)

√

∑n
k=1(ak)2 ×∑n

k=1(bk)
2

Applying this technique, the information metric, In, is defined as:
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In =
cosine( ~Ca, ~Cc)×Nc

Na
.

We observe that the weight of a concept central to a storyline does not

vary appreciably in a candidate set and the cosine value by itself is not sen-

sitive to the concepts occurring less frequently in a composition. Therefore,

we scale the cosine value with the factor Nc

Na
. If the information in the two

vectors is the same, then In = 1, otherwise, In < 1.

This metric can be evaluated using, for example, the data of Fig. 3.2.

Consider the set of video segments and their concept vectors with binary

weights as shown in the figure. If all segments are incorporated in the com-

position then the centroid vectors, of the candidate set and composition are:

~Ca = ~Cc = [0.72 0.72 0.54 0.63 0.45 0.18 0.54 0.09 0.27 0.27 0.18 0.18 0.09 0.18 0.27 0.18 0.27 0.27]

The information value (In) of the two vectors is equal to 1. Suppose

segments s5 to s8 are not in the composition, then the centroid vector for the

candidate set and composition are:

~Ca = [0.72 0.72 0.54 0.63 0.45 0.18 0.54 0.09 0.27 0.27 0.18 0.18 0.09 0.18 0.27 0.18 0.27 0.27]

~Cc = [0.85 0.57 0.57 0.57 0.57 0.28 0.57 0.00 0.14 0.14 0.28 0.28 0.14 0.28 0.28 0.14 0.28 0.14]

The information value, In is now equal to 0.61, and there is a 39% re-

duction in the value of In.
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Figure 3.2: Example Concept Vector Weights
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Temporal Continuity

Temporal continuity, etc, is quantified as follows: let Nc represent the num-

ber of segments placed on the creation timeline, and the distances between

segments be measured in time. Let large forward jumps in time (if such data

exist) be less damaging to temporal continuity than reverse jumps, and let

forward jumps be weighted by 0 ≤ β ≤ 1. We define good temporal con-

tinuity to mean that all cause-effects in a story follow an increasing time

series.

Temporal Continuity:

0 ≤ bi+1 − bi ≤ δ ⇒ ei
tc = 1

bi+1 − bi > δ ⇒ ei
tc = 1− β((bi+1 − bi)− δ)/Dt

bi+1 − bi < 0 ⇒ ei
tc = 1− (bi − bi+1)/Dt

Here, δ is the duration that can be tolerated in a forward jump and Dt is

the target temporal span of the data. The mean temporal continuity of the

segments on the timeline is 1
Nc−1

∑Nc−1
i=1 ei

tc.

In Fig. 3.3 the behavior of thematic continuity is shown. The creation

time and date bi of is always taken as 0 hours and creation time and date

bi+1 is changed in the increments of both 24 hours and -24 hours. Dt is taken

as 960 hours, δ is taken as 24 hours, and the weight β is taken as 0.6. As

seen from the figure the temporal continuity with reverse jumps is penalized

more then the forward jumps.

43



−500 −400 −300 −200 −100 0 100 200 300 400 500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3.3: Schematic Behavior of the Temporal Continuity Metric

Consider the creation time and date of the segments of Fig. 3.2 as shown

in Table 3.4. Assume that the tolerated jump duration, δ, is 24 hours and

weight β is 0.6 and consider the playout sequence [s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 , s10 , s11].

All jumps in this example are forward in time and less than δ in duration

with the exception of the jump between s5 and s6. However, since there are

no data corresponding to this jump window, there is no penalty. Gaps in

data are usually due to the news item being off-air for long periods due to

lack of new developments. As the etc for all consecutive pairs of segments is

1, the mean temporal continuity is also equal to 1. Consider the sequence

[s1 , s2 , s4 , s5 , s6 , s7 , s8 , s10 , s11 , s9]. The etc for this sequence is shown in

Table 3.4 and the mean temporal continuity is 0.97.
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Table 3.4: Creation Time, Date, and Temporal Continuity

Segment Time Date

s1 08:00:00 01/12/98

s2 06:30:00 01/13/98

s3 22:00:00 01/13/98

s4 10:00:00 01/14/98

s5 08:00:00 01/15/98

s6 20:00:00 01/16/98

s7 14:00:00 01/17/98

s8 12:00:00 01/18/98

s9 22:00:00 01/18/98

s10 14:00:00 01/19/98

s11 08:00:00 01/20/98

Segments etc

s1 − s2 1

s2 − s4 1− 0.6(1650 − 1440)/7 × 24× 60 = 0.98

s4 − s5 1

s5 − s6 1

s6 − s7 1

s7 − s8 1

s8 − s10 1− 0.6(1560 − 1440)/7 × 24× 60 = 0.99

s10 − s11 1

s11 − s9 1− (2160)/7 × 24× 60 = 0.78
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Thematic Continuity

This metric, ethc, quantifies the progression of a storyline or a theme in a com-

position. We establish a similarity threshold τ , and if the similarity measure

between the two consecutive segments is more than τ , the two segments

are considered very similar and progression of the theme is static. We also

establish a dissimilarity threshold λ, below which segments are considered

disjoint.

Thematic Continuity:

λ ≤ cosine( ~Wi, ~Wi+1) ≤ τ ⇒ ei
thc = 1

cosine( ~Wi, ~Wi+1) > τ ⇒ ei
thc = τ

cosine( ~Wi, ~Wi+1)

cosine( ~Wi, ~Wi+1) < λ ⇒ ei
thc = cosine( ~Wi, ~Wi+1)

λ

The mean thematic continuity of a composition is 1
Nc−1

∑Nc−1
i=1 ei

thc. In

the Fig. 3.4 the schematic behavior of thematic continuity with dissimilarity

threshold λ of 0.4 and similarity threshold τ of 0.7 is shown.

Consider a dissimilarity threshold λ of 0.6, similarity threshold τ of 0.9,

and a sequence of [s1 , s2 , s3 , s4 , s5 , s6 , s10 , s11]. The thematic continuity of

the composition is calculated in steps using the concept vectors of Fig. 3.2

and is shown in Table 3.5. The final result is a value of 0.76.
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Figure 3.4: Schematic Behavior of the Thematic Continuity Metric

Table 3.5: Thematic Continuity

Segments cosine ethc

s1 − s2 5/
√

6× 8 = 0.72 1

s2 − s3 6/
√

8× 7 = 0.80 1

s3 − s4 4/
√

7× 6 = 0.61 1

s4 − s5 5/
√

6× 8 = 0.72 1

s5 − s6 2/
√

8× 6 = 0.28 0.28/0.6 = 0.46

s6 − s10 1/
√

6× 5 = 0.18 0.18/0.6 = 0.3

s10 − s11 2/
√

5× 6 = 0.36 0.36/0.6 = 0.6
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Content Progression

This metric, ecp, characterizes the rate at which concepts change within a

composition. Changes that are too fast or too slow deteriorate the quality of

a composition.

We consider content progression as being fast if, given that there are vari-

ations in the information contained in consecutive segments, the duration of

playout of the consecutive segments is smaller than a fast-change threshold ρ.

If the playout duration of a segment is greater than a slow-change threshold,

%, then a long time is consumed on discussing a certain aspect of an event

and the content progression is considered slow. The content progression is

measured as follows:

Content Progression:

ρ ≤ di ≤ % ⇒ ei
cp = 1

di > % ⇒ ei
cp = %

di

di < ρ ⇒ ei
cp = di

ρ

Here, ecp is defined as progression continuity and di is the playout duration

of segment si. The mean playout duration of the segments is 1
Nc

∑Nc

i=1 e
i
cp.

The schematic behavior of the content progression metric is similar to the

thematic continuity metrics (Fig. 3.5

Consider the playout durations of the segments shown in Table 3.6. As-

sume a fast-change threshold ρ of 5 seconds and a slow-change threshold % of

150 seconds. The content progression of the sequence [s1 , s2 , s3 , s4 , s5 , s6 , s10 , s11]
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Figure 3.5: Schematic Behavior of the Content Progression Metric

is shown in Table 3.6. The mean content progression of the sequence evalu-

ates to 0.81.

Period Span Coverage

This metric quantifies the performance of a system for covering information

from a complete period for which data are available and selected. Let Dt

be the target span requested for composition and Da be the span covered

by segments in the data universe under the selection criterion. Period span

coverage, eps, is defined as Da

Dt
.

Consider the segments summarized in Table 3.4. The complete span of

the data in the table is from 12 Jan 1998 to 20 Jan 1998. For the sequence

{s1 , s2 , s4}, the span coverage of the composition is 2/8 = 0.25.
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Table 3.6: Playout Duration and Content Progression

Segment Duration (s)

s1 10

s2 15

s3 2

s4 3

s5 30

s6 60

s7 12

s8 4

s9 5

s10 120

s11 300

Segment ecp

s1 1

s2 1

s3 2/5 = 0.4

s4 3/5 = 0.6

s5 1

s6 1

s10 1

s11 150/300 = 0.5

Table 3.7: Symbols Used to Define News Video Segment Types

Symbol Description

Sh Set of Headline-type segments

Sin Set of Introduction-type segments

Sb Set of news body-type segments

Se Set of Enclose-type segments
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Structural Continuity

The structural continuity metric is defined with respect to an established

domain-specific structure, and quantifies deviation. Below, we describe a

structural continuity metric for broadcast news video. The evaluation is

binary; degrees of discontinuity can be defined but are not considered here.

Structural Continuity for News Items:

{sh} = C ⇒ esc = 1 Only a headline can be present in a

composition C.

{sh, sin} = C ⇒ esc = 1 Only a headline and an introduction

can be present in a composition C.

{sin} = C ⇒ esc = 1 Only an introduction can be present

in a composition.

{sh, sin, {s1

b, s
2

b , ...}} = C ⇒ esc = 1 Only a headline, an introduction,

and segments belonging to the body can be

present in a composition.

{sin, {s1

b, s
2

b , ...}} = C ⇒ esc = 1 Only a headline and segments belonging

to the body can be present.

{sin, {s1

b, s
2

b , ...}, se} = C ⇒ esc = 1 Only an introduction, segments belonging

to the body, and an enclose can be present.

{sh, sin, {s1

b, s
2

b , ...}, se} = C ⇒ esc = 1 All the segment types are present.

{All other combinations} ⇒ esc = 0

With the definition of these metrics for evaluation of video composition,

we are prepared to establish reference values for manually-produced video in
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a specific domain. We use these reference values to evaluate the performance

of our automatic composition techniques.

3.3 Analysis of a Broadcast News Composi-

tion

Broadcast news video production presents us with well defined domain-

specific structures on which to apply our techniques. It is also readily avail-

able in adequate quantities. In the following we collect data from three

broadcast sources and evaluate the quality of the broadcast news using our

metrics. Details of data collection, analysis and results of the evaluation are

described below.

News Video Data Collection

Broadcast news video data were acquired from CNN, NBC, and ABC over

a period of 40 days from 20 January 1998 to 28 February 1998. During this

period we recorded the 9:00 AM and 8:00 PM CNN (national) broadcasts

(CNN1 and CNN2), the 6:30 PM NBC (national) broadcast, and the 12:00

PM ABC (local) broadcast.

Data were initially recorded in analog, VHS/NTSC, format and consider-

able effort was required to translate the data into a state suitable for resolving

queries to yield candidate sets and composable segments. The analog video

streams were first digitized into MPEG-1 format and then content and struc-
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tural information/metadata were extracted. Segments were annotated based

on the types of components within each news item. Content information

such as conceptual and tangible entities [6] (e.g., people, locations, cause

and effects, and events) were annotated to support the generation of concept

vectors. Based on this data set we applied our metrics.

Thematic Continuity and Content Progression

The thematic continuity (etc) was evaluated with a dissimilarity threshold

λ = 0.6 and a similarity threshold τ = 0.9. The content progression (ecp)

was measured with a fast-change threshold ρ = 8 seconds and slow-change

threshold % = 100 seconds. The results are summarized in Table 3.8.

The measurements show a thematic continuity that varies between 0.50

and 1.0. The low values indicate rough transitions between consecutive video

segments. This is also apparent from a visual inspection of the corresponding

segments where there are abrupt jumps in information level between threads

of the news items. The content progression varies between 0.81 and 1.0. On

average the playout duration of a segment is within the lower and upper limits

set for measurement and there is a gradual change in content throughout the

composition.

Temporal Continuity

For measuring temporal continuity we assume that the creation time of a seg-

ment is the time when it is first shown in a composition. As mentioned before,

segments transposed in time or segments with significant inter-segment tem-
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Table 3.8: Thematic Continuity and Content Progression Measurements

News No. of ethc ecp News No. of ethc ecp News No. of ethc ecp

Item Segs Item Segs Item Segs

1 9 0.80 0.91 34 5 0.95 0.95 67 2 1.0 0.93

2 11 0.93 0.93 35 6 1.0 1.0 68 3 0.74 1.0

3 8 0.89 0.97 36 4 1.0 0.93 69 5 0.98 1.0

4 7 0.89 1.0 37 6 1.0 1.0 70 14 1.0 0.85

5 5 0.68 0.87 38 3 0.95 1.0 71 12 0.99 0.97

6 2 1.0 0.88 39 10 1.0 0.95 72 8 1.0 1.0

7 10 0.94 0.93 40 7 1.0 0.94 73 3 0.92 0.87

8 8 1.0 1.0 41 3 1.0 1.0 74 7 0.98 0.96

9 6 0.99 1.0 42 5 1.0 0.95 75 10 1.0 0.83

10 7 0.73 0.96 43 5 0.98 1.0 76 2 1.0 0.93

11 5 0.98 0.92 44 7 1.0 1.0 77 6 0.98 1.0

12 7 0.98 1.0 45 11 0.98 1.0 78 4 1.0 1.0

13 5 1.0 0.94 46 9 1.0 1.0 79 4 1.0 0.87

14 5 0.92 0.92 47 11 1.0 0.95 80 2 0.98 0.93

15 3 0.85 0.87 48 4 0.94 1.0 81 7 1.0 1.0

16 6 0.94 1.0 49 12 1.0 0.93 82 7 1.0 0.96

17 3 0.52 1.0 50 7 0.98 0.98 83 6 1.0 1.0

18 10 0.98 0.93 51 2 0.97 0.81 84 15 1.0 0.72

19 6 0.99 0.95 52 4 1.0 0.87 85 10 1.0 0.95

20 4 1.0 0.90 53 2 0.94 1.0 86 5 1.0 1.0

21 4 0.98 0.86 54 4 0.97 1.0 87 9 1.0 0.88

22 7 1.0 0.96 55 4 1.0 0.96 88 4 1.0 0.78

23 5 1.0 1.0 56 5 .0 1.0 89 8 1.0 0.87

24 6 0.95 0.88 57 10 1.0 0.98 90 4 1.0 0.84

25 2 1.0 0.81 58 3 1.0 1.0 91 7 0.97 0.94

26 4 1.0 1.0 59 8 0.99 1.0 92 8 0.91 0.89

27 8 0.97 1.0 60 6 0.98 1.0 93 5 0.96 0.87

28 8 0.97 0.92 61 5 0.89 1.0 94 2 1.0 0.87

29 8 0.90 0.89 62 2 0.50 1.0 95 4 1.0 0.93

30 8 0.97 0.98 63 4 1.0 0.93 96 2 1.0 1.0

31 6 1.0 0.92 64 2 1.0 1.0 97 2 0.66 1.0

32 6 1.0 0.95 65 6 1.0 1.0 98 2 0.82 0.81

33 4 0.86 0.93 66 7 1.0 1.0 99 6 0.96 1.054



poral spans will yield low temporal continuity. To study this characteristic

we isolated a single news event on the topic of the United Nations and Iraq

Standoff.

We define inter-transposition duration as the period between segment

repetition. The distribution of inter-transposition durations frequencies of

the news items from CNN is shown in Fig. 3.6.
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Figure 3.6: Inter-Transposition Durations for News Items from CNN1 and

CNN2

The minimum inter-transposition time found in the result data set (Table

3.9 and Fig. 3.6) is less than one hour (i.e., the same segment is repeated

in a single broadcast). On average, the interval between segment repetition

(of 96 segments) from a single source (CNN) is 59 hours. The maximum
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inter-transposition time is 659 hours. Note that for this analysis we ignored

segments that might have occurred prior to our observation period. Table

3.9 shows additional data characterizing the other news sources.

Table 3.9: Segment Inter-transposition Repetition History

Source Number of Maximum Average Maximum Minimum

Segments Times Inter- Inter- Inter-

Repeated Repeated Transposition Transposition Transposition

Time (Hours) Time (Hours) Time (Hours)

CNN(1 & 2) 96 7 59.12 659 <1

NBC 16 2 36.95 144 <1

ABC 4 4 18 48 <1

Mixed 68 3 46.4 321.5 1.5

Fig. 3.7 illustrates the types (described in Chapter 4) and frequencies of

repeated segments. 81% of the repeats are Wild Scenes with no audio; 3% of

the repeats are Wild scenes with both audio and video; 14% of the repeats

are Comments with both audio and video; and less than 1% of the repeats

are Comments with video only and Interviews with both audio and video.

Most of the repeated segments contain only the visual data (i.e., segments

shown as a backdrop to a reporter’s or an anchor’s commentary). Examples

include shots of a plane taking off or a missile being fired. Some of the original

segments contain comments or a speech in which the source of the audio is
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a subject; however, when the same segment is repeated, the original audio is

sometimes suppressed and replaced by a voice-over. For example, initially, a

segment of Ms. Albright commenting on Iraq is shown with both video and

audio. Later, only the visual is shown with a reporter establishing a context

(e.g., “today Albright commented that the situation in Iraq is critical”). Or

the visual can be shown as part of field footage (Wild Scene); therefore, no

introduction is required.

When a change of context is required, a human editor tries to maintain

continuity with an appropriate introduction. However, the temporal con-

tinuity is evaluated by assuming that the context is not established before

segments with both audio and video are repeated in a composition. In Table

3.10 the repetition of a segment from an earlier time to the future is called

flashback and the presentation of a segment from the future without presen-

tation of intermediate information is called a flash-forward. Each time there

is a flashback only one segment from the past is repeated; therefore, the seg-
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ments preceding the flashback segment and the successive segment are in the

correct creation time series.

Table 3.10: Temporal Continuity Measurements

Parameter Value

Presentation Duration in Hours 912

Total No. Segs 387

No. of Segs Repeated (Table 3.9) 17

Average Inter-Transposition Time in Hours (Table 3.9) 59

etc for Flashback 0.93

Tolerated Forward Jump Value δ in Hours 24

etc for Flash-Forwards 0.98

Temporal continuity between the remaining consecutive pairs is 1 and the

mean temporal continuity for the presentation is 1/386(15.8 + 16.6 + 352) =

0.99.

Information and Period-Span Coverage

Evaluation of information coverage (In) is achieved by an analysis of the

information content in the composition set relative to the information con-

tained in the candidate set. Because the contents of the candidate set and the

composition set are identical in this case, we do not yield a useful reference

for this metric. We also have difficulty with period-span coverage because

of the absence of information about the creation time span covered by the
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original data. Finally, structural continuity is assumed to be inherent in the

manually-edited data set and this is consistent with our observations (e.g.,

CNN rarely makes naive mistakes in assembling video by segment type).

We further observed from the data set that the presentation duration is

a varying parameter and its value is highly dependent on the content being

presented. When the current focus of the content exhibits changes (i.e.,

developments and progressions of the event), we observed that the duration

of the presentation is longer to support the impact of the content. We also

observed that lifespan of news items can vary from a days to years.

Therefore, a candidate set will consist of segments of varying playout

duration, period span coverage, and information. These segments need to

be selected to form a composition with correct structure, and satisfactory

temporal and thematic continuity.

3.4 Summary

In this chapter we have formulated a set of metrics to evaluate the quality of

a video composition. We consider many essential features of a composition.

In particular, we consider information content, information flow, temporal

ordering of content, creation time period in a composition, content progres-

sion, and structural ordering of information. These features form the essential

requirements for formulation of our metrics.

To measure information content in a composition, we compare concepts

contained within all the segments in the composition with the concepts in all
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the segments returned as a result of user-selection criteria (candidate sets).

This is achieved by creating centroid vectors of the segments in candidate and

composition sets and using cosine metrics to measure the similarity. The-

matic continuity, or information flow, is evaluated by measuring similarity

in the concepts of the two consecutive segments in a composition. We use

cosine metrics for this measurement also. We establish the dissimilarity (λ)

and similarity (τ) thresholds, and consider compositions for which the value

of the cosine measurement falls within these thresholds as possessing good

thematic continuity.

Temporal continuity is evaluated by using the creation time and date as-

sociated with segments in a composition. The quality of a composition with

large forward jumps in time or backward jumps in time between consecutive

segments is considered poor. Temporal continuity is measured by the differ-

ence in creation times of adjacent segments based on a threshold for forward

jump δ in time that can be tolerated in a composition, and a weight β, for

forward jumps. We measure period span coverage by comparing the span

covered by segments in the candidate set to the span covered by segments in

the composition set.

Content progression in composition is evaluated by measuring the playout

durations of constituent video segments. The content progression is consid-

ered good if the playout durations fall within the fast-change threshold (ρ)

and the slow-change threshold, (%). Finally, we measure structural continuity

using Boolean evaluation.

Utilizing the proposed metrics, we acquired reference values for quality
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of broadcast news video from CNN, ABC and NBC. Our results show that

the thematic continuity varies between 0.50 and 1.0, the low value indicating

some rough transitions between consecutive video segments. The content

progression varies between 0.81 and 1.0, indicating gradual change in content.

The temporal continuity is evaluated to be 0.99. Evaluation of information

coverage and period span coverage could not be conducted due to insufficient

data. Since the composition is manually composed, the structural continuity

is always maintained.

Later in this dissertation (Chapter 5), we will use the above reference

values to evaluate composition of a newscast resulting from application of

automatic composition and customization techniques proposed in the next

chapter (Chapter 4).
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Chapter 4

Techniques for Composition

and Customization of Digital

Video

Synopsis

In this chapter, we present the proposed composition techniques for digital

video data. The proposed composition techniques are based on the con-

tent within video data, creation time of data, and structure of the video

domain. These techniques are applied to news video data. The structure of

the resulting composition is based on existing forms or structures for news

video composition. The proposed techniques are divided into instance-based

and period-based compositions, and include temporal composition, thematic

composition, and thematic nearness composition. In addition, we also discuss
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techniques that make composition under playout time constraints possible.

4.1 Introduction

In addition to concepts contained within segments [31, 64, 92], information

about creation time associated with the segments and domain-specific struc-

ture are also required to produce an automatic video composition. Therefore,

we require techniques that consider content, creation time, and structure dur-

ing a composition. A composition can also be customized, as shown in Fig.

4.1, which depicts composition under playout time constraints (i.e., limited

playout duration). Most of the existing customization techniques are based

on content customization [47]. However, customization under playout time

constraints has not been explored for video data, though trivial playout time

constraint techniques (in which a pre-composed presentation is played until

the specified duration) are being used to limit the playout time [45]. Thus

the challenge is to create a time constraint composition that is cohesive, cov-

ers maximum time span of the available information, and presents different

aspects of a story.

To demonstrate the composition and customization techniques we use

newscast as an example domain; however, the techniques are generic and can

be applied to any other domain. We adopt the work of Musburger [63] for

correct structural composition of a news item.

63



Timeline

Timeline

Segments composed to form a narrative

Narrative customized under temporal constraints

Candidate segments for a composition

Figure 4.1: Schematic of Composition and Customization of News Items
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4.1.1 Forms of News Items

In a guide to an electronic news gathering, Musburger discusses the various

structures or forms associated with a news story. The main forms are as

follows:

Spot News: Presentation of actuality or scenes of a story that is taking

place is called spot news. Usually the story is briefly introduced and

the scenes are presented in a linear fashion.

Stand-Upper: A reporter gathers information and a videographer shoots

as much cover (different threads or perspectives) footage as possible.

Finally the story is recorded by the reporter introducing the story fol-

lowed by the cover footage, and in the end the reporter presents the

tag line (ending segment of the story). This form is used in a variety

of settings, from breaking news to public relations “puff” pieces.

Wraparound: Also called a donut, there are two types of wraparounds.

One is the same as a stand-upper, but the anchor delivers the start and

the end lines while a reporter delivers the center of the donut. In the

second method the center of the donut is an actuality.

As observed from broadcast news and according to Rabiger [75], the in-

gredients of footage or scenes can be summarized as follows:

Action Footage or Wild Scenes: Footage from the actual location of

the event is called action footage. Among other things, scenes in an
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action footage can belong to landscapes, inanimate things, people, or

creatures engrossed in everyday activity.

Interviews: Interviews refer to one or more people answering formal and

structured questions. Interviewers can be off camera and questions can

be edited-out.

Comments: Informal and on-location interviews with a reporter grabbing

someone to interview at the site of the story are referred to as com-

ments.

Speech: Speech refers to formal communication or expression of thoughts.

Re-enactment: This refers to situations that are already past or cannot

be filmed are acted out or animated.

Based on the above forms and footage components we define the structure

of a news item. To create a cohesive composition we identify role of segments

in a composition and a set of structure-based constraints. In Table 4.1, the

structure of a news item is defined as having a beginning, a body and an

end. If the segments belonging to a beginning, a body, and an end are

transposed, then the news item does not possess structural continuity. The

news item should be introduced only once, hence, a news item should start

with a single segment of type Introduction, and also end with a single segment

of type Enclose. However, the body can have multiple segments depending

on the views being presented. If there is no body, then a segment of type

Enclose is not included in a composition.
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Table 4.1: Structure of a News Item

Headline

Introduction

Current (body) Comment

Wild Scene

Interview Question&Answer (QA)

Speech

Enactment

Enclose

The proposed composition techniques are based on a set of assumptions.

We describe them next.

4.1.2 Assumptions

To accommodate different news items in a presentation, each news item is

allotted a limited duration for presentation. Therefore, the objective of news

item composition is to maximize the presentation of the information related

to each event in spite of the time constraints. The tactic adopted by news-

casters is to provide multiple views of an event rather than a single detailed

view. For example, multiple views can include field shots, comments, inter-

views, and re-enactments of an event after its occurrence. A news item is a

collage of views and it is possible to rearrange or drop some of the views to
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convey the same story.

In the proposed composition techniques we take advantage of the charac-

teristic of news items that are typically short segments that convey a great

deal of information (i.e., sound bites). The following assumptions are made

during composition:

1. A complete news item is considered an event (e.g., Clinton’s visit to

South America).

2. An event can be composed of sub-events (e.g., interviews, comments

from by-standers, and field shots).

3. Thematic continuity is maintained in a news item when sub-events are

presented in an arbitrary order provided:

(a) all sub-events belong to the same event, and

(b) each sub-event is completely played-out.

4. Within a news item, all types of segments carry the same theme; how-

ever, different types of segments depict the theme from different views

and are not redundant. Moreover, these segments are not dependent

on one another for presentation.

As defined previously, a presentation possessing thematic continuity is

one that comprises segments with related information that are ordered to

maintain temporal continuity. Assumption (1) ensures that each news item

contains information related to a single event and no irrelevant information is
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presented. Assumption (2) is required to identify types of segments in a body

of an event. Assumption (3) is required to maintain a storyline, or theme,

and to avoid abrupt discontinuities in a news item by presenting complete

information about each segment. In assumption (4) we treat segments as

having content independence so that we can include, exclude or arrange them

in any order in the body. A segment is a complete information unit and all

dependent content is encompassed in a single segment. For example, if an

anchor person introduces a scene, then the introduction is included as part of

the scene. Rearrangement of clips is valid only if the segments are from the

same instance in chronological time. If available segments are from a period,

the flexibility to rearrange them is limited.

Additional symbols used to define news video segment types and the

composition techniques are summarized in Table 4.2.

Table 4.2: Additional Symbols Used to Define News Video Segment Types

Symbol Description

Ssp Set of single-presentation-type segments

Smp Set of multiple-presentation-type segments

Sbw Set of Wild Scene-type segments

Sbs Set of Speech-type segments

Sbi Set of Interview-type segments

Sbc Set of Comment-type segments

Sbe Set of Enactment-type segments
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4.2 Composition Techniques

In this section, we begin with a discussion on the types of segments present

in a structure of video-based news. After establishing the basic segment

types for this domain, we describe the composition techniques. The taxon-

omy of Fig. 4.2 illustrates the relationships among the proposed techniques

described in this section.

Composition

Instance-based Period-based

Interest-based
(SP)

Random
(SP)

Thematic
(MP)

Interest-based
(SP)

Random
(SP)

Temporal
(MP)

Thematic
(MP)

Thematic Nearness
(MP)

SP: Single-presentation type
MP: Multiple-presentation type

Figure 4.2: Taxonomy of Proposed Composition Techniques

The composition techniques can be divided into two main categories:

instance-based and period-based. These are presented in detail in the next

section.

4.2.1 Segment Types and Structure for the News Do-

main

We adopt the work of Musburger [63] as a reference structure for composition

of a news item. Under this model (Table 4.1), a news item is comprised

of an introduction, a body, and an end. Other orderings are invalid and
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demonstrate poor structural continuity. Moreover, a news item should have

a single introduction (segment type Introduction) and a single end (segment

type Enclose). However, the body can have multiple segments depending on

the views being presented. If there is no body, then a segment of type Enclose

is not included in a composition.

Our basic unit of video data in a news item is the segment. However,

a segment can also be comprised of multiple segments that form a coherent

grouping. For our work a segment can belong to the Comment, QA, Wild

Scene, or Enactment types. To conform to these various structures of a news

item, we propose a set of rules for composition based on segment type. The

types are divided into two categories:

• Single-presentation type (Ssp): The segment types that allow only

a single segment of its kind to be included in a composition. This

includes segments of type Headline, Introduction, and Enclose.

• Multiple-presentation type (Smp): The segment types that allow

multiple segments of its kind to be included in a composition. This

type includes segments that can belong to a body. For example, we

can have multiple segments of type Wild Scene in a single news item.

The functions of these categories of segment types are discussed below.

Single-Presentation Type

To compose a news item we select a single segment of this type. How-

ever, the news can be generated from an instance of creation time (e.g.,
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today’s 7:00 PM news) or over a period of creation time (e.g., news about

Albright’s visit to the Middle East). We use different rules for selection of

single-presentation-type segments for instance-based and period-based com-

positions.

Creation Instance-Based: Two techniques can be used to select a seg-

ment of the single-presentation-type for the creation instance case. First,

selection can be interest-based. This is achieved by selecting the segment

with the highest selection interest I(s). The segment is defined for a set Ssp

of the single-presentation-type by the the following predicate:

sk : ∃m : (∀s ∈ Ssp : m ≥ I(s) ∧m = I(sk))

Second, if all the segments have the same interest value then a random

selection can be used. A segment s can be selected with a uniform probability.

Fig. 4.3 illustrates this type of composition.

Creation Period: If a period is indicated, then the rules specified in Table

4.3 are followed to select a single-presentation-type segment.

Multiple-Presentation Type

Segments of this type belong to the body of a composition. Like the single-

presentation-type, the selection of segments is also dependent on instance-

based and period-based rules.
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Candidate
Set

Clustering and
Ordering by Type

Headline

Introduction

Wild Scene

Speech

Enclose

Composition

Interest-based,
Random,
or Thematic

Composed Video

Playout

Figure 4.3: An Example of Instance-Based Composition

Table 4.3: Creation Period Composition Rules

Rules Explanation

1. sk|∀s ∈ Sh : bk ≤ b ∧ b = bk To build a news item in chronological order

we select a segment belonging to the Headline set

the earliest time and date.

2. sk|∀s ∈ Sin : bk ≤ b ∧ b = bk Similarly, we select a segment from the Introduction

set with the earliest time and date.

3. sk|∀s ∈ Se : bk ≥ b ∧ b = bk We select a segment from the Enclose set that has

the latest time and date.

4. sk|∃m : (∀s ∈ Ssp : m ≥ I(s) ∧m = I(sk)) If more than one segment is available for a particular

date then we use the segment sk with the highest
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Creation Instance-Based: Because there can be more than one segment

mapping to the same instance on the creation timeline, segments belonging

to a body can either be grouped (clustered) depending on their type (i.e.,

Speech, Interview, Wild Scene, Comment, and Enactment) or not grouped. The

reasons for clustering is desire to base a composition on a preference for a

particular type or ordering (e.g., Wild Scene before Speech). Another reason is

that, for reasons of diversity, the segments are chosen from the different types

within the playout time allotment. After forming clusters, the final order of

segments in a news item can be determined with the following sequence:

[sh, sin, Sbs, Sbw, Sbi, Sbc, Sbe, se],

where sets Sbs, Sbw, Sbi, Sbc, and Sbe correspond to types Speech, Wild

Scene, Interview, Comment, and Enactment, respectively. The order of clusters

in a body can be changed based on preference.

Creation Period: There are two types of mappings between creation peri-

ods and segments contained in a body. Let s ∈ Sb denote a segment belonging

to a body and let an instance of time be represented by t. The two types of

mappings are then defined as follows:

• One-to-one mapping: The start of a single segment s ∈ Sb maps to

time t (i.e., s → t) within a period (Fig. 4.4).

• Many-to-one mapping: The start of multiple segments ({s1, s2, s3, ...} →

t) maps to time t (Fig. 4.5).
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Figure 4.4: An Example of a One-to-One Mapping of Segments to a Timeline
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Figure 4.5: An Example of a Many-to-One Mapping of Segments to a Time-

line

Segments that map to the same instance are clustered together and are

further grouped based on their type – Speech, Interview, Comment, Wild

Scene, and Enactment.

After conforming to the structural constraints (Section 3.2), there is still

considerable flexibility to select and order segments from the different types.

We discuss this next.

4.2.2 Techniques for Composition of a News Item

We use interest-based or random selection when there are many single-

presentation-type segments that are candidates. However, if the composi-

tion is either period-based or requires thematic ordering, then, in addition

to the above rules and techniques, we require a strategy to select segments

75



from clusters or from the timeline. Our techniques are based on temporal

ordering, temporal continuity, and temporal nearness continuity. This hybrid

approach is illustrated in Fig. 4.6, in which clustering and temporal ordering

are combined.

Candidate
Set

Headline

Introduction

Enclose

Composition

Interest-based
or Random

Composed Video

Body

Thematic,
Interest-based,
or Random

Temporal,
Thematic, or
Thematic Nearness

Clustering

Temporal
Ordering

Playout

Thematic,
Thematic Nearness,
Temporal,
Interest-based,
or Random

Figure 4.6: An Example of Hybrid Composition

Temporal Ordering

This scheme is applicable to period-based compositions. Segments are orga-

nized on the timeline as a chronology according to their creation time and

date (Fig. 4.7).

In this case the single-presentation-type segments are selected according

to the rules of Table 4.3. The resulting composition set consists of a single seg-

76



Start

Forward assembly

Playout

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

s
14

Period

Figure 4.7: Forward Temporal Ordering Scheme

ment of each single-presentation-type in Sa and all multiple-presentation-type

segments in Sa. To achieve composition, the segments in Sa are sequenced

using structural constraints in increasing order of creation time and date.

The objective of this technique is to obtimize the information in the presen-

tation (i.e., include all possible segments in the final composition),temporal

continuity, and target span covered.

In the above composition we assume that all of the candidate segments

belong to the same story center and the segments are created as the event

evolves. Continuity is provided by temporal ordering. The segments selected

to compose a news item contain information related to a story center. How-

ever, since a news item develops over time and there are variations in theme

due to multiple threads of the story, lower thematic continuity results. An

extension to this technique, thematic composition, aims to ensure that there

are no large jumps in themes between consecutive segments due to these

threads.
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Thematic Composition

For temporal ordering we depend on the simplicity of the ordering among the

segments to provide thematic continuity. However, as evident from the char-

acteristic of conventional news video, a composition can be acceptable with

other types of orderings yielding different thematic continuities. Therefore,

we try to achieve composition of segments with related information with an

ordering that maintains temporal continuity. We use concept similarity (CS)

for the sequencing.

The concept similarity between two segments can be found by using the

cosine similarity metric. The composition begins by selecting the first seg-

ment of the single-presentation-type (Headline or Introduction) using interest-

based or random selection. If a Headline segment sh is selected then an In-

troduction segment sin is selected using the concept similarity. Otherwise, if

sin is selected first, then interest-based or random selection is used.

The first body-segment is selected by considering its concept similarity

with sin. Next, after the first body-segment on the timeline has been selected,

the proceeding segment is included or dropped depending on the similarity

and dissimilarity thresholds, τ and λ. If the similarity value of two segments

d(si, sj) is more than τ , then the two segments are considered to be the

same and only one is used in the composition. If the similarity value of two

consecutive segments from Sa is less than λ, then the two segments are not

considered similar. When all pairs are exhausted, Eq. 4.1 is valid for all

consecutive segments si and sj in the composition:
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λ ≤ cosine( ~Wi, ~Wj) ≤ τ. (4.1)

There are different requirements for selecting segments for an instance-

based or period-based scenario. These are discussed below.

Creation Instance: When building a composition for a creation instance,

we begin by selecting a Headline or an Introduction segment according to the

interest-based or random technique. If a segment of type Headline is selected

to start the composition, then the next segment of type Introduction is se-

lected based on concept similarity. However, if there are multiple segments

with the same concept similarity, then the final segment selection is interest-

based or random. If the instance-based segments are not already clustered,

then they are sequenced by finding the concept similarity among them. If

the segments are grouped according to their type, then segments in the first

group are sequenced based on concept similarity and then incorporated in

the composition. Likewise, segments from the next group are sequenced and

incorporated until all groups are sequenced and incorporated in the compo-

sition. Concept similarity is maintained between the groups by selecting the

first segment from the proceeding group that is similar to the last segment

sequenced from the preceding group. Some multiple-presentation type seg-

ments from the groups need not be incorporated in order to maintain concept

similarity.

The Enclose segment is again selected based on concept similarity; how-

ever, if there are multiple segments with the same concept similarity then

79



the final segment selection is interest-based or random.

Creation Period: For a creation period composition, all segments belong-

ing to the body are chronologically ordered initially so that the predicate in

Eq. 3.1 holds for all segments. The rules for selection of single-presentation-

type segments (Table 4.3) and the selection of segments from clusters of

multiple-presentation-types are the same as for compositions of a creation

instance; however, the generated composition must be valid for the predicate

of Eq. 3.1.

Under these conditions, the objective of the final composition is to opti-

mize the thematic continuity. Although such a composition can possess large

forward time discontinuities and loss of information In. This is evident in

the analysis of Section 5.4.

Thematic Nearness Composition

We introduce thematic nearness in order to achieve good thematic continuity

but without the large temporal discontinuities associated with the thematic

composition technique. This technique also reduces the probability of in-

corporating only a single thread into the composition. To achieve this, we

observe that segments along a timeline belonging to the same thread have a

high level of similarity even as the thread progresses. Information similarity

is a function IS of concept similarity (CS) and the difference (bi − bj) in

creation time and date between segments si and sj.

IS is directly proportional to CS (IS ∝ CS) (i.e., similarity between two
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segments increases with the number of common segments). IS is inversely

proportional (IS ∝ 1
bi−bj

) to distance (bi− bj) on the timeline (i.e., segments

with similar information must be closer in creation time). For maintaining

thematic continuity, successor segments are created at the same time or later

than their predecessors. Therefore, for any sequential i and j the value of

bi − bj should be positive. IS between segments is defined as:

IS(si, sj) = A× cosine( ~Wi, ~Wj)

bi − bj
, (4.2)

where A is a normalization constant used for convenience. We assume

uniform distribution of segments along the timeline. If (bi − bj) = 0, (i.e.,

more than one segments maps to the same time) and use the cosine met-

ric for measurement of similarity between the two segments. This type of

composition will result in lower relative thematic continuity, and will reduce

the occurrence of dropped segments or temporal discontinuities. Therefore,

the objective of this composition is to simultaneously optimize information,

thematic continuity, temporal continuity, and target span covered. This is

evident in the evaluation in Section 5.5. Fig. 4.8 illustrates the relationships

among temporal, thematic, and thematic nearness compositions.

The above composition approaches allow a selection of segments to achieve

target goals such as thematic continuity. However, additional techniques are

required to deal with constraints on the duration of the final composition.
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Figure 4.8: Example Illustrating Relationships Among Composition Tech-

niques

4.2.3 Composition Under Time Constraints

We base our approach for composition under time constraints on two as-

sumptions. First, we assume that each segment type in the body presents

information about an event from a different aspect. Second, we assume that

each segment in the body is independent of the others. The implications of

these assumptions are that discarding segments from the body of a news item

or including segments in the body from various sources will not substantially

degrade thematic continuity of the composition. We consider scenarios for

the composition of single and multiple news items under a time constraint.

When there is ample time for the set of composed segments additional

content can be selected to augment the composition (single or multiple news
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items). When there is insufficient time, we must drop or cut some of the

segments to fit the constraint. Let du specify the target composition duration

and dc represent the time required for the overall composition (single or

multiple items). For a composition with single item dc is reduced to dSc
.

The two cases are considered below.

Insufficient Time Case

When there is insufficient time to accommodate the complete composition

sets we must drop some segments. If we use the thematic composition tech-

nique, dropping can be achieved by decreasing the value of τ so that addi-

tional segments are considered to have the same content and are eliminated

from the composition. A similar result can also be achieved by increasing λ.

By using this approach, fewer threads are encompassed and the information

level (In) of the composition decreases.

Another approach is to distribute the available duration across the com-

position sets. In this case each item gets an equal opportunity to be part of

the complete composition. However, this can result in incomplete composi-

tion of individual items.

The structural-based temporal exclusion rules of Table 4.4 are used to

form complete and cohesive news items. These rules dictate the time allo-

cated for each item while preserving cohesion.

If the application of these techniques fails to reduce the composition

set duration to within the constraint then we seek to drop segments from

within the domain-specific components. For news video we look to drop seg-
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Table 4.4: Exclusion Rules for Time-Constrained Composition

Rules Explanation

1. (du < dc)⇒ ((s ∈ Sh) 6⊂ Sc) If the duration of a news item is less than

required, then the segment of type Headline is dropped.

2. (du < dc)⇒ ((s ∈ Se) 6⊂ Sc) After dropping the headline, if the duration

of a news item is still less than required,

then the segment of type Enclose is dropped.

ments from the body of the news items. We propose heuristic techniques for

instance-based and period-based compositions.

Creation Instance Adjustments: For the creation-instance case, we at-

tempt to incorporate the greatest diversity of segment types into the com-

position at the expense of the depth of each segment type. This is a typical

knapsack problem [29], the objective of this type adjustment algorithm is to

optimize views or information and utilize as much of the available playout

duration as possible. For example, if there are multiple speech segments that

cannot all be accommodated then initially only one is selected. Similarly,

a single question and answer can be selected to comprise an interview seg-

ment. This process continues until all of the content is spanned. The number

of components in the composition increases with each pass. The associated

Creation-Instance Adjustment Algorithm leads to composition under playout
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time constraints. The algorithm, shown below, takes a composed sequence

(e.g., a news item) and an allocated duration dSc
as input and produces a

modified set Sc. The segments can be re-sequenced for presentation.

Creation-Instance Adjustment Algorithm:

1 Select the Introduction

2 If the Introduction segment duration is less than or equal to the allocated time dSc
then

2.1 Decrease the allocated time by the current segment duration (dSc
← dSc

− ds)

2.2 For each unvisited segment in all groups and allocated time remaining

2.2.1 For each group type in the body and allocated time remaining

2.2.1.1 For each segment in the group and no segment selected from the group

2.2.1.1.1 If the duration of the segment is less than or equal to the allocated time then

2.2.1.1.1.1 Select the segment for the composition

2.2.1.1.1.2 Decrease the composition duration by the duration of the current segment

2.3 If an Enclose segment available and its duration is less than or equal to the allocated time then

2.3.1 Select the segment for the composition

3 Else end (the composition does not fit the time allocation)

The example in Table 4.5 illustrates a composition set for one news item.

The application of the rules on this composition set with a target duration

of 600 seconds yields the result: Introduction, Speech1, Speech2, Wild Scene1,

Comment1, Wild Scene2, QA11, QA21.

The duration dSc
is allocated proportional to the complete playout time

of a composition. Hence, if there are k compositions in a collection and there

are n segments in each composition, then each composition is allocated a

duration:

dSci
←

∑n
m=1 dm

∑k
j=1

∑n
l=1 dsil

× du. (4.3)
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Table 4.5: Example of Creation Instance Time Adjustment

Introduction Body Enclose

Introduction(10) Speech1(60) Wild Scene1(30) Interview1 Comment1(20) Enclose(22)

QA11(60)

QA12(130)

QA13(100)

Speech2(180) Wild Scene2(40) Interview2 Comment2(15)

QA21(200)

QA22(50)

Wild Scene3(14) Comment3(9)

Some of the allocated duration can still remain for each composition in a

collection as playout duration of a segment cannot fit the available allocated

duration. At this stage the knapsack problem is simply reduced to the bin

packing problem [27], the remaining un-allocated durations from the compo-

sitions in a collection are accumulated and we try to fit segments from the

compositions into the accumulated remaining time, such that, on average,

least amount of time is left un-utilized. At this stage we do not care about

the views (information) contained in the segments. Therefore, we optimise

the playout duration of a composition.

To best fit a segment into the remaining time, we analyzed the following

schemes:

Best Fit Across all Compositions (BFAC): Select the segment with the

largest playout durations across all compositions and then select the

segment with the second smallest and so on. The process continues

until all the remaining time is used up or the playout durations of seg-
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ments that have not been selected are larger than the remaining time.

Least Fit Across all Compositions (LFAC): Select the segment with the

smallest playout durations across all compositions and then select the

segment with the second smallest and so on. The process continues

until all the remaining time is used up or the playout durations of seg-

ments that have not been selected are larger than the remaining time.

Best Fit in a Composition (BFIC): Select the segment with the largest

playout duration in a composition that has not been already selected.

Iterate through all the compositions selecting the segment with largest

playout duration that has not been already selected until all the remain-

ing time is used up or the playout durations of segments that have not

been selected are larger than the remaining time.

Least Fit in a Composition (LFIC): Select the segment with the small-

est playout duration in a composition that has not been already se-

lected. Iterate through all the compositions selecting the segment with

smallest playout duration that has not been already selected until all

the remaining time is used up or the playout durations of segments

that have not been selected are larger than the remaining time.

First Come First Select in a Composition (FCFS): Select the first seg-

ment in a composition that has not been already selected. Iterate

through all the compositions selecting the first segment that has not

been already selected in a composition until all the remaining time is
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Table 4.6: Performance of Bin Packing Schemes

Average du Time Leftover (Seconds)

(Seconds) BFAC LFAC BFIC LFIC FCFS

327 4.22 11.09 6.06 7.45 6.82

Table 4.7: Effect of Bin Packing Schemes on ethc & ecp

ethc ecp

BFAC BFIC FCFS BFAC BFIC FCFS

0.96 0.94 0.98 0.92 0.93 0.91

used up or the playout duration of segments that have not been selected

is larger than the remaining time.

Table 4.6 illustrates the performance of the about five schemes with re-

spect to the time leftover in a collection of composition after bin packing.

The observations are based on 100 queries with varying du.

Clearly the LFAC and LFIC schemes did not perform well. Next, we

evaluated the effect on thematic continuity and content progression of 375

compositions using BFAC, BFIC, and FCFS schemes as shown in Table 4.7.

As expected the thematic continuity of the BFAC scheme is not as good

as the thematic continuity of the FCFS scheme. However, the performance of

the BFAC scheme is better then the BFIC scheme as the number of segments

selected by the BFAC scheme are less and hence, spoils the thematic conti-
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nuity of fewer compositions. The content progression of the FCFS scheme is

more depictive of the content progression of the original compositions. How-

ever, the content progression of the BFAC is worse than BFIC as the content

progression becomes more static by selecting the largest segment.

Comparing the overall features (i.e., ethc, ecp, and leftover time) the BFAC

scheme performs best and we implement this scheme in our algorithms. The

steps for accommodating a collection of creation-instance-based compositions

under the time-limited constraint are as follows:

1. Allocate time dSci
proportionately to all compositions

2. Use creation-instance adjustment algorithm for each composition

3. Accumulate remaining times from all compositions

4. If accumulated time is greater than zero then

4.1 Try to accommodate all the compositions (by selecting introduction) that could not be selected

in the step 2

5. Use BFAC scheme to bin pack segments if any time remains

Creation Period Adjustments: For the creation-period case, we attempt

to incorporate segments from most of the creation period. This is also a knap-

sack problem [29], the objective of this adjustment algorithm is to optimize

the target span covered and utilize the available playout duration as much

as possible. We divide a creation period into sub-periods TPi to differentiate

segments on the timeline. Fig. 4.9 shows a creation timeline divided into

periods of 24 hours (e.g., 24, 48, 72, 96). All segments are chronologically

ordered on the creation timeline. Segments comprising a composition result-

ing from any period-based composition techniques are used for playout time
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adjustment.
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Figure 4.9: Dividing Periods for Temporal Constraint Composition

If the constraint duration is less than the total time of the composition

set then segments from some periods must be dropped. This can be achieved

by forward or reverse assembly. Forward assembly selects items from the

start of each period. Once the available time is consumed then subsequent

sub-periods cannot be assembled. Reverse assembly selects items from the

end of the sub-period, working backwards in time. When time runs out then

the earlier sub-periods cannot be adjusted.

For forward assembly, we use a forward breadth-first and depth-second

approach. Assume that a playout period for a news item TP consists of

{TP1, TP2, ...,

TPn} sub-periods as shown in Fig. 4.9. Staring with the first sub-period TP1,

we compose a body by selecting one segment from each sub-period per iter-

ation. After each iteration, if time is left then we select additional segments

by visiting the sub-periods again until all of the time has been adjusted. Se-

lection from each sub-period is performed in chronological order. If a cluster

of segments (belonging to the body) mapped to an instance is encountered,

then only a single segment is selected from the cluster per iteration. After
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all possible one-to-one segments in the sub-periods are accommodated and

there is still time left, we then revisit the clusters (many-to-one mappings)

and try to adjust the content from them. Each cluster from each sub-period

TPi is visited in chronological order.

The rules of Table 4.4 and the Creation-Period Adjustment Algorithm,

shown below, are applied to achieve these results. Segments mapping to

an instance in period-based customization can also be incorporated using

an instance-based breadth-first and depth-second approach. Similarly, we

can use a reverse breadth-first and depth-second approach. In this case

we begin composition from the last sub-period. However, the segments are

composed to appear in chronologically-ascending order. The algorithm also

takes a composed sequence (e.g., a news item) and an allocated duration

dSc
as inputs and produces a modified set Sc. The set is re-sequenced as a

chronology for presentation.

Creation-Period Adjustment Algorithm:

1 Select the Introduction

2 If the duration of the Introduction segment is less than or equal to the allocated time then

2.1 Decrease the allocated time by the current segment duration

2.2 For each unvisited segment in all sub-periods and allocated time remaining

2.2.1 For each sub-period in the body and allocated time remaining

2.2.1.1 For each segment in the sub-period and no segment selected

2.2.1.1.1 If a single segment is mapped to time t in a sub-period then

2.2.1.1.1.1 If the duration of the segment is less than or equal to the allocated time then

2.2.1.1.1.1.1 Select the segment

2.2.1.1.1.1.2 Decrease the allocated time by the current segment duration

2.2.1.1.2 If multiple segments are mapped to time t in a sub-period then

2.2.1.1.2.1 For each segment in the group and no segment selected

2.2.1.1.2.1.1 If the duration of the segment is less than or equal to the allocated time then

2.2.1.1.2.1.1.1 Select the segment
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2.2.1.1.2.1.1.2 Decrease the allocated time by the current segment duration

2.3 If an Enclose segment is available and its duration is less than or equal to the allocated time then

2.3.1 Select the segment for the composition

3 Else end (no composition fits)

Similar to the creation-instance adjustment algorithm, in creation-period

adjustment algorithm the user specified duration du is apportioned among

the compositions using Eq. 4.3. In a creation-period-based composition there

should not be large forward jumps or else the temporal continuity of a pre-

sentation can be compromised. Therefore, for bin packing, the BFAC scheme

cannot be used across all sub-periods of a composition but is used across all

sub-periods n (that have been already spanned by the creation-period adjust-

ment algorithm) in all compositions that have already been spanned by the

creation-period adjustment algorithm. If no segment is selected, we try to

accommodate segments from the n+1th sub-period (the next sub-period that

has not been spanned) across the composition, if time still remains we give

up adjusting time as not to reduce the temporal continuity of a composition.

The steps for accommodating a collection of creation-period-based com-

positions under the time-limited constraint are as follows:

1 Allocate time dSci
proportionately to all compositions

2 Use creation-period adjustment algorithm for each composition

3 Accumulate remaining times from all compositions

4 If accumulated time is greater than zero then

4.1 Try to accommodate all the compositions (by selecting introduction) that could not be selected

in the step 2

5 Use BFAC scheme to bin pack segments
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Window-based composition: We can also specify composition to be

based on a fractional use of the available composition set. For example,

one might specify the selection of 20% of the available content (50 minutes),

yet require this to be rendered in a constrained duration of 10 minutes. Three

types of window mappings for this selection are proposed:

1. Start-map window: The start of the window coincides with the start

of the period for which we have data available. In a start-map window

the stop point is defined beforehand. This yields a composition based

on the earliest available content.

2. End-map window: The end of the window coincides with the end of

the period for which we have data available. In a end-map window the

stop point is defined beforehand. This yields a composition based on

the most recent available content.

3. Middle-map window: The start and end of the window coincides

with a portion of the period for which we have data available.

In each case, creation-period adjustment algorithm can be used for com-

position.

Ample Time Case

If du > dc, then the complete set of segments can be accommodated. How-

ever, there is unused time available for the final composition. To consume

93



this leftover, we can select related unused content from the associated can-

didate sets. In the news domain, Wild Scenes, when available, and if already

selected in a composition, can be repeated as filler. The leftover time (du−dc)

is divided proportionally among the compositions in a collection. The play-

out duration apportioned to a composition is based on the total playout

duration of segments that can be used as fillers in a composition. If there

are no segments in a composition that can be used as fillers, the composi-

tion is not considered for filling. The Filler Algorithm shown below leads

to the accommodation of the leftover time (du − dc). The algorithm takes

a composed sequences (e.g., news item) and the leftover time and produces

composed sequences augmented by additional segments in the body of the

composition.

Filler Algorithm:

1 For each candidate segment in the composition and a nonzero leftover time

1.1 If the segment duration is less than or equal to the leftover time then

1.1.1 Include the segment in the composition

1.1.2 Decrease the leftover time by the included segment duration

2 If the leftover time is greater than zero then

2.1 If Wild Scene segment not already selected as filler exists then

2.1.1 Select the partial segment with playout duration equal to the leftover time

3 End

After using the filler algorithm once, it is a possibility that there is some

time leftover in a composition; for example, all wild scenes are used as fillers

and time is still left. The time left from each composition in a collection can

be accumulated and used to fully accommodate the partial segments. The

steps for filling a collection of compositions are as follows:
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1 Allocate time dSci
proportionately to all compositions

2 Use filler algorithm on each composition

3 Accumulate remaining time from all compositions

3.1 If accumulated remaining time is greater than zero then

3.1.1 Try to fully accommodate all partial segments in the compositions

A recognized problem with this approach is the fragmentation due to the

introduction of incomplete segments. An alternative approach is to introduce

a completely different type of filler such as advertisements.

4.3 Summary

In this chapter, we have presented the proposed composition and customiza-

tion techniques for producing a video piece from related segments. Our pro-

posed techniques are based on the existing structures of news composition,

and produce video that possesses correct time series of concepts or threads,

and smooth flow of theme.

The segments used in a composition are divided into two types:

single-presentation type and multiple-presentation type. The single-presentation

type include segments belonging to type Headline, Introduction, and En-

close. The multiple-presentation type include segments belonging to type

Wild Scene, Comment, Interview, Speech, and Enactment. Only a single seg-

ment from any type belonging to the single-presentation can be present in

a composition. However, multiple segments from any type belonging to the

multiple-presentation can be present in a composition.
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Our composition techniques are divided into two types: instance-based

and period-based. In instance-based composition, the creation time of all

the segments map to a single instance on chronological timeline, and hence

there is a many-to-one mapping between the segments and the timeline. In a

period-based composition the creation time of the segments map to a different

instance on chronological timeline, and hence there is a one-to-one mapping

between the segments and the timeline (in some cases more than one segment

can map to the timeline).

In instance-based composition, we assume that all the data share the

same concepts. Hence, segments in the body of a composition can be ran-

domly ordered with little or no loss in thematic continuity. Our thematic

composition technique can be used to obtain better information flow in the

composition.

In period-based composition we include temporal, thematic, and the-

matic nearness ordering techniques. In temporal composition, we assume

that a simple ordering of the segments according to their creation time and

structural specification will lead to a cohesive composition. However, tempo-

ral ordering will not result in a composition with good thematic continuity

because a storyline possesses a number of threads that offer different views

and there can be a variation in information among threads. We use thematic

composition to address this weakness.

In thematic composition, we use structural and temporal ordering; in

addition, we select segments based on the concept similarity between two

segments. We use cosine metrics to measure concept similarity between the
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two segments. However, since the resulting composition has a tendency to

stick to a small number of threads, and consequently result in large temporal

jumps, we use a thematic nearness technique to reduce temporal jumps. In

this technique, similarity between segments is evaluated based on the con-

cepts within the segments and normalized with the difference of creation time

between the two segments. Segments with a smaller number of common con-

cepts but with relatively closer creation time result in higher similarity value

than segments with larger number of common concepts but relatively far

apart in creation time. The resulting composition consists of a larger num-

ber of threads and smaller temporal jumps, and possesses better thematic

continuity than the temporal composition technique but lower thematic con-

tinuity than the thematic composition technique.

Our proposed techniques for composition under playout time constraints

are based on the assumptions that each kind of segment (e.g., Wild Scene,

Interview, and Comment) presents information from different aspects and each

segment in the body is independent of the other for purposes of presentation.

We present information from many different aspects and cover as much of

the creation time period as possible. For the creation-instance time-limited

composition technique we incorporate the diversity in the types of segments

as opposed to the number of segments of each type. In the creation-period

time limited composition technique we divide the complete period into sub-

periods and incorporate segments from as many sub-periods as possible as

opposed to the number of segments from each sub-period.

In the above techniques, if a presentation consists of more than one com-
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position, then the specified playout time is distributed among all the compo-

sitions. Each composition is assigned a time proportional to its total playout

duration. Any left over time from the compositions is accumulated and bin

packing technique (BFAC) is used to fill up the time. In this technique, the

segment with the largest playout time (not already included) is first selected,

followed by the second largest segment, and so on, until no more segments

can be accommodated.
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Chapter 5

Evaluation of the Proposed

Composition and

Customization Techniques

Synopsis

In this chapter, we use the metrics proposed in Chapter 3 to quantify the qual-

ity of a composed news video piece resulting from the proposed composition

techniques (Chapter 4). We evaluate the quality of video pieces composed by

using temporal, thematic, and thematic-nearness techniques. We also evalu-

ate the effect on quality of playout-time-constrained video compositions using

the time limited techniques.
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5.1 Introduction

News items/events in a broadcast news session are sequenced according to

their importance. We observed that the greater the importance of a news

item the earlier it is presented in a session. Further, the duration of the

presentation of a news event depends on the importance of the content or

sub-event being presented. In Fig. 5.1 broadcast durations of a single in-

stance/day of a single news item from the three sources are shown. The

relative (within a source) extreme variations in presentation duration are a

function of the content importance (e.g., in a murder story if the culprit is

caught then more time is given to the news item).

In a period-based composition, if the playout duration of a news item

is not constrained, then all related data are composed. Therefore, in the

analysis presented in this chapter, the quality of automatically composed

news items that are much longer than conventional broadcast news items is

also evaluated.

We present an analysis of news items composed using instance-based com-

position in which we analyze the quality of a news item when segments are

shuffled. We present the analysis of a period-based temporal, thematic, and

thematic nearness compositions. For thematic and thematic nearness com-

position we evaluate a number of compositions of the same single news item.

The different compositions are achieved by varying the value of dissimilar-

ity threshold λ. By changing the value of λ we demonstrate the concept of

thread inclusion in a composition. As the value of λ increases, the thematic
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Figure 5.1: Delineation of Broadcast Durations of a Single News Item from

Different Sources Over a Period of 14 Days
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jump (Fig. 3.1) decreases, hence, including a smaller number of threads in a

composition.

Note that we do not evaluate structural continuity here because we ex-

pect structural constraints already to be enforced, resulting in a structural

continuity equal to one.

We have 10 hours of digitized news video data and their corresponding

closed-caption data acquired from the network sources. The data set contains

335 distinct news items obtained from CNN, CBS, and NBC. The news

items comprise a universe of 1,731 segments. The playout duration d or the

segments varies between 2 seconds and 140 seconds.

To evaluate the composition techniques we use data from four news topics:

“United Nations and Iraq Standoff,” “Clinton and Intern Controversy,” “The

Pope’s Visit to Cuba,” and “Alabama’s Bombing Incident.” Data for these

news topics cover a period of two to fifteen days. The performance of content

progression in the results represent the playout duration of segments in the

original broadcast composition.

5.2 Instance-Based Composition

In this section we analyze the effect of shuffling segments that are mapped

to an instance on a historical timeline. In Table 5.1 we show the thematic

continuity of the segments sequenced in actual broadcast news. We then

shuffle these segments around. The segments in a broadcast news item are

assumed to be from the same instance on the creation timeline and hence
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contain information from the same sub-event. However, news items that

contain transposed segments from previous instances have lower thematic

continuity. The segments are clustered according to their type and ordered

as follows:

Wild Scene→ Comment → Interview→ Speech→ Enactment

As seen in Table 5.3, the thematic continuity before and after the segment

shuffling does not deteriorate considerably and remains within the range of

reference thematic continuity values. In some cases the thematic continuity

improves.

5.3 Temporal Ordering

Table 5.4 shows the behavior of the period-based temporal ordering technique

applied to the segments in the body of a composition. In this technique we

simply order the segments along a timeline. As a result, temporal continuity

is highly dependent on the default continuity among the segments. Dur-

ing measurement of the temporal continuity the tolerated value of a forward

jump, δ, is assumed to be 24 hours. Because all available data are composed

in these compositions, the value of the information and period span metrics

are equal to one. We also ensure that segments are not repeated or trans-

positioned here and any degradation in temporal continuity is then due to

large forward temporal spans between consecutive segments if the segments

only exist for those temporal spans.
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Table 5.1: Evaluation of Instance-Based clustered Composition

Comp. # No. of etc etc Comp. # No. of etc etc

Segs Broadcast Clustered Segs Broadcast Clustered

1 9 0.97 0.93 39 4 1.00 1.00

2 9 0.91 0.46 40 6 1.00 1.00

3 8 0.97 0.94 41 10 1.00 0.98

4 7 1.00 0.94 42 7 1.00 1.00

5 8 0.89 0.90 43 5 1.00 1.00

6 7 0.89 0.75 44 5 0.98 0.98

7 10 0.93 0.70 45 7 1.00 1.00

8 6 0.94 0.98 46 4 1.00 1.00

9 10 0.98 0.92 47 5 0.97 0.97

10 6 0.99 0.97 48 5 1.00 1.00

11 7 1.00 1.00 49 10 0.99 0.98

12 5 1.00 0.98 50 8 0.98 0.98

13 6 0.95 0.89 51 5 0.94 0.90

14 8 0.97 1.00 52 5 0.89 0.87

15 9 0.99 0.99 53 4 1.00 1.00

16 7 0.97 1.00 54 6 1.00 1.00

17 4 1.00 1.00 55 7 1.00 0.99

18 7 0.98 0.99 56 5 0.98 0.98

19 14 1.00 1.00 57 11 1.00 1.00

20 12 0.99 1.00 58 6 0.98 0.96

21 4 0.94 1.00 59 4 1.00 0.99

22 12 1.00 1.00 60 4 1.00 0.99

23 11 0.98 0.93 61 7 0.98 0.90

24 8 1.00 1.00 62 7 1.00 0.99

25 11 1.00 1.00 63 5 1.00 1.00

26 4 1.00 1.00 64 4 1.00 1.00

27 9 1.00 1.00 65 9 1.00 0.94

28 7 0.97 0.99 66 15 1.00 0.97

29 8 1.00 0.97 67 8 0.91 0.90
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Table 5.2: Evaluation of Instance-Based clustered Composition Contd.

Comp. # No. of etc etc Comp. # No. of etc etc

Segs Broadcast Clustered Segs Broadcast Clustered

30 9 0.80 0.68 68 11 1.00 1.00

31 12 0.93 0.76 69 8 1.00 0.96

32 5 0.96 0.97 70 7 1.00 0.94

33 4 1.00 1.00 71 5 0.96 0.97

34 9 0.99 1.00 72 5 0.99 0.96

35 7 0.98 0.99 73 6 1.00 1.00

36 6 1.00 0.91 74 8 1.00 1.00

37 7 0.86 0.93 75 6 1.00 1.00

38 6 0.96 0.87 76 7 1.00 1.00

5.4 Thematic Composition

By using the data from the first two compositions in Table 5.4 we composed

two news items with a constant similarity threshold value τ = 1 and different

values of dissimilarity threshold λ to study the thematic composition tech-

nique. The results for these two news items are shown in Tables 5.5 and 5.6.

Note that identical results were obtained within the values ranges specified

in the table for λ.

The results show that as the value of λ increases the thematic continuity

increases and the information (In) value decreases. The number of segments

in a composition, temporal continuity, and period span covered, do not show

distinct patterns. This is because different values of λ lead to compositions

following different threads in the storyline. For lower values of λ, all threads
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Table 5.3: Evaluation of Instance-Based Thematic Composition

Comp. No. of Not-Clustered Clustered Comp. Actual Not-Clustered Clustered

# Segs ethc ethc # Segs ethc ethc

1 9 0.97 0.96 2 9 0.93 0.52

3 8 0.95 0.95 4 7 1.00 1.00

5 7 0.95 0.91 6 7 0.85 0.76

7 10 0.87 0.87 8 6 1.00 0.98

9 10 1.00 0.96 10 6 0.98 0.99

11 7 1.00 1.00 12 5 1.00 0.98

13 6 0.90 0.93 14 8 0.99 1.00

15 8 0.98 0.99 16 7 1.00 1.00

17 4 1.00 1.00 18 7 0.98 0.99

19 14 1.00 1.00 20 12 1.00 1.00

21 4 1.00 1.00 22 12 1.00 1.00

23 11 0.99 0.98 24 8 1.00 1.00

25 11 1.00 0.99 26 4 1.00 1.00

27 9 1.00 1.00 28 7 1.00 0.99

29 8 1.00 1.00 30 9 0.81 0.78

31 12 0.91 0.89 32 5 0.97 0.97

33 4 1.00 1.00 34 9 1.00 1.00

35 7 1.00 1.00 36 6 1.00 0.99

37 4 0.93 0.87 38 6 0.97 0.88

39 4 1.00 1.00 40 7 1.00 1.00

41 10 1.00 1.00 42 7 1.00 1.00

43 5 1.00 1.00 44 5 0.99 0.99

45 7 1.00 1.00 46 4 1.00 1.00

47 5 0.97 0.97 48 5 1.00 1.00

49 10 0.99 0.99 50 8 0.99 1.00
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Table 5.4: Evaluation of Period-Based Temporal Ordering

Composition No. of Segs Span ethc ecp

1 18 01/29/1998, 18:38:43 - 01/30/1998, 09:09:21 0.85 0.91

2 91 01/21/1998, 18:30:00 - 02/04/1998, 22:13:40 0.92 0.96

3 79 01/20/1998, 20:13:20 - 02/04/1998, 22:17:00 0.72 0.96

4 31 01/19/1998, 23:04:01 - 01/25/1998, 18:06:15 1.00 0.96

5 19 01/29/1998, 12:00:00 - 02/02/1998, 22:05:16 1.00 0.94

6 18 01/29/1998, 18:38:43 - 02/05/1998, 22:39:08 0.89 0.95

7 17 02/07/1998, 22:20:18 - 02/18/1998, 20:29:56 0.99 0.98

8 36 01/29/1998, 18:38:43 - 02/18/1998, 20:29:56 0.99 0.97

9 22 01/21/1998, 18:30:00 - 01/23/1998, 18:32:06 0.85 0.94

10 32 01/21/1998, 20:00:09 - 01/23/1998, 18:32:06 0.88 0.96

11 22 01/24/1998, 18:30:16 - 01/28/1998, 09:15:23 1.00 0.98

12 24 01/28/1998, 18:33:25 - 02/01/1998, 08:00:21 1.00 0.95

13 9 01/23/1998, 18:55:12 - 01/26/1998, 09:22:24 1.00 0.97

14 8 02/04/1998, 22:22:20 - 02/05/1998, 22:12:18 0.98 0.95

15 29 01/29/1998, 18:49:22 - 02/03/1998, 22:03:51 1.00 0.93

16 6 11/16/1997, 13:12:00 - 01/28/1998, 23:07:41 0.99 1.00

17 20 01/20/1998, 20:24:54 - 02/09/1998, 09:19:19 1.00 0.91

18 13 01/19/1998, 23:04:01 - 01/21/1998, 18:39:05 1.00 0.93

19 15 01/23/1998, 18:49:30 - 01/25/1998, 18:06:15 0.97 0.95

20 8 01/20/1998, 20:00:37 - 01/20/1998, 20:05:18 1.00 1.00

21 26 01/24/1998, 08:20:35 - 01/28/1998, 09:03:53 1.00 0.97

22 24 01/26/1998, 18:48:09 - 01/28/1998, 09:03:53 1.00 0.97

23 15 01/20/1998, 20:13:20 - 01/21/1998, 20:24:52 0.99 0.92

24 37 01/24/1998, 18:32:03 - 01/30/1998, 18:34:43 0.97 0.97

25 35 01/27/1998, 18:39:50 - 02/02/1998, 09:01:18 0.99 0.96

26 30 02/02/1998, 22:11:11 - 02/07/1998, 22:07:07 1.00 0.99

27 31 01/30/1998, 22:10:12 - 02/07/1998, 22:07:07 0.99 0.97

28 27 02/07/1998, 22:05:03 - 02/13/1998, 20:01:20 1.00 1.00

29 26 02/09/1998, 09:01:47 - 02/15/1998, 21:05:40 1.00 1.00

30 151 01/20/1998, 20:13:20 - 02/15/1998, 21:05:40 0.79 0.98
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are included in a composition with low thematic continuity. The automatic

composition has relatively high thematic continuity as compared to the ref-

erence broadcast news.

Table 5.5: Evaluation of Thematic Continuity: Composition 1

Comp. # No. of Segs λ In ethc ecp etc eps

1 18 0.1 - 0.42 1.0 0.86 0.91 1.00 1.00

2 15 0.43 0.82 0.93 0.94 1.00 1.00

3 14 0.44 - 0.46 0.77 0.89 0.93 1.00 1.00

4 4 0.47 - 0.5 0.19 0.90 0.96 1.00 0.0008

5 3 0.51 - 0.52 0.14 0.93 0.95 1.00 0.0007

6 2 0.53 - 0.56 0.10 0.99 0.93 1.00 0.0007

7 2 0.57 - 0.58 0.09 1.00 1.00 1.00 0.0008

8 8 0.59 0.42 1.00 0.96 1.00 0.99

9 5 0.6 0.25 1.00 0.95 1.00 0.99

10 4 0.61 0.19 1.00 0.96 1.00 0.99

11 3 0.62 0.14 1.00 0.95 1.00 0.99

12 1 0.63 - 1.00 0.05 NA 1.00 NA 0.00

Observing the pattern of a number of segments selected in thematic com-

position of various storylines (Table 5.7) we see that there are the common

concepts among the threads. If the concepts are less common then very few

segments are selected.

5.5 Thematic Nearness Composition

Thematic nearness composition is studied for the first two compositions of

Table 5.4. The results are tabulated in Tables 5.8 and 5.9. The data indicate
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Table 5.6: Evaluation of Thematic Continuity: Composition 2

Comp. # No. of Segs λ In ethc ecp etc eps

1 91 0.10 - 0.47 1.00 0.92 0.96 0.99 1.00

2 4 0.48 - 0.58 0.037 1.00 0.95 1.00 0.000056

3 6 0.59 - 0.61 0.06 1.00 1.00 1.00 0.004463

4 3 0.62 - 0.63 0.02 1.00 1.00 1.00 0.000047

5 2 0.64 - 0.74 0.018 1.00 1.00 1.00 0.000047

6 1 0.75 - 1.00 0.008 NA 1.00 NA 0.00

that thematic continuity is usually not as high as compared to the thematic

composition technique, but higher than using temporal ordering alone. It

remains within the range of the thematic continuity provided by the reference

broadcast news. The number of segments incorporated in a composition is

most often higher than achieved with the thematic continuity alone. That is,

more threads are covered in the composition, and therefore, more information

is covered as well. For these compositions the normalization constant, A, is

50.

For both the thematic and thematic nearness composition techniques, if

the value of λ is very low during composition then the value of the thematic

continuity remains within the reference values (Table 3.8). However, with

increasing λ, thematic continuity increases but the value of information falls

due to the smaller number of segments incorporated in a composition. As

λ increases, the period span coverage lacks a pattern due to inclusion of

different topic threads. The performance of both thematic and thematic

nearness composition techniques is highly dependent on the similarity of
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Table 5.7: Evaluation of Thematic Continuity

Comp. # Candidate Composed In ethc ecp etc eps

Segments Segments

1 18 4 0.20 0.88 0.97 1.00 .00086

2 91 4 0.037 1.00 0.95 1.00 0.000056

3 79 1 .01 NA 0.75 NA NA

4 31 31 1.00 0.72 0.96 1.00 1.00

5 19 19 1.00 1.00 0.94 0.97 1.00

6 10 10 1.00 1.00 1.00 1.00 1.00

7 17 16 0.94 0.94 0.99 1.00 1.00

8 36 36 1.00 0.99 0.97 1.00 1.00

9 22 4 0.17 0.99 0.95 1.00 0.000393

10 32 30 0.94 0.93 0.97 0.99 1.00

11 22 21 0.95 0.99 0.99 0.99 1.00

12 24 24 1.00 1.00 0.95 1.00 1.00

13 9 9 1.00 1.00 0.97 1.00 1.00

14 8 8 1.00 0.98 0.85 1.00 1.00

15 29 29 1.00 1.00 0.93 1.00 1.00

16 6 5 0.83 1.00 1.00 1.00 1.00

17 20 20 1.00 1.00 0.91 1.00 1.00

18 13 13 1.00 1.00 0.89 1.00 1.00

19 15 15 1.00 0.97 0.96 1.00 1.00

20 8 8 1.00 1.00 1.00 1.00 1.00

21 26 26 1.00 1.00 0.97 1.00 1.00

22 24 24 1.00 1.00 1.00 0.97 1.00

23 15 1 .04 NA 0.75 NA NA

24 37 37 1.00 0.97 0.97 1.00 1.00

25 35 35 1.00 0.99 0.92 1.00 1.00

26 30 30 1.00 1.00 0.99 1.00 1.00

27 31 31 1.00 0.99 0.97 1.00 1.00

28 27 26 0.96 0.99 1.00 1.00 1.00

29 26 25 0.96 1.00 1.00 1.00 1.00

30 151 1 0.00 NA 0.75 NA NA
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Table 5.8: Evaluation of Thematic Nearness: Composition 1

Comp. # No. of Segs λ In ethc ecp etc eps

1 18 ≤ 0.00043 1.0 0.85 0.91 1.0 1.0

2 8 0.00044 - 1.0 0.42 0.80 0.90 1.0 0.0066

3 4 1.1 - 1.2 0.19 0.87 0.96 1.0 0.000861

4 2 1.3 - 1.8 0.09 0.88 1.0 1.0 0.000268

5 1 ≥ 1.9 0.05 NA 1.0 NA 0.0

Table 5.9: Evaluation of Thematic Nearness: Composition 2

Comp. # No. of Segs λ In ethc ecp etc eps

1 91 0.0 - 0.00016 1.0 0.92 0.96 0.99 1.0

2 79 0.00017 - 0.0002 0.86 0.91 0.96 0.99 0.60

3 54 0.00021 - 0.00022 0.58 0.88 0.97 0.99 0.33

4 18 0.00023 - 0.0044 0.18 0.87 0.97 1.0 0.0047

5 7 0.0044 - 0.15 0.068 0.90 0.97 1.0 0.00023

6 4 0.16 - 0.76 0.037 0.99 0.95 1.0 0.000056

7 2 0.77 - 1.35 0.017 1.0 1.0 1.0 0.000019

8 1 ≥ 1.35 0.008 NA 1.0 NA 0.0
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concepts among the candidate segments.

5.6 Time-Limited Composition

In this section we consider the quality of compositions sequenced under play-

out time constraints. The effect on thematic continuity and content progres-

sion is shown in Table 4.7. The thematic continuity varies between 0.45 and

1.00 and the content progression varies between 0.5 and 1.00.

Next, we evaluate the quality of period-based time-limited compositions.

We also compare the performance of the creation-period time-limited algo-

rithm with the trivial scheme. Both the trivial and period-based breadth-first

time-limited composition schemes are evaluated based on Composition 2 of

Table 5.9 and a λ = 0.00017.

5.6.1 Trivial Scheme

For this adjustment technique we include all sequential segments that fits into

the time constraint. Table 5.10 shows the character of these compositions

for a range of composition durations applied to the technique.

5.6.2 Creation-Period Time Limited Algorithm

Again using Composition 2 from Table 5.10, results are generated based on

the technique and are shown in Table 5.11. Here the values of TPi are con-

stant at 24 hours. The data indicate that span coverage is usually greater as
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Table 5.10: Evaluation of Trivial Temporal Adjustment: Composition 2

Comp. # Duration No. of Segs In etc ecp etc eps

1 3,000 79 0.86 0.91 0.96 0.99 0.60

2 2,000 76 0.83 0.91 0.96 0.99 0.60

3 1,000 33 0.35 0.86 0.96 0.98 0.84

4 500 13 0.13 0.88 0.98 1.0 0.0045

5 250 7 0.068 0.90 0.97 1.0 0.00023

compared to the trivial approach. The approach also yields less information,

temporal continuity, and thematic continuity, but within the references val-

ues. As compared to the trivial technique, the creation-period time limited

technique provides information over a greater span.

Table 5.11: Evaluation of Creation-Period Time Limited Algorithm: Com-

position 2

Comp. # Duration (Seconds) No. of Segs In etc ecp etc eps

1 3,000 79 0.86 0.91 0.96 0.99 1.0

2 2,000 64 0.70 0.91 0.97 0.99 0.99

3 1,000 40 0.44 0.90 0.96 0.98 0.89

4 500 19 0.19 0.93 0.94 0.96 0.81

5 250 10 0.13 0.95 0.95 0.93 0.81

5.7 Observations and Analysis

In the evaluation of video pieces produced by the proposed techniques, we

compare the values obtained as the result of the use of the metrics with
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that of the reference values established from the broadcast news. We assume

that the broadcast news is of the quality that is tolerated by the viewers;

therefore, the quality of automatic news production, if within the reference

values, should be tolerable by the viewers. We have not conducted any user

study to evaluate the quality of the automatic news video. The quality

of the automatically produced video can be adjusted. For example, the

thematic continuity of the composed news can be varied by adjusting the

dissimilarity and similarity thresholds. The values for these thresholds used

in the composition and evaluations are not absolute. Depending on the

requirements of the viewer the thresholds can be altered as needed. For

example, if viewers can tolerate rough thematic transitions in a composition

then the dissimilarity threshold can be lowered, or only the temporal ordering

can be used.

Similarly, the thresholds used with the metrics for quality evaluation and

during compositions can be adjusted to suit the viewer’s requirements.

System sensitivity for various features (e.g., information, span covered,

theme, and content progression) was evaluated as a series of experiments.

In Figures 5.2–5.8 we changed the dissimilarity threshold λ (Eq. 4.1) using

thematic composition and observed the change in the overall quality of a

composition. We varied λ between 0.0 and 1.0 and observed the change in

quality of composition of composition numbers 1–25 shown in Table 5.7. On

average there are 27 segments in each composition and the thick line in each

figure depicts the average value for the metrics involved.

As seen from Fig. 5.2 the information contained in a composition changes
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Figure 5.2: Information vs. Dissimilarity Threshold
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Figure 5.3: Thematic Continuity vs. Dissimilarity Threshold
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Figure 5.4: Temporal Continuity vs. Dissimilarity Threshold
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Figure 5.5: Content Progression Quality vs. Dissimilarity Threshold
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Figure 5.6: Period Span Covered vs. Dissimilarity Threshold
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and in most of the cases it decreases steadily as λ increases. This is due

to fewer threads being incorporated in a composition. The pattern of the

thematic continuity is similar to the behavior of the quality of information

as λ varies. In evaluating the thematic continuity (Fig. 5.3) we assumed that

the thematic continuity of a composition comprised of one segment is zero.

Content progression of a composition decreases as the λ increases. If

a large number of segments are present in a composition then the content

progression averages to a reasonable value but as the number of segments

decrease the change in content progression is more prominent (Figs. 5.7 and

5.8).

In evaluating temporal continuity we assumed that a composition com-
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prised of a single segment has a thematic continuity of one. As observed

from Figs. 5.2–5.8 the quality of a composition, on average, is better when λ

varies between 0.3 and 0.5. Below these values thematic continuity is lower

on average. Above these values, thematic continuity, temporal continuity,

and content progression show erratic behavior. In addition, the number of

segments and information on average decrease appreciably in a composition.

Therefore, a dissimilarity threshold between 0.3 and 0.5 is a reasonable op-

erating point for our data set.

For all of the 25 compositions we maintained a similarity threshold (τ) of

1.0. In later observations we found that the variation in the value of τ does

not effect the quality of a composition appreciably; therefore, the selection

of τ equal to 1.0 is not crucial to the quality of a composition.

5.8 Summary

The values of thematic continuity evaluated after shuffling segments in instance-

based composition is found to be within the range of reference values. The

thematic continuity fell below the reference value in one out of 76 composi-

tions evaluated. This shows that in a instance-based composition, random

sequencing of segments in a body is possible without degrading its quality.

The values for information and period span metrics for period-based tem-

poral composition are equal to one due to all the segments are incorporated

in a composition. For the temporal composition technique we rely on the

ordering of segments on the timeline to provide smooth information flow in
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a composition. By observing the values of thematic continuity we show that

the assumption is correct. However, the values are always within the range

of reference values, they are not always very high.

For the thematic composition technique, as the value of dissimilarity

threshold λ increases there is a sudden drop in the number of segments in a

composition. This phenomenon is due to the tendency of the technique to

follow a smaller number of threads or include segments with similar concepts

(i.e., segments that do not have large thematic jumps between them). How-

ever, as expected the thematic continuity is higher overall than the output

of the temporal composition technique. The results do not show degradation

in the temporal continuity as expected, due to the inclusion of only a few

segments. The segments do not belong to the threads with large time spans.

Also, as individual threads cover small period spans, the spans of the pe-

riod covered in a composition are small. Consequently, as a result of smaller

threads in a composition, information in the composition is low.

For the thematic nearness composition technique, as expected, the val-

ues of period span covered and information are higher than the thematic

composition technique but not as high as temporal composition technique.

On average, the thematic continuity is lower than the thematic continuity of

thematic composition but much higher than the temporal composition. The

temporal continuity decreases slightly as the period span covered is larger

than thematic composition.

The results obtained by analyzing the period-based time-limited tech-

nique show that the resulting compositions do not degrade considerably as
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compared to the original compositions. Furthermore, this technique covers a

larger period span as compared with the trivial scheme.

In each of the above evaluations, the automatically composed video pieces

where found to be comparable to, or exceed the quality of, the reference

broadcast video. This result, based on the defined metrics, both validates

our initial assumptions used for creating the composition techniques and

demonstrates the viability of automatically composing news video.
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Chapter 6

Concepts Used in the Design of

a News Digital Video

Production System

Synopsis

In this chapter, we present concepts used in design and implementation of

various components of a news digital video production system. An ontol-

ogy is used to establish information and relationships among the informa-

tion/concepts in a DVPS. A news video data model is used to represent

extracted information, and the relationships and the extracted information

are stored as metadata. We present observations about semantics in video

data, and based on these observations we propose a novel hybrid retrieval

technique.
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6.1 Introduction

A challenging problem in a DVPS is achieving rapid search and retrieval of

content from a large video corpus. Because of the computational cost of

real-time image-based analysis for searching such large data sets, we pur-

sue techniques based on off-line or semi-automated classification, indexing,

and cataloging. We investigate techniques for video concept representation,

retrieval, and concept manipulation. In particular, we focus on automatic

composition of news stories.

To select and compose video clips in a DVPS, we need to process video

data so that they are in clip-queryable form. This is achieved by creat-

ing an ontology and a data model. An ontology consists of a vocabulary

(concepts utilized for communicating information to a viewer) needed to

extract/annotate information from video clips and establish relationships

among the information. A data model is used to represent the extracted

information and relationship among the information in a manner that can

be used to process user queries and compose video. The concepts/objects

that characterize the information contained in video data are called metadata

[17, 25, 36, 46].

Besides visual, audio transcripts can also be used as a source of metadata

because considerable information exists in the audio stream. Based on visual

and audio transcript metadata, we propose a novel four-step hybrid approach

for retrieval and composition of video newscasts. In the first step, we use

conventional techniques to retrieve information from unstructured metadata.
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In the second step, unstructured metadata is used to cluster retrieved infor-

mation into individual news items using a dynamic technique to establish an

information cut-off threshold for clustering news items. In the third step, we

propose a transitive search technique to increase the recall of the retrieval

system. In the final step, we use the union of the different metadata sets to

further increase recall performance.

In addition to the composition and customization techniques presented

in Chapter 4, we present a grammar and associated production constraints

necessary to facilitate automatic video composition in the news domain. The

grammar encompasses composition based on content as well as the structure

of a newscast. In addition to providing a framework for logical composi-

tion of information, the grammar provides constraints for customization of

information under bounds on playout duration or content selected by a user.

Next, we discuss the concepts behind the proposed video data model, on-

tology, annotation techniques, data representation, data selection techniques,

and data composition techniques for implementation of a news DVPS.

The symbols used in this chapter are summarized in Table 6.1.

6.2 Video Data Ontology and Modeling

For automatic customization of news it is imperative that we understand

how a newscast is composed and what elements convey information. The

presentation depends greatly on a user’s preference of medium and content.

For example, a user can seek a topic that comprises text and images; only
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Table 6.1: Symbols Used to define Relationships

Symbols Descriptions

Rf A binary relationship on S for transitive search

Ru A binary relationship on S for related segment search

d(a, b) The similarity distance between two sets of keywords

p Production grammar

sa Synthesized attribute of p

NC Total number of news item in the universe

NI A news item consisting of sequenced segments from set Sc.

U A set of users

E Edge of a directed graph whose vertices are NI

l(E) Function that maps a user to an edge E

associated audio in a specified duration; news about a particular person; or

news items from a particular category. The system needs to know what infor-

mation should be presented, and how. Hence, we create an object ontology

to support searching and compose, as shown in Table 6.2.

Objects associated with the ontology fall within the categories defined

by Rowe et al. [77] (i.e., bibliographical, structural and content based).

However, we divide information conveyed by the concept ontology into two

categories structural metadata and content metadata and we define them as:

Structural Metadata: Video structure includes media-specific attributes

such as recording rate, compression format, and resolution; and cinemato-

graphic structure such as frames, shots, sequences, and the spatio-temporal
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Table 6.2: News Data Object Ontology

Entity Tangible object part of a video stream.

Location Place shown in video.

Origin Source where video data are acquired.

Text Text can be of the following types:

Transcript Transcript associated with a particular segment of a AV stream.

Reference Any additional information (e.g., remarks, critiques, and links).

Graphics Stills or graphics presented in a newscast.

Concept Represent the inferences derived from the presented material. Concepts can be:

Entity Anything that is mentioned in the commentary (e.g., person, thing).

Location Associations with certain places and countries that are discussed but

not part of the visuals.

Event & Action A happenings in a newscast item.

Cinematography Describe creation-specific information (e.g., video format, title, medium, and playout rate).

Audio Audio can be of the following types:

Lip Sync When the audio requires tight synchronization with the video.

Wild Dialogue Dialogue that does not sync with a visible speaker [19].

Voice Over (VO) When a story uses continuous visuals without showing the speaker.

Segment We divide a newscast item into conceptual segments:

Headline Synopsis of the news event.

Introduction Anchor introduces the story.

Current Describes the existing situation.

Action footage Current or wild scenes from the location.

Enclose Contains the current closing lines.

Reenactment Accurate scenes of situations that are already past or cannot be

filmed [19].

Complete A news item which cannot be broken down into previous segments.

Category Classification of news items.

Reaction Represents the response of a person or persons to a situation. The response can be

acquired by:

Interview One or more people answering formal, structured questions [19].

Speech Formal presentation of views without any interaction from a reporter

or anchor.

Comments Informal interview of people at the scene in the presence of wild sound.
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characterization of represented objects. These are further decomposed as:

• Media-specific metadata: Describing implementation-specific infor-

mation (e.g., video compression format, playout rate, resolution).

• Cinematographic structure metadata: Describing creation-specific

information (e.g., title, date recorded, video format, camera motion,

lighting conditions, weather; shots, scenes, sequences; object spatio-

temporal information).

Structural annotations organize linear video sequences as a hierarchy of

frames, shots, and scenes [30].

Content Metadata: Video content metadata are concerned with objects

and meaning in the video stream that appear within or across structural

elements. Content metadata are further decomposed as:

• Tangible objects: Describing objects that appear as physical entities

in the media stream (e.g., a dog, a disc).

• Conceptual entities: Describing events, actions, abstract objects,

context, and concepts appearing in or resulting from the media stream

(e.g., running, catching, tired, master).

A suitable video data model is required to represent object and relation-

ships among them. Two types of techniques are used to model video and

associated metadata, segmentation [51, 65, 77, 94] and stratification [88]. In
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segmentation, video is divided in groups of contiguous frames or segments

that have a start and a end point and metadata are assigned to individual

segments. In this process no contextual (concepts) information among the

segments is maintained. However this limitation is overcome by stratifica-

tion; contextual information is segmented into chunks with a begin and end

frame (Fig. 6.1).

Septuplets born in Saudi Arabia

Nobel prizes announced

Princess Diana remembered
BU campus in chaos after coup

Pager with voice mail

news04/15/98 | 14833 |
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                   A2             Logo

 A2             Logo

 A2             Logo

A1  --  First Anchor 
A2  --  Second Anchor 

Chaos in Kosovo

Figure 6.1: Newscast Video Data Model

In the news video data model we utilize both the existing models (i.e.,

segmentation and stratification). For maintaining structural continuity (i.e.,

provide complete information) in a composition and to be able to drop seg-

ments in playout constrained time composition we manually segment video

data. However, to aid in a search, we maintain contextual information across

video data. The newscast information model shown in Fig. 6.2 depicts

the conceptual and structural relationships within newscast video data. For
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better representation we use object-oriented modeling concepts by treating

newscasts as a set of classes.1 A newscast document class consists of in-

stances of broadcast sessions or a re-composed news document which in turn

consists of a number of segmented structural units or news items. The in-

formation contained in each news item is stored as object metadata. Each

news item can consist of 1 to n objects (e.g., anchor, Clinton, field footage).

An object can be composed of other objects that form a hierarchy of objects

or concepts. An object can belong to more than one news item and similarly

a news item can belong to more than one document. For example, a train

accident can be broadcasted on different sources, or a single instance (one

channel) of a news item can belong to different virtual (queried) documents.

6.3 Information Extraction and Representa-

tion

The operation of a video database implies the management of a large quantity

of raw video data. The presence of this raw data does not significantly assist

in indexing and searching. In contrast, video information assists this process.

Although any suitable representation can be used to represent metadata,

text is commonly used. The concepts in the ontology are captured as tokens

(text) and are both domain-dependent and domain-independent and stored

1A rectangle in the figure denotes a class, a diamond is a sign of aggregation, a “1+”

denotes that there can be one or more objects in an item, an empty circle at the end of a

line denotes a single object, and a filled circle denotes multiple objects.
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Figure 6.2: Newscast Video Data Model

as metadata (Fig. 6.3).

Video Data Video data

Metadata
Concepts

Object
Ontology

Metadata

Video
Archive

Information
Extraction

Data
Model

Figure 6.3: Schematic Representation of the Video Information Extraction

Process

In addition to extracting concept-based information from the visuals as-

sociated with news video data, information from closed caption data can be

extracted. Next, we discuss how information can be extracted from various

data sets.
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Annotated Metadata

The problem of extracting information becomes one of identifying informa-

tion contained in the video data and associating it with tokens (metadata).

Not surprisingly, humans are quite good at extracting information from video

data, whereas it is difficult to get the same performance from an automaton.

In the annotation process, a viewer takes notes, albeit biased, of the content

of the video stream. During this process, the annotator can be assisted by a

computer to provide a more regular representation to capture domain-specific

information. For example, a football announcer might use a football-specific

metadata schema to capture information about goals scored. In this role, the

computer, and the annotation process, provides a consistent and repeatable

process for collecting metadata for the application domain.

In Fig. 6.4 we represent the structural objects and the relationship be-

tween these objects as a hierarchy and use this representation to store the

information in a database. This format is similar to treating a movie as

composed of scenes and the scenes composed of shots [7]. The order of the

scenes in a movie is identified by the events in the scenes. However, for a

newscast the segments are ordered according to their type and creation time

under the assumption that all the segments belong to the same event.

The content items within the segments (e.g., Wild Scene) are also treated

as objects (e.g., “entity,” “location,” “category,” and “graphics”). An object

can be composed of other objects, thus forming a hierarchy of object types.

An event, which we treat as synonymous to a news item, forms the root of
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Newscast

News Item 1 News Item 2

Headline Introduction Body Enclose

Speech Wild Scene Comment  Interview Enactment

Question/Answer Question/Answer

Figure 6.4: Structural Representation for Newscast Composition

an object hierarchy for the news item. Thus, Figs. 6.4 and 6.5 represent the

hierarchy of information stored in the metadatabase.

In this hierarchy, Headline, Introduction, Enclose, Speech, Wild Scene, QA,

Comment, and Enactment are the leaves of the object type tree. Each ob-

ject is represented by a set of attributes: <object-id, type, name, metatype,

medium, popularity, date of creation, time of creation, origin, video-filename,

start-frame, end-frame, compression format, playout rate>. The cinemato-

graphic attributes “compression format” and “playout rate” are maintained

for playout as are the attributes of “video-filename,” “start-frame,” and “end-

frame.” Metatype qualifies the type (e.g., an entity-type can be a “person”

and its metatype can be “president”). Metatypes are stored so that queries

like “give me the reaction of the President” can be satisfied. Headline, In-
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Segment (Headline, Introduction, Enclose, Speech,
 QA, Comment, Wild Scene, or enactment)
  

Entity Location Action Graphics

Audio-Type Video-Type Category

Figure 6.5: Representation of Concepts in a News item

troduction, Wild Scene, Enactment, and Enclose, are the metatypes for “seg-

ment.” Speech, Interview, and Comment are the metatypes for “reaction.”

“Country,” “city,” and “place” are the metatypes for “location.” The in-

formation whether an object is associated with audio, video, or both audio

and video is maintained in the “medium” attribute. The creation time and

date represent when an event was recorded. The objects and the informa-

tion about their attributes are stored as metadata in the form of a regular

expression to support automatic composition.

A query can retrieve a set of new items directly by accessing the con-

tent metadata. However, for the process of composition, the broader set of

metadata need to be used (Section 7.3).

Unstructured Metadata

In addition to the annotated metadata, transcripts originating from closed-

caption data (audio transcripts), when available, are associated with video

segments when the segments enter the content universe S. These tran-
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scripts comprise the unstructured metadata for each segment. Unstructured

metadata are used for indexing and forming keyword vectors for each semi-

structured metadata segment. Indexing is the process of assigning appropri-

ate terms to a component (document) for its representation.

6.4 News Video Data Retrieval

The news video data retrieval techniques presented in this section are an

outcome of our observations of generative semantics in the different forms of

information associated with news video data. We also studied the common

bond among the segments belonging to a single news item.

We observed that synchronized audio and visual data or related video

data do not necessarily possess correlated concepts (Fig. 6.6). For example,

it is common in broadcast news items that once an event is introduced, in

subsequent scenes the critical keywords are alluded to and not specifically

mentioned (e.g., Table 6.3, the name Eddie Price is mentioned only in the

third scene). However, scenes can share some other keywords, and hence,

related by transitivity. That is, if scene a is similar to a scene b and the scene

b is similar to a scene c, then the scenes a and b can be considered similar

by transitivity. If a search is made on a person’s name, then not all directly

related segments are necessarily retrieved. Similarly, related video segments

can have different visuals. To rely solely on information contained within

transcripts and video data for composition is not prudent. The information

tends to vary among the segments related to a news item. Therefore, we
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Introduction

Field Scene

Interview

Figure 6.6: Scenes from an Example News Item
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Table 6.3: Example Transcripts of Several Scenes

Introduction Field Scene Interview

A ONE-YEAR-OLD BABY BOY A MAN EMERGED FROM HIS DARYN: JUST IN THE RIGHT

IS SAFE WITH HIS MOTHER CAR AT THE U.S. MEXICAN PLACE AT RIGHT TIME

THIS MORNING, THE DAY AFTER BORDER, CARRYING HIS LITTLE ESPECIALLY FOR THIS LITTLE

HIS OWN FATHER USED HIM AS SON, AND A KNIFE. BABY.

A HOSTAGE. WITNESSES SAY HE HELD THE CAN YOU TELL US WHAT YOU

POLICE SAY IT WAS A KNIFE TO HIS SON, LATER, TO WERE SAYING TO THE MAN

DESPERATE ATTEMPT TO MAKE HIMSELF. POLICE IDENTIFIED AS EDDIE

IT ACROSS THE MEXICAN AND IT ALL PLAYED OUT ON PRICE AND WHAT HE WAS SAYING

BORDER TO AVOID ARREST. LIVE TV. BACK TO YOU?

CNN’S ANNE MCDERMOTT HAS OFFICIALS AND POLICE FROM I JUST ASSURED HIM THAT

THE DRAMATIC STORY. BOTH SIDES OF THE BORDER... THE BABY WOULD BE OKAY...

require new techniques to retrieve all the related segments or to improve the

recall of the video composition system.

We summarize our observations of video data semantics as follows:

• By utilizing both annotated metadata and closed-caption metadata,

precision of the composition system increases. For example, keywords

of “Reno, Clinton, fund, raising,” if matched against closed-caption

metadata, can retrieve information about a place called “Reno” (Nevada).

Therefore, annotated metadata can be used to specify that only a per-

son called “Reno” (Janet Reno) should be matched. The results from

annotated and closed-captioned searching can be intersected for better

precision.

• Recall of a keyword-based search improves if more keywords associated

with an event are used. Transcripts provide enriched but unstructured

metadata, and can also be used to improve recall. Utilizing transcripts

136



increase the number of keywords in a query; therefore, in some cases

precision of the results will be compromised (irrelevant data are re-

trieved). The transitive search technique is based on this principle

(Section 7.3).

• If the relationships among segments of a news event are stored, recall

of a system can be increased. For example, if news about “Clinton” is

retrieved, then related segment types can be retrieved even if the word

“Clinton” is not in them.

As a result of the above observations, we propose a hybrid approach that

is based on the union of metadata sets and keyword vector-based clustering as

illustrated in Fig. 6.7. We first match a query with unstructured metadata in

the universe S. The results retrieved (unstructured metadata) are clustered

into individual news items.

Next, transitive search is used to augment the clusters. Transitivity on

the unstructured data is defined below.

Let Rf define a binary relationship f on the universal set of video seg-

ments S (i.e., (sa, sb) ∈ Rf ⇐⇒ sa is similar to sb). If similarity distance,

defined as d(sa, sb) for segments sa and sb, is greater than an established

value then the two segments are considered to be similar. The transitive

search satisfies the following property (for all sa ∈ S, sb ∈ S, sc ∈ S):

(sa, sb) ∈ Rf ∧ (sb, sc) ∈ Rf ⇒ (sa, sc) ∈ Rf

Therefore, in a transitive search, the results in each cluster are applied
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Results from the initial search

 

d1

d23

d22

d21 One of the formed clusters

Universe of segments (S)

Figure 6.7: Similarity Measure based on the Transitive Search
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as a query to retrieve additional unstructured metadata (transcripts) and

associated segments, increasing the the recall of the process.

A shortcoming of the aforementioned transitive search is that it may not

retrieve all segments related via siblings (related segments). This can be

achieved by the following.

LetRu define a binary relationship u on the universal set S (i.e., (sa, sb) ∈

Ru ⇐⇒ sa and sb are part of the same news event). As mentioned before, the

hierarchical structure of related segments is stored as structural metadata.

The final step expands the set of segments as a union operation as follows:

Sa ← Sa ∪ {sb | ∃sa ∈ Sa : (sa, sb) ∈ Ru},

where, Sa is the candidate set of segments used as a pool to generate the

final video piece.

The query precision can also be increased by forming the intersection of

the keywords from the content and unstructured metadata sets. For example,

consider the scenario for composing a news item about Clinton speaking in

the White House about the stalemate in the Middle East. From the content

metadata, we might be able to retrieve segments of type Speech for this pur-

pose. However, many of the returned segments will not be associated with the

topic. In this case an intersection of the query results of the salient keywords

applied to the unstructured metadata will give us the desired refinement.
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6.5 Video Data Composition

Once segments are clustered into respective news items, the segments in the

clusters are ordered to form cohesive news items. We use rules specified in

grammar of a proposed language to filter and order the segments in a clus-

ter. An EBNF-representation of the language is shown in Table 6.4. The

language is defined as a production grammar (p → γ) [9], each symbol p

(e.g., <newsitem>) in a production can be interpreted as a node for hold-

ing information. The types of information associated with these nodes are

defined by the semantic rules of a production.

Production (1) specifies that a newscast is composed of one or more tours.

For example, a newscast requested by two users can contain the same content

but in a different order. Production (2) is a recursively defined rule. The

syntactic category or a nonterminal <tour> is defined in terms of itself by

right-recursion. A tour is a production of a syntactic category <newsitem>

or its recursions.

A tour can be represented as a path in a directed graph. Assume that

NC is a set of unique news items that can be formed from the available

data and NC = (NI,E, l) is represented as a directed graph. Where NI

(news items) are the vertices, E edges that connects vertices, and l is a

function from E to a set U of users. The function l(E) assigns the users for

whom the edge E can be traversed to compose a news item. In Fig. 6.8,

l(e2) = (2, 3) means that to compose a newscast for users 2 and 3, the edge

e2 is traversed in the direction shown. For clarity, l(E) can be written as
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Table 6.4: The Proposed Language in EBNF

1. < newscast > → {< tour >}n1
2. < tour > → < newsitem > | < newsitem >< tour >

3. < newsitem > → < headline >

4. < newsitem > → [< headline >]{< introduction >}1[< tmp >]

5. < tmp > → < b-list >< enclose >|< b-list >

6. < b-list > → < b-list >< b-list2 >|< b-list2 >

7. < b-list2 > → < speech > | < wild scene > | < interview > | < comment > | < enactmen

8. < interview > → < question & answer (qa) > | < qa >< interview >

9. < headline > → < shot >

10. < headline >.entity-list := < shot >.entity-list;

11. < headline >.location-list := < shot >.location-list;

12. < headline >.category-list := < shot >.category-list;

13. < headline >.event-list := < shot >.event-list;

14. < headline >.time-list := < shot >.time-list;

15. < headline >.action-list := < shot >.action-list;

16. < headline >.graphics-list := < shot >.graphics-list;

17. < headline >.audio-type-list := < shot >.audio-type-list;

18. < headline >.video-type-list := < shot >.video-type-list;

19.< headline > → < shot >< headline >

20. < headline >.entity-list := ∪(< shot >.entity-list, < headline >

21. < headline >.location-list := ∪(< shot >.location-list, < headline

22. < headline >.category-list := ∪(< shot >.category-list, < headline

23. < headline >.event-list := ∪(< shot >.event-list, < headline >.ev

24. < headline >.time-list := ∪(< shot >.time-list, < headline >.ev

25. < headline >.action-list := ∪(< shot >.action-list, < headline >

26. < headline >.graphics-list := ∪(< shot >.graphics-list, < headline

27. < headline >.audio-type-list := ∪(< shot >.audio-type-list, < headline

28. < headline >.video-type-list := ∪(< shot >.video-type-list, < headline

29.< introduction > → < shot > | < shot >< introduction >

30.< enclose > → < shot > | < shot >< enclose >
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l(NIi, NIj), where NIi, NIj is an ordered set of vertices which are included

in a newscast. The path used to compose a newscast for a user in the graph

is simple and elementary (i.e., no news item is visited twice). A news item

is presented only once in a newscast for a single user. In Fig. 6.8, path

(e9, e7, e6) is traversed to compose a newscast for user 1.

Productions (4) and (5) specify the syntactic category <newsitem> as

comprised of<headline>, <introduction>, <b-list>, and<enclose>. A<newsitem>

can be composed of only a single headline (see production 3). According to

productions (4) and (5) a news item can be produced with a single headline

segment, a single introduction segment, a single b-list, and a single enclose

segment. An enclose is only present if <b-list> is present. Productions (5),

(6), and (7) convey that the syntactic category <b-list> or a body can be

composed of any combination of multiple segments belonging to Speech, Wild

Scene, Interview, Comment, and Enactment. As mentioned before this kind

of composition is valid only if it is based on chronological time. For exam-

ple, consider a list of segments of type Speech, Interview, Comment, and Wild

NI1

NI2

NI3

NI7

NI4

NI5
NI6

e 
1 e 

2

e     3
3

e 
4

e 
5

e 
6

e 
7 1

e     (2,3)
8  

e    1
9

10
e   3

1

3

(2,3)2

2

Figure 6.8: Tour Formation from Retrieved News Items
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Scene belonging to a body. We show that it is reduced to production (5) as

follows:

speech, interview, comment, comment, wild scene

b-list2, interview, comment, comment, wild scene (production 7)

b-list, interview, comment, comment, wild scene (production 6)

b-list, b-list2, comment, comment, wild scene (production 7)

b-list, comment, comment, wild scene (production 6)

b-list, b-list2, comment, wild scene (production 7)

b-list, comment, wild scene (production 6)

b-list, b-list2, wild scene (production 7)

b-list, wild scene (production 6)

b-list, b-list2 (production 7)

b-list (production 6)

Production (8) specifies that a syntactic category <interview> is com-

posed of a “question & answer” or its recursions. The syntactic categories

<headline>, <introduction>, <enclose>, <qa>, <speech>, <wild scene>,

<comment>, and <enactment> are composed of terminal symbol <shot> or

its recursion.

The symbols <headline>, <introduction>, <enclose>, <qa>, <speech>,

<wild scene>, <comment>, <enactment> have synthesized attributes [9] as-

sociated with them. In Table 6.4, entity-list, location-list, category-list,

event-list, action-list, graphics-list, audio-type-list, and video-type-list are
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synthesized attributes of <headline>. Not shown are that these attributes are

also associated with other symbols like <introduction>, <enclose>, <qa>,

<speech>, <wild-scene>, <comment>, and <enactment>.

An entity-list represents all conceptual (any object part of the commen-

tary, e.g., people) and tangible objects (objects part of a video stream). A

location-list consists of all locations shown in the video or conceptual loca-

tions, i.e., associations with certain places and countries that are discussed

but not part of the visuals (e.g., a news item with discussion on Iraq or shots

taken in Baghdad). A category-list consists of the classification of the video

data (e.g., accidents, political, sports). An event/action-list represents any

happening in a news item (e.g., Clinton’s controversy, standoff in Iraq, games

at Nagano). A time-list contains the historical time or date of an event or

when the event actually took place (e.g., 19 February 1878, phonograph in-

vented by Thomas Edison). A graphics-list represents stills or graphics shown

in video (e.g., photographs, maps). An audio-type-list represents the type

of audio (i.e., lip-sync, when audio requires tight synchronization with the

video), wild-dialogue (dialogue that does not sync with a visible speaker),

and voice over (when a story uses continuous visuals without showing the

speaker). A video-type-list represents the type of video shots (e.g., close-up

shot and wild scene).

Each production grammar p → A1A2 ... An has an associated set of

semantic rules of the form p.sa := f(A1.a1, A2.a2, A3.a3, ..., A4.an), where

sa is a synthesized attribute of p, f is a function, and a1, a2, ..., an are the

attributes belonging to the symbols of the production grammar. Consider
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the nodes <headline> → <shot> and <headline> → <shot><headline> in

the parse tree. The value of the attribute <headline>.entity-list at this node

is defined by:

Production Semantic Rule

< headline > → < shot > < headline > .entity-list := < shot > .entity-list;

< headline > → < shot >< headline > < headline > .entity-list := ∪(< shot > .entity-list, < headline > .entity-list);

Suppose that a headline segment is comprised of three shots. The first

shot has three associated entities (a, b, and c). The second shot has four

associated entities (a, d, e, and f). The last shot has two associated entities

(c and g). Function ∪ performs a union of the two argument lists passed to

it. Therefore, the <headline>.entity-list will consist of entities a, b, c, d, e,

and f. Conceptually this semantic rule means that even if an entity is not

present in a complete segment it is still assumed to belong to the complete

segment. Next, we present some of the examples that depict the mechanism

of the proposed grammar.

In this section we demonstrate how the language can be used to compose

and customize a newscast. We assume the acquisition of the following data

from two sources about “Clinton’s visit to Venezuela” (abbreviated to VTV

to accommodate Table 6.5).

As previously explained, we store metadata describing the video seg-

ments. In Table 6.5 only the structural metadata are shown. For example,

O01 is an ID of an object/segment that is of type Introduction and is acquired

from the CNN. The creation time and date of the segment is “13:00:00” and
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Table 6.5: Sample Metadata

Object ID Type Metatype Name Source Creation Time Creation date

O01 Segment Introduction CNN 13:00:00 06/26/1996

O02 Segment Wild Scene CNN 13:00:00 06/26/1996

O03 Reaction Speech CNN 13:00:00 06/26/1996

O04 Reaction Comment CNN 13:00:00 06/26/1996

O05 Segment Body CNN 13:00:00 06/26/1996

O06 Event VTV CNN 13:00:00 06/26/1996

O07 Segment Wild Scene CBS 19:00:00 06/26/1996

O08 Segment Wild Scene CBS 19:00:00 06/26/1996

O09 Segment Enclose CBS 19:00:00 06/26/1996

O10 Reaction Interview CBS 19:00:00 06/26/1996

O11 Reaction QA CBS 19:00:00 06/26/1996

O12 Reaction QA CBS 19:00:00 06/26/1996

O13 Reaction QA CBS 19:00:00 06/26/1996

O14 Segment Body CBS 19:00:00 06/26/1996

O15 Segment Introduction CBS 19:00:00 06/26/1996

O16 Event VTV CBS 19:00:00 06/26/1996
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(Event 1) (Event 2)

(Introduction) (Body) (Introduction) (Body) (Enclose)

(Wild Scene) (Speech) (Comment) (Wild Scene) (Wild Scene) (Interview)

(QA) (QA) (QA)
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O01 O05 O15 O14 O09

O07

O13O12O11

O10O08

O06 O16

Figure 6.9: Structural Hierarchy for the Content of the Example

“06/26/96” respectively. The hierarchy of the above objects is shown in Fig.

6.9. Object O06 is an event and is comprised of two segments/objects OO01

and O05. Object O05 is comprised of three objects O02, O03, and O04. Object

O16 is another event that is comprised of objects O15, O14, and O09. Ob-

ject O14 is comprised of objects O07, O08, and O10. Finally, object O10 is

comprised of objects O11, O12, and O13.

With help of queries that are based on the above metadata, we can demon-

strate how to form a coherent news item. We also demonstrate how to merge

content from various sources, customize content based on a user’s temporal

constraints, and customize the selection based on content preferences.

Coherency: A cohesive news item can be formed by using the language.

Query 1: “Compose the news from the most recent material in the system.”
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In the database the recent objects acquired are from ID O07 to O16. After

finding the objects that are recent (e.g., news less than one hour old), we try

to form a coherent composition of the objects for playout. As seen from

the object hierarchy (Fig. 6.9), objects O07-O15 belong to the event (O16)

“Clinton’s visit to Venezuela.” We can compose these objects to form a

single news item. This is achieved by constraints imposed by the language

as follows:

O15 → O14 → O09 production 4

O15 → O07 → O08 → O10 → O09 productions 5, 6, and 7

O15 → O07 → O08 → O11 → O12 → O13 → O09 production 8

The last row represents the final composition of the news item for playout.

It conforms to production rule (4), i.e., there is no segment of type Headline

in the news item; and it is composed of a single segment of type Introduction

(O15), a b-list (O14), and a segment of type Enclose (O09). The b-list consists

of segments O07, O08, and O10. Object O10 is further decomposed according

to production rule (8). According to production rule (6), a b-list can be

composed of segments belonging to the body in any combination. Therefore,

segments O07, O08, and O10 can be sequenced in any order.

Merging: We can combine content from multiple sources belonging to the

same event into a single news item.

Query 2: “Retrieve all information on Clinton’s visit to Venezuela.”
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Objects O06 and O16 are associated with Clinton’s trip. All of the sub-

objects that comprise these two objects can be merged to form a single news

item. We require a start, a middle, and an end To form a coherent news

item. To maintain temporal continuity and chronology, we include the oldest

segment of type Introduction, and the latest segment of type Enclose. Objects

belonging to the body are also composed in temporal order (most recent

objects shown last). In addition to the language, we impose the additional

constraint that all objects in the body appear in chronological order. This

constraint is imposed to achieve temporal continuity in presentation. The

final composition is as follows:

O01 → O02 → O03 → O04 → O07 → O08 → O11 → O12 → O13 → O09

Objects O02, O03, O04, O07, O08, O11, O12, and O13 form the body of the

b-list. Object O01 is the introduction. Production rule (4) states that an

introduction segment is necessary for composition. Object O09 is an enclose

and is incorporated according to production rule (5). According to our as-

sumptions (Section 4.2) and the constraints imposed by the language, the

above composition results is a coherent news item.

Preferences: Content-based customization, or “preferences,” can be achieved

by using the production rules of the language.

Query 3: “Retrieve all field shots with information on Clinton’s visit to

Venezuela.”
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We gather all the information we have about the event “Clinton’s visit to

Venezuela” and then apply content-based customization. According to user

preferences, only segments of type Wild Scene need to be shown. According

to production rule (4) the minimum information to have a coherent news

item is an introduction followed by the segments of the type Wild Scene.

From the table, objects O02, O07, and O08 belong to type Wild Scene. Using

production rules (4), (5), (6), and (7) yields the final composition for the

playout as follows:

O01 → O02 → O07 → O08 → O09

Temporal Constraints: We can achieve time-based customization using

the language.

Query 4: “Compose the latest news about Clinton’s visit to Venezuela for

four minutes of playout.”

For this type of a query we need to know the playout duration of each

clip to produce a news item within the time playout constraint. Assume the

timings for the complete playout of objects/segments as shown in Table 6.6.

Here, in addition to using the production rules, we also use the rules for

resolving temporal playout constraints. This can be achieved by presenting

information from as many views as possible. If an information presentation is

from an instance of chronological time, we cluster different views separately

(e.g., Wild Scenes, Comments, Interviews). During composition we iterate

through the clusters selecting a segment from each cluster (if the playout
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Table 6.6: Playout Duration of the Segments

Object ID Time (Seconds)

O07 30

O08 45

O09 5

O11 120

O12 55

O13 67

O15 15

duration of a segment permits) until the specified duration has been accom-

modated.

According to the query, we must form a coherent and complete news item

within the constraint of 240s. Event O16 and its associated objects have the

most recent information; therefore, we initially attempt to compose a news

item from these objects with consideration for the duration of each segment.

The following objects can be selected to meet the playout constraint of 240s:

Iteration 1: O15 → O11 → O07

Iteration 2: O15 → O11 → O12 → O07 → O09

According to the temporal composition criteria, we iterate through the

clusters of types QA and Wild Scene. In each iteration we select an object

from a cluster until all time is accommodated. If presentation is from a period
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of chronological time (e.g., from 05/15/1996 to 06/26/1996) we divide the

timeline into sub-periods. During composition we iterate through the sub-

periods and select a single segment from each sub-period in each iteration.

6.6 Summary

In this chapter, we discuss and define types of objects and their attributes

that constitute news video information. We define entities as objects (e.g.,

people, locations, origin, transcripts, graphics, segments, etc.). These types

of information/metadata are extracted from video data to process user queries

and compose video pieces. Transcripts associated with video data provide

additional information and are also used to extract metadata. The extracted

information and the relationships among them are represented by a news

data model, in which a newscast consists of multiple news items that are,

in turn, composed of multiple objects. This data model is used to specify

database schema for metadata organization and to process user queries.

We discuss semantics within and across visuals and closed-caption data

associated with a news item. We observe that not all segments belonging

to the same news item share the same visuals or keywords. Hence, current

simple keyword-based retrieval techniques will not retrieve all related data.

To overcome this shortcoming (that is, to improve the recall) we propose

a novel retrieval technique based on transitive search and the union. The

unstructured documents/metadata retrieved as a result of a user query are

first clustered/grouped into individual news items. Next, unstructured doc-
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uments in each cluster are used as queries. As a result of these queries, the

retrieved additional unstructured documents are included in the respective

clusters. Finally, additional segments are retrieved using sibling relationships

among segments. We note that if the results retrieved from use of our pro-

posed four-step hybrid technique are intersected with the results obtained

from annotated metadata, the precision of the retrieval system can improve.

We also present a grammar that encompasses the content-based and

structure-based constraints to parse a composition. This language is a result

of a need for automatic cohesive composition of segments containing desired

content. Content alone, though important, cannot be used to create an auto-

matic coherent video piece. Therefore, by incorporating constraints based on

both content and structure in the language, it is possible to both, automate

and obtain coherence in the news video production process. Using a variety

of examples, we demonstrate that the news video production process assisted

by the language results in logical composition of newscasts.
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Chapter 7

Canvass: A News Digital Video

Production System

Synopsis

In this chapter, we discuss the design and implementation of a news digital

video production system. We discuss how the information within video data

is annotated, what tools are used for this purpose, how metadata are stored

in a relational database, and what type of database is used. We present

the process of indexing closed-caption/transcripts data and the tools used

for indexing. We describe the query processing mechanism for the four-step

hybrid data retrieval technique and the quantitative analysis of its perfor-

mance. We also discuss the implementation of user interface, composition

techniques, and video delivery interface.
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7.1 Introduction

To analyze the quality of compositions resulting from the proposed compo-

sition and customization techniques we implemented a news digital video

production system. The architecture of the system implementation is shown

in Fig. 7.1. Various technologies have been integrated to develop the DVPS

and these will be discussed as part of the system architecture.

User
Interface

Video Data
Client

Data/Control

Annotation

Video Data
Server

Information
Composition

Request

Video Data

Information

Query

Video Data

Retrieval Module

Video Data Delivery Module

Annotation & Indexing Module

SMART
Retrieval
Interface

Closed-Caption

DataSemi-Structure
Data Creation

SMART
Indexing
Interface

Table
Creation

RDBMS

Trancripts
Indicies

Data
Files

Raw
Metadata

Object
Ontology

Data
Model

Figure 7.1: Architecture of the Digital Video Production System

The architecture of the news DVPS implemented by us is divided into

metadata collection module, retrieval and composition module, and video

delivery module. The annotation and indexing module is used to annotate

and index video data and transcripts, respectively, and populate a database

with the annotated metadata. In the retrieval module we process queries
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Table 7.1: Symbols Used to Define the Indexing and the Retrieval Techniques

Symbols Descriptions

K Number of objects in an annotated metadata-based query

M Number of sub-objects of each object type in an annotated metadata-based query

L Number of values selected for each sub-object in an annotated metadata-based query

R A set of operators used in an annotated metadata-based query

tfi Frequency of a concept (term) i in unstructured metadata

Ni Number of unstructured metadata components with term i

wt1i
Intermediate weight assigned to a concept i for query match

wt2i
Final weight assigned to a concept i for query match

wt3i
Final weight assigned to a concept i for transitive search

q A query

Sq A set of segments returned as a result of a query

QS A subset of Sq

Tc Cluster cut-off threshold

F Similarity matrix

CLi A cluster

q(s) A query comprised of unstructured metadata component

st A segment retrieved as a result of a query q(s)

Sq(s) Set of segments st retrieved as a result of a query q(s)

TCLi An extended cluster CLi resulting from a transitive search

using both annotated and transcript metadata and compose the resulting

data. The proposed hybrid retrieval techniques and composition techniques

are implemented in this module. The video delivery module is used to sched-

ule the playout of actual video segments within a composition. The symbols

used in this chapter are summarized in Table 7.1.
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7.2 Annotation and Indexing

We acquired video data of broadcast news in analog VHS/NTSC format

and translated the data into a state suitable for resolving queries to yield

candidate sets and composable segments. First, we digitized analog data into

MPEG-1 format and stored the data in a repository. Next, the digitized data

were used to collect annotated metadata. In parallel, we also recorded closed-

caption data associated with the analog video data. The closed-caption data

were used to generate unstructured metadata. We discuss this annotation

and indexing process in detail.

7.2.1 Annotated Metadata

To extract metadata from the digitized video data we used an annotation

tool called Vane [22]. This tool is based on the data modeling concepts

presented in Chapter 6. The tool supports both segmentation and stratifi-

cation concepts. This tool is also designed to configure to different concepts

in domain-specific ontologies without rewriting the tool itself. This is ac-

complished by using SGML separating context rules from the information

content. The context rules are stored as a document type definition (DTD).

The DTD, based on the news video model (Fig. 6.2) and used to configure,

Vane is given below:
<!--Document Type Definition for Generalized WYSIWYG Example (FULLDOC)-->
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<!ELEMENT FULLDOC -- (ABSTRACT?,CATEGORY?,REF*,SEQUENCE*,OBJECT*)>

<!ELEMENT SEQUENCE -- (ABSTRACT?,REF*,SCENE*)>

<!ELEMENT SCENE -- (ABSTRACT?,SCCATOGR?,REF*,SHOT*,TRANSCR?)>

<!ELEMENT SHOT -- (ABSTRACT?,REF*,TRANSCR?)>

<!ELEMENT OBJECT -- (REF*,OBJECT*)>

<!ELEMENT ABSTRACT -- (#PCDATA & REF*)*>

<!ELEMENT TRANSCR -- (#PCDATA)>

<!ELEMENT REF -O EMPTY>

<!ELEMENT CATEGORY -- (NEWS)>

<!ELEMENT SCCATOGR -- (POLITICS | SPORT | FOREIGN | LOCAL)>

<!ELEMENT NEWS -O EMPTY>

<!ELEMENT SPORT -O EMPTY>

<!ELEMENT POLITICS -O EMPTY>

<!ELEMENT FOREIGN -O EMPTY>

<!ELEMENT LOCAL -O EMPTY>

<!ATTLIST NEWS subcat (morning | mid-day | evening) morning>

<!ATTLIST SPORT subcat (basket | soccer | football | ski | baseball) basket>

<!ATTLIST FULLDOC

id CDATA #IMPLIED

anchor CDATA #CURRENT

producer CDATA #IMPLIED

location CDATA #IMPLIED

language CDATA #IMPLIED

annotat CDATA #CURRENT

videofile CDATA #REQUIRED

proddate CDATA #IMPLIED

prodtime CDATA #IMPLIED

<!ATTLIST SEQUENCE

id CDATA #IMPLIED

name CDATA #REQUIRED

keyword CDATA #CURRENT

file CDATA #CURRENT

<!ATTLIST SCENE

id CDATA #IMPLIED

name CDATA #REQUIRED

keyword CDATA #CURRENT

populaty CDATA #IMPLIED

<!ATTLIST SHOT

id CDATA #IMPLIED

name CDATA #REQUIRED

keyword CDATA #CURRENT

startf NUMBER #REQUIRED

stopf NUMBER #REQUIRED>

<!ATTLIST REF

target CDATA #IMPLIED>
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<!ATTLIST OBJECT

id CDATA #REQUIRED

name CDATA #REQUIRED

type CDATA #IMPLIED

metatype CDATA #IMPLIED

creattime CDATA #IMPLIED

creatdate CDATA #IMPLIED

medium CDATA #IMPLIED

origin CDATA #IMPLIED

populaty CDATA #IMPLIED

startf NUMBER #REQUIRED

stopf NUMBER #REQUIRED>

frate (30 | 24 | 15) 30

mtype (col |BW) col

mformat (mpg | cosmo | qt | par | avi) mpg

In the above DTD, the element FULLDOC represents the whole video data

stream. SEQUENCE represents contiguous group of scenes, SCENE represents

contiguous group of shots, and SHOT is a group of frames recorded contigu-

ously. All elements except REF have both start and stop tags. For each of

the possible contained elements, an occurrence indicator is also expressed.

FULLDOC can have at most one or possibly no ABSTRACT - ? occurrence in-

dicator. As expected, a FULLDOC can also have one or more SEQUENCEs as

represented by “*”. To support stratification, contextual or content OBJECTSs

are considered part of FULLDOCs and each OBJECT can be composed of sub-

objects. In the same manner, a SCENE can have one or more nested SHOT

elements.

Vane stores raw metadata in a SGML compliant format, hence, we re-

quire a translator to populate a database. The translation process includes

mapping of metadata to fields in a database schema, populating the data

fields, and resolving hypertext references. In the following we describe one

translation process that has been constructed to support SQL queries. The
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translator is called sgml2sql.

Sgml2sql is a conversion tool written to parse the SGML output of the

Vane tool and to populate a SQL database. The sgml2sql implementation

is modular in nature, built with the premise of supporting enhancements at

the production side of the conversion. For example, a change of the database

manager affects only the module which interfaces with the database.

RDBMS

SGML
File

DTD

SGML
Parser

SGML2SQL

DTD-DB
Map File

SGML
File

Database
Interface

CMML-DB
Conversion

Figure 7.2: Sgml2sql Conversion Tool Architecture

Sgml2sql is written in Perl 5 and uses the DBD/DBI (DataBase In-

terface) to communicate with the database. Currently we are using the

mSQL-DBD package and the mini SQL database. However, the choice of DBMS

is not significant for our functionality. Sgml2sql first runs an SGML parser

on the SGML file under conversion. The parser checks the SGML file and

its associated DTD file for any inconsistencies. If no errors are found at

this stage then the tool reads the DTD-to-database-map file, consisting of a

mapping between various table attributes to the fields in the database.

The database schema used in the DVPS is shown in Fig. 7.3. The record
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type News Doc contains general information about a pre-composed news-

cast provided by a source or composed at run time and stored. The record

type News Item contains information about each item in the newscast. The

record type Object contains the metadata about the AV streams. The name

of an object, the creation time and date, and the origins make up the com-

posite key for this table. An object can belong to multiple sources (e.g.,

a clip of Bill Clinton outside the White House). A user might like to re-

trieve clips of Bill Clinton taken at a certain time or by a certain source.

The medium type helps to compose objects from various sources and the

popularity field provides information about an object’s popularity. We do

not store an object stratum (provide access to objects over a temporal span)

but the concept of stratification can be easily achieved. The record type

Item Sequencing defines the tour of the newscast (i.e., the order in which

the news items will be presented). The field Qualifier is used to represent

different tours for the same newscast. Record types Item Composition and

Object Composition define the hierarchy of the news items and the objects.

Record types News-Item Map and Item-Object Map define the news items

and objects that are contained in a newscast or in a news item. The record

type Physical Map represents the metadata of AV and text files. Because

we use MPEG 1 compressed video data, to have a random seek and playout

of a video we must use offsets into the video file for starting video playout.

In this case we store “Group Start Code” offsets which represent the start of

a new “Group-of-Pictures.” So we have the field GSC-File which represents

a file containing offsets for this purpose. Sample annotated metadata from
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record type Object is shown in Table 7.3.

News Item

News-ID

Title

Meta-Type

Item-ID Category

Object

News Doc

News-ID Prod-TimeProd-Date

Type

Object1-ID Object2-ID

 Obj-NameObject-ID

Item2-IDItem1-ID

Item Composition

Object Composition

Medium

Origin

News-ID Item2-IDItem1-ID Qualifier

Item Sequencing

Item-ID

Item-ID Object-ID

News-Item Map

Item-Object Map

Creat-Date Creat-Time

Image-File Frame#Sub-Category

Creat-Date Creat-Time

Popularity

Popularity

Order

Physical Map

Object-ID File-Name Start-Frm Stop-Frm Frame-rate GSC-File

Location Name Producer Language

Figure 7.3: Newscast Application-Specific Network Database Schema

An example of the mapping between an DTD and database schema in

Fig. 7.3 for the news database is shown in the Table 7.2.

We use a relational database, called miniSQL [58], to store the anno-

tated metadata. Example annotated metadata stored in a relational database

(RDB) is shown in Table 7.3.
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Table 7.2: Map Between SGML and DB

SGML Attribute DB Field

fulldoc.id news.news id

fulldoc.newsid news.title id

fulldoc.name news.title

fulldoc.producer news.producer

fulldoc.location news.location

fulldoc.language news.language

fulldoc.proddate news.prod-date

fulldoc.prodtime news.prod-time

(fulldoc).sequence IGNORE

(fulldoc).shot IGNORE

(fulldoc).object new object table entry

sequence.(except SCENE) IGNORE

scene new item entry, new news item entry

scene.id item.item id

scene.name item.title

scene.keyword item.keywords

scene.imgfile item.image file

scene.frame item.frame num

scene.time item.time

scene.date item.date

scene.populaty item.popularity

(scene).sscategor item.category

(scene).sscategor.sucat item.subcategory

(scene).ref new object and item object entry

(scene).abstract item.abstract

(scene).transcr uniquely-named file

(scene).shot IGNORE

shot.* IGNORE

object new object
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Table 7.3: Example Annotated Metadata

Object id Type Obj name Meta type Creat date Creat time Medium

O0 location Studio place 06/26/1996 18:00:31 V

O1 entity Gene Randal person 06/26/1996 18:00:31 AV

O2 segment NULL intro 06/26/1996 18:00:31 NULL

O3 entity Jamie Mcintyre person 06/26/1996 18:00:46 AV

O4 location Pentagon place 06/26/1996 18:00:46 V

O5 audio Jamie Mcintyre vo 06/26/1996 18:01:02 A

O6 graphics Dhahran map 06/26/1996 18:01:02 V

O7 entity Jamie Mcintyre person 06/26/1996 18:01:23 V

O8 location Pentagon place 06/26/1996 18:01:23 V

O9 reaction NULL qa 06/26/1996 18:01:23 NULL

O10 entity Jamie Mcintyre person 06/26/1996 18:02:45 AV

O11 location Pentagon place 06/26/1996 18:02:45 V

O12 reaction NULL qa 06/26/1996 18:02:45 NULL

O13 reaction NULL interview 1996/06/26 18:01:23 NULL

O14 entity Fionulla Sweeney person 06/26/1996 18:03:30 AV

O15 location Studio place 06/26/1996 18:03:30 V

O16 graphics Dhahran map 06/26/1996 18:03:45 V

O17 audio Abdul Abu Khudair vo 06/26/1996 18:03:45 A

O93 entity Abdul Abu Khudair person 06/26/1996 18:03:45 A

O18 location Jedha city 06/26/1996 18:03:45 A

O19 reaction NULL qa 06/26/1996 18:03:30 NULL

O20 entity Fionulla Sweeney person 06/26/1996 18:04:36 AV

O21 location Studio place 06/26/1996 18:04:36 V

O22 graphics Dhahran map 06/26/1996 18:04:36 V

O23 audio Abdul Abu Khudair vo 06/26/1996 18:04:36 A

O94 entity Abdul Abu Khudair person 06/26/1996 18:04:36 A

O24 reaction NULL qa 06/26/1996 18:04:36 NULL
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7.2.2 Unstructured Metadata

Transcripts originating from closed-caption data (audio transcripts), when

available, are associated with video segments when the segments enter the

content universe S. These transcripts comprise the unstructured metadata

for each segment (Table 7.4).

For indexing the unstructured metadata, we use text indexing and re-

trieval techniques proposed by Salton [79] and implemented in SMART [21].

To improve recall and precision we use two sets of indices [1], each using

different keyword/term weighting schemes as follows:

Initial Segment Weighting: Initially, a vector comprised of keywords

and their frequency (term frequency tf) is constructed using the unstructured

metadata of each segment without stemming and without common words.

The frequency of a term or keyword indicates the importance of that term

in the segment. Next, we normalize the tf in each vector with segment

(document) frequency in which the term appears by using Eq. 7.1:

wt1i
= tfi × log

(

N

Ni

)2

, (7.1)

where N is the number of segments in the collection and Ni represents the

number of segments to which term i is assigned. The above normalization

technique assigns a relatively higher weight wt1i
to a term that is present

in a smaller number of segments with respect to the complete unstructured

metadata. Finally, wt1i
is again normalized by the length of the vector

165



Table 7.4: Sample Unstructured Metadata

.idDoc:

cnn2.txt/O192

.videoFile:

d64.mps

.textData:

Leon: Good evening. We begin tonight with attorney general Janet

Reno. She says the call was her and she’s ready to take the

heat. There will be no independent counsel to look into fund-raising

activities of the president, vice president, or former energy

secretary Hazel O’Leary.

.idDoc:

cnn2.txt/O193

.videoFile:

d65.mps

.textData:

Justice correspondent Pierre Thomas looks at the long-awaited decision.

After months of intense pressure, attorney general Janet Reno has made

a series of decisions sure to ignite a new round of political warfare.

Regarding fund raising telephone calls by Mr. Clinton at the White

House: no independent counsel. On vice president Gore’s fund raising

calls: no independent counsel. Controversial democratic campaign

fund-raiser Johnny Chung has alleged he donated $25,000 to O’Leary’s

favorite charity in exchange for a meeting between O’Leary and a

Chinese business associate. Three calls for an independent counsel.

All three rejected.
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(Eq. 7.2). Therefore, the influence of segments with longer vectors or more

keywords is limited:

wt2i
=

wt1i
√

∑n
j=0(wt1j

)2
. (7.2)

Cluster and Transitive Weighting: Here we use word stemming along

with stop words to make the search sensitive to variants of the same keyword.

In segments belonging to a news item, the same word can be used in multiple

forms. Therefore, by stemming a word we achieve a better match between

segments belonging to the same news item. For the transitive search and

clustering, we use the complete unstructured metadata of a segment as a

query, resulting in a large keyword vector because we want only the keywords

that have a high frequency to influence the matching process. Therefore, we

use a lesser degree of normalization (Eq. 7.3) as compared to the initial

segment weighting:

wt3i
= tfi × log

(

N

Ni

)

. (7.3)

Table 7.5 shows a comparison of the weighting schemes for the same

unstructured metadata. The two concepts “Iraq” and “Iraqi” in the second

scheme are treated as the same and hence the concept “Iraq” gets a higher

relative weight.

Queries are matched against the metadata (annotated and unstructured)

and the query formulation and processing process is discussed in the next

section.
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Table 7.5: Weight Assignment

Doc ID Concept Scheme 1 Scheme 2

146 barred 0.62630 4.04180

hline 146 weapons 0.15533 2.50603

146 iraqi 0.21202

146 u.n 0.18075 2.72990

146 continues 0.31821 2.58237

146 standoff 0.36409 3.87444

146 iraq 0.13211 2.71492

146 sights 0.50471 4.04180

7.3 News Video Data Retrieval

The user/query interface is Web-based and it communicates with the news

DVPS using Common Gateway Interface (CGI), a standard for external gate-

way programs to interface with HTTP servers. The CGI scripts are written

in the C language. The interface is used to formulate queries to the DVPS.

As discussed in the previous chapter, three types of queries can be processed

by the DVPS: annotated metadata-based, unstructured metadata-based, and

composite metadata-based.
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Annotated Metadata-Based Query Processing

Initially, when a user accesses the Web interface, the interface is popu-

lated with the metadata stored in the relational database. Metadata like

story/event titles and associated names of the people and location are dis-

played. The process of query formulation is reduced to the “point and click”

process. A user query is converted into miniSQL compliant format for pro-

cessing (Fig. 7.4).

Annotated
Metadata

Convert to
SQL

User Query SQL Query

Segment IDs

Compose
News Item

Additional Information
for CompositionCompose

Video

Figure 7.4: Annotated Metadata-Based Query Processing Mechanism

A user query is converted into SQL-compliant format according to the

methodology discussed next.

A query predicate ψ(o) is composed of a primitive operation which returns

a Boolean result.

ψ(o) = oR value

o represents an object type, R is a set of operators (<, >, =, ≤, ≥, 6=)

which are used to evaluate the tautology of a predicate, and value represents

any alphanumeric string. For example, city = “Boston.” Hence, a general

query Q can be expanded as follows:
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∀i : 0 < i ≤ N

∣

∣

∣

∣

∣

∣

((ψ(oi11)
M
∏

k=2

∧ ψ(oi1k)) ∧ (
L

∏

j=2

(ψ(oij1)
M
∏

k=2

∧ ψ(oijk)))

Where N represents the number of object types selected for the query

(e.g., location and entity) and L represents the number of sub-objects of

each object (e.g., sub-objects of location are place, city, and country). In a

query, each sub-object can have multiple values (e.g., city can have values

“Boston,” “San Francisco,” and “Srinagar”). M is the number of values

selected for each sub-object. An example query is as follows:

“Retrieve news items about bombing in Dhahran, Saudi Ara-

bia with Clinton and Christopher.”

In the above query, a search is made on a city called Dhahran, a country

called Saudi Arabia, an event named bombing, and persons (entity) named

Clinton and Christopher. Hence, the value of N is 3 (i.e., there are three

object types to be searched). The value of L is 2 for the first object (i.e., we

have to search for two sub-objects types; city and country). The value of L

for other two objects is 1. The value of M for sub-object types city, country,

and event is 1. For the last sub-object type (person), the value of L is 2.

Q = (city = “Dahran”)AND (country = “Saudia Arabia”)AND (event =

“Bombing”)AND (person = “Clinton”AND person = “Christopher”)

We store relationships among the segments belonging to a news item

as annotated metadata. These metadata are used to form candidate sets.
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Therefore, segments that are retrieved as a result of a user query are clustered

by finding the relationships among them. These clusters are used to compose

news items.

The unstructured metadata-based query is just a string of keywords, and

these keywords are matched against the indices created from the unstruc-

tured metadata. The proposed query processing technique is a bottom up

approach, where the search starts from the unstructured metadata and is

discussed in the next section.

Unstructured Metadata-Based Query Processing

In Section 6.4, we proposed a novel four-step hybrid approach to improve the

recall of a video information retrieval system. Here we present the mechanism

(Fig. 7.5 ) of processing a query using this approach.

A query enters the system as a string of keywords. These keywords are

matched against the indices created from the unstructured metadata. The

steps of this process are query matching, clustering the results, retrieval based

on the transitive search, and sibling identification. These are described below.

Query Matching: This stage involves matching of a user-specified key-

word vector with the available unstructured metadata. In this stage we use

indices that are obtained as a result of the initial segment weighting discussed

in the previous section. As the match is ranked-based, the segments are re-

trieved in the order of reduced similarity. Therefore, we need to establish a

cut-off threshold below which we consider all the segments to be irrelevant
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Figure 7.5: Process Diagram for Newscast Video Composition
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to the query. Unfortunately, it is difficult to establish an optimum and static

query cut-off threshold for all types of queries as the similarity values ob-

tained for each query are different. For example, if we are presented with

a query with keywords belonging to multiple news items then the similarity

value with an individual object in the corpus will be small. If the query

has all keywords relevant to a single news item then the similarity value will

be high. Because of this observation, we establish a dynamic query cut-off

threshold (D×max{d(s, q)}) and we set it as a percentage D of the highest

match value max{d(s, q)} retrieved in set Sq. The resulting set is defined as:

QS ← {s ∈ Sq | d(s, q) ≥ (D ×max{d(s, q)})},

where s is the segment retrieved and d(s, q) is the function that measures

the similarity distance of segment s returned as a result of a query q.

Cluster
Semi-Structured
Objects

Semi-Structured
Metadata

Retrieve 
Corresponding
Semi-Structured
Metadata

Object IDs

Semi-Structured
Metadata

Object ID

Semi-Structured
Metadata

Figure 7.6: Diagram of the Clustering Process
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Results Clustering: In this stage, we cluster the retrieved segments with

each group containing yet more closely related segments (segments belonging

to the same event). We use the indices acquired as a result of the transitive

scheme (Fig. 7.6). During the clustering process, if the similarity (d(sa, sb))

of the two segments is within a cluster cut-off threshold Tc, then the two

segments are considered similar and have a high probability of belonging

to the same news event. Likewise, we match all segments and group the

segments that have similarity value within the threshold, resulting in a set

{CL1, CL2, CL3, ..., CLk},

where CLi are a clusters (sets) each consisting of segments belonging to

a single potential news item. An algorithm for forming the clusters is as

follows:

For forming disjoint clusters we use a graph-theoristic method [34, 40]

that uses minimal spanning tree (MST). The longest edges in the tree are

removed producing clusters. In this work, we use a threshold Tc (the edges

with length beyond and equal to which are removed) that gives the best

clustering performance on the experimental data set. However, if an optimum

threshold is to be used, then cluster separation measure proposed by Davies

and Bouldin [32] can be used. For creating the MST we use the Prim’s

algorithm [29] and the depth-first search algorithm to find long edges in the

tree. We use the depth-first search due to ease with which the clusters are

created. The clusters are formed as follows:

1. If there are k segments in the set QS then first create k × k similarity
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matrix F = [fij], where

fij =



























1
d(si,sj)

if i 6= j ∧ d(si, sj) > 0

0 if i 6= j ∧ d(si, sj) = 0

0 if i = j

i, j = 1, ..., k

2. Use Prim’s algorithm for forming MST. The input to the algorithm is

the matrix F and output is the tree.

3. Use depth-first traversal through the tree to remove edges greater than

the threshold Tc. This results in separate clusters CLi of connected

nodes.

Transitive Retrieval: We use the transitive search (Fig. 6.7). The transi-

tive search increases the number of segments that can be considered similar.

During query matching, the search is constrained to the similarity distance

(d1) and segments within this distance are retrieved. During the transitive

search we increase the similarity distance of the original query by increasing

the keywords in the query so that segments within a larger distance can be

considered similar. In the transitive search we use unstructured metadata

of each object in every cluster as a query, q(s), and retrieve similar seg-

ments. Again, we use item cut-off threshold that is used as a cut-off point

for retrieved results and the retained segments are included in the respective

cluster.

A news item is made up of a number of segments. Not all segments contain

equal level of information. Therefore, a news item is difficult to retrieve from
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only a few keywords. To retrieve segments that do not match the initial query

but belong to same news item we use the complete unstructured metadata

for each segment as a query. Related segments have other mutually common

keywords that can be used for matching. Therefore, the third stage increases

the recall of the initial query by using a transitive search operation.

The transitive cut-off threshold (T ×max{d(st, q(s))}) is set as the per-

centage (T ) of the highest similarity value retrieved max{d(st, q(s))}. For

example, the distances d21, d22, and d23 (Fig. 6.7) fall within the transitive

cut-off thresholds of respective segments.

Consider a cluster CLi = {s1, s2, s3, ..., sN} formed in the results cluster-

ing step. The extended cluster resulting from the transitive search can be

defined as:

TCLi ←
⋃

∀s∈CLi

{

st ∈ Sq(s) | d(st, q(s)) ≥ (T ×max{d(st, q(s))})
}

,

where, st is a segment returned as a result of a transitive search of a

segment s ∈ CLi and d(st, q(s)) is the function that measures the similarity

value of a segment st to query q(s).

Sibling Identification: To further improve recall we use the structural

metadata associated with each news item to retrieve all other related objects

(Fig. 7.7). Structural information about each segment in a cluster is anno-

tated; therefore, we have the information about all the other segments that

are structurally related to a particular segment. We take the set of segments

that are structurally related to a segment in a cluster and perform a union
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operation with the cluster. Suppose TCi = {s1, s2, s3, ...., sN} is one of the

clusters resulting from the third step, then the final set can be defined as:

SCi =
⋃

s∈TCi

R(s).

Here R(s) is a set of segments related to a segments s. Likewise, the

union operation can be performed on the remaining clusters.

Clustered
Semi-Structured
Objects

Retrieve
Related
Objects

Clustered
Object ID

Metadata

Annotated Object ID

Figure 7.7: Process Diagram for Retrieving Related Objects

Using the four-step hybrid approach we are able to increase the recall

of the system. Next we discuss the quantitative analysis of the retrieval,

clustering, and proposed transitive search process.

Analysis of the Proposed Hybrid Technique

We evaluated the performance of our technique based on 10 hours of news

video data and their corresponding closed-caption data acquired from the

network sources. Our results and analysis of the application of our techniques

on this data set are described below.
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Because the objective of our technique is to yield a candidate set of video

segments suitable for composition, we focus on the inclusion-exclusion met-

rics of recall and precision for evaluating performance. However, subsequent

rank-based refinement on the candidate set yields a composition set that can

be ordered for a final video piece.

The data set contains 335 distinct news items obtained from CNN, CBS,

and NBC. The news items comprise a universe of 1,731 segments, out of

which 537 segments are relevant to the queries executed. The most common

stories are about the bombing of an Alabama clinic, Oprah Winfrey’s trial,

the Italian gondola accident, the UN and Iraq standoff, and the Pope’s visit to

Cuba. The set of keywords used in various combinations in query formulation

is as follows:

race relation cars solar planets falcon reno fund raising

oil boston latin school janet reno kentucky paducah rampage

santiago pope cuba shooting caffeine sid digital genocide

compaq guatemala student chinese adopted girls

israel netanyahu arafat fda irradiation minnesota tobacco trial

oprah beef charged industry fire east cuba beach varadero

pope gay sailor super bowl john elway alabama clinic italy

gondola karla faye tucker death advertisers excavation lebanon

louise woodword ted kaczynski competency

The number of keywords influences the initial retrieval process for each

news item used in a query. If more keywords pertain to one news item than

the other news items, the system will tend to give higher similarity values to

the news items with more keywords. If the query cut-off threshold is high
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(e.g., 50%), then the news items with weaker similarity matches will not

cross the query cut-off threshold (the highest match has a very high value).

Therefore, if more than one distinct news item is desired, a query should be

composed with an equal number of keywords for each distinct news item. All

the distinct retrieved news items will have approximately the same similarity

value with the query and will cross the query cut-off threshold.

For the initial experiment we set the query cut-off threshold to 40% of

the highest value retrieved as a result of a query, or 0.4 × max(Sq). The

transitive cut-off threshold is set to 20% of the highest value retrieved as a

result of unstructured metadata query, or 0.2×max(Sq(s)). The results of

29 queries issued to the universe are shown in Fig. 7.8. Here we assume that

all the segments matched the query (we consider every retrieved segment a

positive match as the segments contain some or all keywords of the query).

The clustering threshold Tc was kept at 0.03 and we observed that out of the

29 queries the clustering algorithm did not form exact clusters for 4 of the

queries. In all four cases the algorithm could not identify distinct storylines.

Not all the keywords are common among the unstructured metadata of

related segments, nor are they always all present in the keywords of a query.

Therefore, to enhance the query we use a transitive search with a complete

set of unstructured metadata. The probability of a match among related

segments increases with the additional keywords; however, this can reduce

precision.

As a result of the transitive search, the recall of the system is increased

to 48% from 25% (another level of transitive search can increase it further).
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Table 7.6: System Performance

Search Technique Total Segments Relevant Segments Recall Precision

Retrieved Retrieved

Query Match 137 137 25% 100%

Transitive Search 293 262 48% 89%

Sibling 517 517 96% 100%

Identification

The precision of the results due to this step is reduced to 89% from 100%.

A cause of such low recall of the initial retrieval and subsequent transitive

search is the quality of the unstructured metadata. Often this quality is low

due to incomplete or missing sentences and misspelled words (due to real-

time human transcription).

Using the structural hierarchy (Section 6.3) we store the relationships

among the segments belonging to a news item. Therefore, if this information

is exploited we can get an increase in recall without a reduction in precision

(as all segments belong to the same news item). In the last step of the query

processing we use structural metadata to retrieve these additional segments.

As observed from the above results, the recall is then increased to 96%. The

remaining data are not identified due to a failure of the prior transitive search.

The results demonstrate that the combination of different retrieval tech-

niques using different sources of metadata can achieve better recall in a news
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Figure 7.9: Process Diagram for Using Visual Metadata to Increase Precision

video composition system as compared to the use of a single metadata set.

From the results we observed that to emulate news items which encompass

multiple foci (i.e., concepts from each are associated with many segments), it

becomes difficult to balance the clustering of segments for these foci with our

techniques. For example, the query “State of the Union Address” applied

to our data set will yield foci for the address and the intern controversy.

However, there are many more segments present in the data set for the intern

controversy.

Composite Metadata-Based Query Processing

The results for the annotated metadata-based and unstructured metadata-

based search are intersected and only the common segments are retained

(Fig. 7.9).
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7.4 Video Data Delivery

The conceptual compositions or information about a composition is passed to

a user and is displayed in the user interface. The video playout is initiated at

the user’s request by passing the composition information to a video server.

The server in turn reads the corresponding video data and sends them to a

video client for rendering. The communication between the video server and

the client takes place via 100BaseT using TCP/IP protocols. We use the

MTV client [62] for video playout.

7.5 Summary

In this chapter, we present details about the implementation of a news digital

video production system. The analog video data are first converted into

MPEG-1 digital format. Using Vane the digital video are annotated. The

output of Vane (content information or raw metadata) are stored in a SGML

compliant format. To make the raw metadata queryable, it is translated into

a relational database specific schema (miniSQL) using the sgml2sql tool.

We also decode the closed-caption data associated with video data, and

convert them into unstructured metadata. The unstructured metadata are

then indexed using SMART and the indices are stored in SMART-compliant

files.

Queries are issued using the Web interface, which is implemented using

HTML and the Java language. At the time of interface rendering, the an-
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notated metadata are automatically extracted from the RDB and displayed.

Queries composed by the user with the “point and click” method are trans-

lated into SQL and sent to the relational database (miniSQL) for processing.

A user can also enter keywords that are converted into SMART-compliant

query format for processing. A user can also simultaneously query both

annotated and unstructured metadata.

In the annotated metadata-based query, the Boolean matching technique

is used to compare annotated metadata and user specified criteria. If any seg-

ment belonging to a news item matches the query, then all the other segments

belonging to the news item are retrieved based on the sibling relationship,

and these segments form a candidate set.

In an unstructured metadata-based query, the segments retrieved as a

result of user specified criteria are clustered based on the similarity among

the segments. Next, the clustered segments are augmented using a transi-

tive search and the sibling relationships among the segments. The resulting

clusters or candidate sets are used for compositions.

In composite metadata-based query, the common segments retrieved from

the two individual queries (annotated metadata-based and unstructured metadata-

based) are retained for composition.

The CGI scripts are written in the C language to execute the queries.

The transitive retrieval technique and all the composition techniques are im-

plemented as CGI scripts. The conceptual compositions formed from the

candidate sets are displayed in the Web interface, from where the user ini-

tiates video playout. Video data are streamed separately through TCP/IP
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protocol and displayed using MTV, a MPEG-1 video playout client.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Evaluation of a video-based composition is a complex process as various fea-

tures associated with a video composition need to be analyzed. While the

existing metrics evaluate the retrieval performance of a DVPS, they are not

useful in assessing the quality of a video composition. In addition, the exist-

ing automatic video composition techniques are based only on content, and

do not consider the creation time and structure of a video piece. In this

dissertation we have proposed a set of metrics for evaluation of quality of

news video compositions. We have also proposed various automatic video

composition and customization techniques that overcome the limitations of

the existing methods. We used our proposed metrics to evaluate the quality

of manually composed broadcast news, and obtain values that serve as ref-

erences to judge the quality of an automatic newscast composition produced
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by our proposed composition techniques.

In this dissertation, we have introduced the concept of period-based and

instance-based compositions. Period-based composition includes temporal

ordering, thematic ordering, and thematic nearness ordering techniques. Tem-

poral composition provides temporal ordering of a composition, but depends

on similarity among the segments for thematic flow in the composition. The-

matic composition maintains both correct temporal ordering and a smooth

flow of information. However, compositions resulting from this technique

can have large temporal jumps, either because the threads with consider-

able varying information are dropped, or because segments with significantly

different creation times are considered similar. To overcome these shortcom-

ings, we have proposed the thematic nearness composition technique. In this

technique, the similarity between two segments is not only based on the in-

formation, but also on the difference in their creation time. We find that

better overall composition quality is achieved as we move from the use of

temporal to thematic nearness techniques.

In instance-based composition, we have used random ordering, clustering,

and thematic ordering of the segments. In random ordering and clustering,

we have assumed that the ordering of segments in a body is irrelevant if

they belong to the same instance of time. Therefore, the segments in the

body can be presented in any order or clustered based on their type and the

clusters presented in any order. However, thematic ordering of body segments

can be used in an instance-based composition to improve the smoothness in

information flow in a composition.
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In addition, we have proposed novel breadth-first & depth-second com-

position techniques for composition under playout time constraints. These

techniques provide diversity in information and cover the maximum possible

creation time period. Using these techniques on news video data, we find that

though the information conveyed by the customized composition is reduced,

as expected, the creation period covered is increased. Other composition

features maintain reasonable quality as compared with broadcast news video

composition.

We have also investigated other components of a news DVPS in order

to implement a working digital news video production system (Section A1).

We have proposed and defined metadata types, a concept ontology, and a

concept/object model. We used these to develop an annotation engine for

semi-automatic information extraction. We have also investigated informa-

tion semantics to develop a hybrid technique for better recall and precision

of the retrieval. We found a significant increase (48%) in recall when the

proposed retrieval technique was used on our experimental data set.

8.2 Future Work

Our work can take a number of new directions. In particular, manipulation

of information within segments is an area that needs to be explored. The

manipulation of information within a segment can involve the introduction

of a new object or the removal of an existing object from a segment. Manip-

ulation of information in a segment will not only allow us to create a segment
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with added information, it will also permit customization of the information

contained in the segment. The composition techniques proposed in this dis-

sertation are based on temporal sequencing of video segments. Additionally,

scene composition can also be investigated as a potential technique.

Sports

Sports

Object Archive

Objects

Scene Composition

Scene Composition

Sports

sports

Sports

Segments Compsition

SportsSports Sports

Playout Timeline

Figure 8.1: Automatic Scene Composition Concept

As shown in Fig. 8.1, given a set of objects (e.g., background, anchor,

text, audio), we can automatically compose the objects to create a scene.

Similarly, all the scenes required in a composition can be created. Currently,
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scenes are already pre-composed and stored in a video archive. The objectives

of automatic scene composition is to achieve a dynamic and visually rich

composition of a newscast. A visually rich composition can be achieved by a

selection of interesting and informative video objects from any composition

to create a new composition. It provides interactivity with objects within a

scene that is otherwise not possible in simple playout of a video. Also, the

same objects can be reused to create different scenes. We define the following

two types of scene composition processes:

Aggregate Scene Composition: A composite of independent but related

objects (Fig. 8.1).

Partial Scene Composition: Replacing objects in a composite. E.g., re-

placing a talking head with location scene.

Objects in a scene can be dropped or replaced only if visual objects are

available and techniques to form a composite are available. MPEG-4 [59, 60],

a digital video standard, can be used for the above objective. In this standard

the concept of audio/visual objects (AVO) is present. Information about the

objects and how these objects are to be rendered for final presentation can

be incorporated in the MPEG-4 stream. In addition, AVOs can be natural

or synthetic, (i.e., recorder with a camera/microphone or generated using

a computer). Therefore, the MPEG-4 standard can be effectively used for

aggregate and partial scene composition (Fig. 8.2) by incorporating infor-

mation as to how the objects should be rendered.
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The coding of objects separately also offers scope for content personaliza-

tion at the object level in a video. In current composition techniques, we drop

a complete video segment because of an undesired object within a segment.

By encoding objects separately we can drop only the undesired objects and

use rest of the objects in the segment composition. This is especially useful

in resource management (e.g, network bandwidth). Currently the concept of

streaming two different video compositions to two users with distinct require-

ments is used. By using dynamic object composition, multiple streaming can

be avoided to a certain extent. It is possible to distribute a single stream

but provide different composition to the users. All the objects desired by the

users can be incorporated in a MPEG-4 stream and the desired objects can

be incorporated at the client-end.

Therefore, multiple objects can be encoded and only partial objects can

be decoded depending on a user’s choice. Therefore, streams do not need to

be encoded for individuals, and a single stream can be multicasted to different

users. However, MPEG-4 compositor needs to be extended to incorporate

user profile. Further, objects can be encoded at different resolutions depend-

ing on their importance.

Instead of storing metadata in a separate archive, MPEG-7 [61] defines

a standard for description of multimedia content. This description can be

attached to objects regardless of their format. Therefore, using MPEG-4, it is

possible to attach descriptions (e.g., name of the person, date of an event, and

location) with objects. This provides a convenient way of locating content

in a video stream.
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Using MPEG-4 and MPEG-7 encoding, the following objectives can be

achieved in broadcast news composition:

1. Replacement of interesting visual content (e.g., location shots) with

dead visual content (e.g., talking head).

2. Object personalization, depending on a user profile, irrelevant data can

be dropped. Or, desired data are incorporated in a composition.

3. Enrichment of content by including “added value” information.

4. Object archive will be smaller due to reuse of content.

In summary, to provide further flexibility in video composition, techniques

for composition and customization at scene level need to be investigated and

developed. In addition, the metrics proposed in this work are based on the

feature set specific to a news video domain. However, different subsets of

the feature set can be used to evaluate other domain-specific compositions.

For example, in the jokes domain the creation time of the content does not

affect the information conveyed by a composition. Therefore, we need to

identify subsets of the feature set for evaluation of other domain-specific

compositions and identify, if any, additional domain-specific features required

for evaluation.
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Appendix A1

Summary of Requirements and

Techniques for a Video

Production System

Here we summarize the requirements and the implementation techniques for

a video production system. This section includes techniques used for query

matching with annotated and unstructured metadata; video data retrieval

techniques including transitive search and union based search; and techniques

used for composition of a video piece.

A1.1 Requirements:

1. Digitized video segments must be available. Information contained in

a video segment should be complete and self contained. Each segment
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should have minimal dependencies on neighboring segments (Section

4.1.2).

2. Closed-caption data associated with the video segments must be avail-

able. Closed-caption data associated with each video segment are

treated as metadata associated with the segment (Section 7.2.2).

3. Information about events, places, and persons in the visuals (Section

7.2) must be available, potentially via human annotation.

4. Information about the sibling relationships (Sections 7.2 and 6.3) must

be available.

5. Annotated information about the creation time and the playout dura-

tion of each segment (Sections 7.2 and 6.3) must be available.

6. Database to manage metadata about segments must be available. In

the implementation of Canvass we used a relational database called

miniSQL [58].

7. Two set of indices generated from the closed-caption/unstructured data

for initial retrieval and clustering/transitive search (Sections 7.2.2 and

6.4) must be available.

8. Tools to index the unstructured data must be available. In the imple-

mentation of Canvass we used SMART [21] to create the indices.

Next, we discuss the techniques for the implementation of a video pro-

duction system.
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A1.2 Implementation

In this section we discuss the video data retrieval and composition techniques.

Retrieval Techniques: Video segments can be retrieved by matching ei-

ther or both annotated metadata and unstructured metadata (Section 7.3).

The resultant segments retrieved as a result of any of the above matching

techniques will be part of different storylines. Therefore, further processing

is required to separate the segments into different storylines; therefore, the

segments need to be clustered (Section 6.4). Each cluster represents a single

storyline. The recall of the system can also be increased as follows (Section

7.3):

1. Use a minimal spanning tree technique [29, 34] for clustering segments

into separate storylines.

2. After the clusters are formed, these clusters can be augmented as fol-

lows:.

(a) First, use a transitive search technique for each segment in a clus-

ter. The additional segments retrieved in the process are retained

as elements of the cluster.

(b) Second, use a sibling search technique for each segment in a clus-

ter. The additional segments retrieved in the process are again

retained as elements of the cluster.
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Composition: The following techniques can be used to compose the seg-

ments in each cluster into a narrative (Section 4.2):

• For instance-based composition we must maintain the structural and

thematic continuity.

1. Select a segment of type Introduction.

2. Order the segments in the body in a random order, cluster accord-

ing to the segments types and order, or using cosine similarity for

ordering.

3. Select a segment of type Enclose, if available.

• For period-based composition we must maintain the structural, tem-

poral, and thematic continuity.

1. Select a segment of type Introduction with earliest creation time

and date.

2. Order the segments in the body in a chronology.

3. If better thematic continuity is desired use cosine similarity.

4. Select a segment of type Enclose with the latest creation time and

date.

Time-Limited Composition: Constraints are imposed on the playout

duration of a composition and following two situations can occur (Section

4.2.3):
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• If more playout time is available than the total playout time of a set of

compositions then insert value-added content (e.g., advertisements).

• If less playout time is available (Section 4.2.3) than the total playout

time of a set of compositions then drop data as follows:

– Instance-Based: Fit in as many views and utilize all the available

playout time as follows:

1. Distribute the available playout time among the composition

by proportionally dividing the playout time according to the

playout time of each composition.

2. Cluster the segments in the body of a composition according

to their type and select a segment from each cluster and keep

iterating until no more time can be utilized for the composi-

tion.

3. In the end if some time is left for the composition that could

not be adjusted, then accumulate the time.

4. Now the objective is to utilize as much of the accumulated

time. Therefore, use bin packing technique for selecting seg-

ments.

– Period-based: Optimize the span covered in a composition and

utilize all the available playout time as follows:

1. Distribute the available playout time among the composition

by proportionally dividing the playout time according to the
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playout time of each composition.

2. Divide the creation time line of each composition into sub-

periods. Select a segment from each sub-period and keep it-

erating until no more time can be utilized for the composition.

3. In the end if some time is left for the composition that could

not be adjusted, then accumulate the time.

4. Now the objective is to utilized as much of the accumulated

time. Therefore, use bin packing technique for selecting seg-

ments.
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Appendix B1

Glossary

Candidate Set: A set of segments selected by a query on a data universe.

Canonical Model: Formal encoding of an application-specific cognitive/semantic

user profile.

Clip: Same as a segment.

Composition: The process of sequencing video segments to create a narra-

tive.

Composition Set: A set of segments that are part of a composition.

Concept Vector: A vector that consists of concepts associated with video

data.

Content Progression: Rate of change in information within a composi-

tion.
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Cover Footage: Video segments that encompass all of the aspects of a story

center. For example, shots from the scene, comments of by-standers,

and formal interview about the story.

CM: Continuous Media (e.g., video).

Creation Time: Date and time when video is recorded.

Customization: Tailoring a narrative according to user or system con-

straints.

Data Model: Representation of extracted information from video data and

the relationships.

DTD: Document type definition; contains context rules of an SGML docu-

ment.

DVPS: Digital video production system.

Event: Anything that happens; an occurrence of some importance in a cer-

tain place during a particular interval of time.

FCC: Federal Communications Commission.

Focus: The main concept in a narrative.

Historical Time: Creation time.

Narrative: A narrative is a series of events collected as a cause and effects

chain.

214



Ontology: Description of the concepts and relationships that can exist in

video data.

Period-Span Coverage: The span encompassing the life of an event.

Precision: Measurement of the ability of the system to present relevant

data.

QBE: Query by example.

Information: Concepts associated with video segments.

IQ: Iconic query.

Recall: The ability of the system to retrieve all relevant data.

SGML: Standard generalized markup language; a markup language used to

define the structure of and manage documents in electronic form.

Segment: A shot or contiguous collection of shots forming whole unit of

information.

Semi-Structured Metadata: Information contained in transcripts associ-

ated with video segments.

Shot: One or more frames recorded contiguously and representing a contin-

uous action in time and space.

Similarity Distance: Separation in concepts between any two segments.

SQL: Structured query language.
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Story Center: A focus.

Story line: A narrative

Structural Continuity: Metric the position of a segment type in a com-

position.

Sub-event: Cause and effects in an event over an interval of time.

Tag: Ending segments in a composition (enclose)

Time Constraint Composition: Composition achieved under playout time

restrictions.

Temporal Continuity: Metric the sequencing of segments in time.

Thematic Continuity: Metric the smooth flow of information between

consecutive segments.

Thematic Jump: Similarity distance.

Theme: A focus.

Thread: Temporally-ordered segments that present information about an

aspect of an event.

Transitive Search: The process of retrieving segments that are similar to

the segments returned as result of a user query.

User Profile: Information about constraints of a user, (e.g., content, play-

out time, cost, etc.).
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Video Archive: Video data storage system.

Video: A sequence of synchronised pictures and audio data.

Visuals: Pictures.

Wild Scene: Footage from the actual location of the event.
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