
A Novel Approach for Execution of
Distributed Tasks on Mobile Ad Hoc

Networks∗

P. Basu, W. Ke, and T.D.C. Little

Department of Electrical and Computer Engineering, Boston University
8 Saint Mary’s St., Boston, MA 02215

{pbasu,ke,tdcl}@bu.edu

July 22, 2001

MCL Technical Report No. 07-22-2001

Abstract–Mobile ad hoc networks (MANETs) have received significant attention in the re-

cent past owing to the proliferation in the numbers of tetherless portable devices, and rapid

growth in popularity of wireless networking. Most of the MANET research community has

remained focused on developing lower layer mechanisms (such as channel access and rout-

ing) for making MANETs operational. However, little focus has been applied on higher

layer issues, especially application modeling. In this paper, we present a novel distributed

application framework based on task graphs that enables a large class of resource discovery

based applications on MANETs. A distributed application is represented as a complex task

comprised of smaller sub-tasks that need to be performed on different classes of computing

devices with specialized roles. Execution of a particular task on a MANET involves several

logical patterns of data flow between classes of such specialized devices. These data flow

patterns induce dependencies between the different classes of devices that need to cooper-

ate to execute the application. Such dependencies yield a task graph representation of the

application.

We focus on the problem of executing distributed tasks on a MANET by means of

dynamic selection of specific devices that are needed to complete the tasks. In this paper,

∗This work was supported by the NSF under grant No. ANI-0073843.

1

we present simple and efficient algorithms for dynamic discovery and selection of suitable

devices in a MANET from among a number of them providing the same functionality. This

is carried out with respect to the proposed task graph representation of the application, and

we call this process Dynamic Task-based Anycasting. Our algorithm periodically monitors

the logical associations between the selected devices, and in the event of a disruption in the

application owing to failures in any component in the network, it adapts to the situation and

dynamically rediscovers the affected parts of the task graph, if possible. Finally, we propose

metrics for evaluating the performance of these algorithms and report simulation results for

a variety of application scenarios with different degrees of complexity, device mobility, and

transmission range.

1 Introduction

With the shrinking size of tetherless computing devices and increasing diversity of their

capabilities, the value of pervasive computing is rapidly becoming real. As these devices

proliferate in number, exploiting the full potential of a network of such devices while not

frustrating the end-user with interminable configuration tasks and wire-plugging exercises

proves to be a challenging issue indeed.

Established technologies such as IEEE 802.11 [9] and burgeoning technologies such

as Bluetooth [5] are poised to bring true tetherless computing applications to the end user in

every possible way. A mobile ad hoc network (MANET) is a rapidly deployable, autonomous

system of mobile devices which are connected by wireless links to form an arbitrary graph at

any instant of time. With increase in popularity of portable devices and wireless connectivity

standards, MANETs are likely to gain popularity in the near future, especially in settings

where a networking infrastructure is expensive, cumbersome, or impossible to construct. We

can conceive scenarios in which the environment surrounding us consists of a large number

of specialized as well as multipurpose devices, many of them portable, and linked through

wireless connections, albeit with fluctuating link availability. Ideally, such pervasive networks

can enable a broad range of distributed applications that need exchange of information

between multiple devices.

When a large number of computing devices become equipped with wireless connectiv-

ity, and they form an ad hoc network, they can offer services to other devices for performing

several tasks. In such a situation, since the service providing devices may themselves be

mobile, a user cannot rely on one particular device for a certain service since its reachabil-

2

presentation
file

Display

Local
Screen

data flow edge

Wireless Mouse
Wireless

(mobile user)
Wireless PDA

Smart Storage/CPU

proximity edge

Keyboard
auxilliary devices to

control presentation

(possibly mobile)

(can be moved)

device

Music Server

USER

mp3 data

mp3 decoder

Proximity Sensing

signal
Decoded audio

Speaker L Speaker R

Request

Figure 1: Smart Office and Home Applications: (a) Smart Presentation Task, and (b) Stereo
Music Service

ity/availability is not guaranteed. Instead, a user must be prepared to access the required

service from any of several devices in the MANET providing similar services, if possible.

Significant previous research focused on lower layer MANET issues such as channel

access [18, 4] and routing [17, 20, 15]. However, higher layer issues related to application

design have received little attention in this context. We bridge this gap with a novel scheme

for modeling and executing distributed applications on MANETs that rely on services offered

by other devices scattered across the network.

We introduce the abstraction of a Task-Graph (TG) for representing higher-level tasks

(or applications) that a user may want to perform, in terms of smaller sub-tasks. It is a

graph composed of nodes and edges, where the nodes represent the classes1 of devices/services

needed for processing data related to the task while the edges represent necessary associations

between different nodes for performing the task. Fig. 1 shows two examples of task graphs in

the pervasive computing domain. Fig. 1(a) shows the TG of a smart presentation application,

in which a user, carrying only a PDA with wireless connectivity capacities, automatically

finds and instantiates the devices in a room needed to make a full presentation. Fig. 1(b)

shows the TG of a music service application, in which the application tracks the physical

location of the user and instantiates the appropriate speaker devices that will play the music

the user has selected. Both applications are mentioned in further detail in the next section.

Thus when a task is to be executed, specific devices are selected (in other words,

1Printer, Photocopier, Digital Picture Frame etc. are examples of classes

3

instantiated) at runtime, and are made to communicate with one another according to the

specifications of the TG. More specifically, for each class of device in TG, one suitable

instance needs to be chosen to take part in task execution. We call this process Task-based

Anycasting or Embedding. The adjective dynamic is added since the choice of device instances

may change with time due to mobility.

When a participating device becomes unavailable, a new substitute device with similar

capabilities is selected to continue the task. The TG abstraction of a distributed task is

advantageous in many ways. It is inherently distributed, as most pervasive applications

and services of the future are likely to be, since more and more specialized devices will

need to communicate with one another to offer more and more powerful services. It also

offers hierarchical composability, as collections of devices can be logically grouped together

to constitute a single node in a TG.

Although we do not prove it explicitly, we argue that optimal embedding of a general

graph onto a general MANET is a hard problem. However, if TG is a tree, we show that it is

possible to perform optimal embedding in polynomial time, and present one such algorithm.

But since the running time of this algorithm is high and it assumes knowledge of the entire

topology, we present a simpler and practical distributed algorithm for dynamic instantiation

of TGs on a MANET for executing the application corresponding to the TG. In the event

of a disruption in the application owing to failures in any component in the network, our

algorithm quickly adapts to the situation and dynamically re-instantiates the affected parts

of the TG.

We measure the success of our distributed instantiation algorithm by certain metrics

such as average time for instantiation, quality of the instantiation (in this paper, the technical

term used for this is dilation), frequency of disruption of tasks due to mobility or route

failures, and average effective throughput that is achieved after application data transmission

begins.

The rest of the paper is organized as follows: Section 3 introduces example scenarios

that motivate research in our Task-Graph approach. Section 4 introduces the theoretical

foundations for the TG concept. Section 2 briefly describes the related work in the literature.

Section 5 presents our distributed algorithm for TG instantiation in a network. Section 6

presents simulation results of the algorithm presented. Section 7 concludes the paper.

4

2 Related Work

In recent years, service discovery in networks has been a popular topic of research in the

industry as exemplified by SLP [13] and Sun’s Jini [21]. In both these schemes, a service

providing computer registers itself with its attributes at a centralized directory server which

the clients can lookup on demand. MOCA is a variation of Jini without any centralized

registry [3]. It is specifically designed for mobile computing devices – every device has a

service registry component which only the applications running on the local and surrounding

devices can benefit from. Our approach is different from these as it operates at a logical

layer above service discovery and it can co-exist with any of these schemes. Also, it does not

depend upon any centralized directory service.

Some researchers have proposed to capture user-intent for discovering appropriate

devices suitable to them. Portolano project [10] emphasizes the use of data centric networking

which is really a low-level implementation technique that can potentially have TG as a

higher-level abstraction. In INS [1], the user intent is abstracted into collections of attribute-

value pairs that describe what the user wants. The specific devices that will perform the

desired service will be selected by special entities called Intentional Name Resolvers. INS

has a feature called Intentional Anycast and late binding which are similar to what we call

instantiation of TG nodes. However, it does not to attempt to systematically represent the

relationships between the components of a distributed task, which is our principal focus.

Hodes et al. [16] have investigated means of composing services for heterogeneous mobile

clients. Their work primarily focuses on controlling office equipment from mobile devices

and design of client-device interfaces. They too have not addressed the issues involved in

composing complex services from simple devices with specific interaction patterns between

them.

IBM’s PIMA has a vision somewhat similar to ours. In their vision paper [2], they

argue very briefly for the design of applications in terms of sub-tasks instead of specific

devices. However, they have not mentioned any approach for realizing this vision so far.

Our task-graph concept on the other hand is a systematic and concrete approach which can

help realize this vision.

The concept of a task graph was originally used in parallel computing and scheduling

literature for representing tasks that can be split temporally into sub-tasks and then allocated

to different homogeneous processors connected by a fixed high-performance interconnect for

reducing the total completion time [6, 19]. Our notion of a task graph is different from

5

this classical one. We are not necessarily concerned with tasks that are distributable among

multiple homogeneous processors for speed-up. Rather, most tasks that we are concerned

with in this work involve several specialized heterogeneous devices that communicate with

each other, and there is no notion of minimizing the total completion time. However, if we are

interested in solving a large scale distributed computing task on a network of homogeneous

mobile devices, then our notion of a task graph will be similar to the classical one. Therefore,

our task graph formulation is more general than the one used in the parallel computing

context. We do not discuss the homogeneous device scenario in this paper. To the best

of our knowledge, this is the first attempt towards modeling distributed applications on a

MANET using task graphs.

3 Examples of Application Scenarios

In this section we describe a few application scenarios which motivated our research. We

give examples from smart offices and homes, disaster relief, and sensor networks.

Smart Pervasive Computing Applications Here we consider an application for future

smart offices, conference halls, or ad-hoc meeting rooms. Imagine a large hall with a number

of display screens, projectors, wireless keyboards and pointing devices. Also assume that

there are a number of smart storage devices which can run popular file-viewing software.

These devices can store a presentation file in their local storage and can render them on

a display screen using the appropriate software2. Devices are tetherless and therefore can

be moved around in the room freely. The presenter carries only a PDA (with wireless

connectivity) that contains the presentation file. The file, or portions of it, are transferred

from the PDA to a suitable smart storage device depending on the type of presentation

software and other factors to be outlined later. The presenter will need a pointing device, a

keyboard, perhaps, and a local screen to control the presentation, but does not care about

which devices actually perform the presentation task.

Fig. 1(a) depicts the presentation task with a graph where the vertices stand for

categories of devices involved in the task and the edges stand for data flow between device

categories or other factors like physical proximity. Assuming that there is no infrastructure

support in the hall, a multi-hop ad-hoc network is formed by these devices among each other.

2Laptops of audience members with wireless connectivity can easily take up this role.

6

In this scenario, a self-organizing protocol is required to discover the most suitable

display screen, smart storage device, keyboard, mouse and local screen with respect to the

presenter’s location and data requirements. The presenter can move around in the hall either

naturally or for displaying multiple items at the same time, and a different set of peripherals

may need to be discovered for optimal effect. Note that the nearest smart storage device

containing the suitable viewer may not be the best one for the nearest keyboard and the

nearest display to communicate with. The discovery process must consider the relationships

between vertices in the corresponding task graph. Thus the presentation task can be achieved

seamlessly without bothering the user with configuring the chosen peripheral devices.

Fig. 1(b) illustrates an example of an application for future smart homes. Imagine a

user wearing a proximity sensor embedded in his/her shirt roaming around in the house while

listening to music. When he/she requests a particular song from a music server (hosted in

the house or somewhere in the Internet), the music server streams the mp3 file to a suitable

mp3 decoder in the house which may be a hardware player or a software decoder residing

on a PC. The proximity sensor in the users shirt senses the nearest set of speakers, and the

selected mp3 decoder device starts streaming the audio to the selected set of speakers. If

the user moves to another room, the music follows the user automatically since a new set of

devices is dynamically selected, triggered by the proximity sensor.

Scalable Coordination in Disaster Relief In disaster relief situations involving earth-

quakes, fires or floods, there are various teams of workers involved such as law enforcement

officers, fire fighters, rubble removers, rescue workers, paramedics, and ambulance personnel,

among others. Each of these groups of people have specialized roles in the rescue operations,

and they are expected to be in constant touch with each other through their personal hand-

held devices. However, usually all rescue workers do not need to communicate with all others.

For example, the fire fighters receive data from sensors and communicate with paramedics,

which in turn need to communicate with the ambulance personnel only. Hence, one can es-

tablish certain communication patterns between different types of rescue workers such that

only messages that are relevant to them arrive at their PDAs.

Therefore, instead of forming one huge multicast tree, one can form a number of

smaller multicast groups (each corresponding to a team of workers) connected together by a

small anycast tree. The nodes in the anycast tree are similar to the nodes in an embedded task

graph, each belonging to a specialized type defined by their roles, e.g. Police, Ambulance

etc. An edge in an anycast tree joins one member of a specialized team to a member

7

of another specialized team, if those particular teams need to communicate. e.g., if fire

fighters need to communicate with paramedics, one fire fighter’s PDA acts as the gateway

of communication, and so does one paramedic’s PDA. Communicating along the anycast

tree could result in more scalable management of resources than communicating via pure

multicast which could waste a significant amount of bandwidth. Our instantiation algorithms

can efficiently establish an anycast tree along which such communication can occur. If the

selected anycast nodes are lost due to network partitions, then replacement nodes can be

selected dynamically.

Smart Sensor Networks Here the higher-level task is to sense and track a given mobile

object using a network of embedded sensors. Suppose that for a desired level of fidelity,

data from four sensors is needed at any time instant. The task here translates to discovering

four sensors out of the sea of networked sensors that will optimally track a given object. An

object triangulation example has been explained in greater detail in reference [11].

4 A Task Graph Based Modeling Framework

The use of graph theoretic approaches is well known in traditional parallel and distributed

computing systems [6, 19]. We believe that it can be a promising and elegant tool for mod-

eling distributed applications not only on static distributed platforms but also in mobile

distributed computing environments such as MANETs. In this section, we first lay the foun-

dations of a task graph based modeling framework and then introduce the task embedding

(or anycasting) problem. We then present an optimal polynomial-time algorithm for embed-

ding a tree Task Graph onto a MANET, and then argue why the arbitrary graph embedding

problem is hard. In Sec. 5 we present a more practical distributed algorithm which can

function efficiently in dynamic, mobile environments.

4.1 Definitions of Terms

A device in our context is a physical entity that performs at least one particular function such

as interaction with its physical surroundings, computation, and communication with other

devices. It is usually equipped with an embedded processing element, sensors and actuators

for interacting with the physical environment, a wireless communication port, and/or a user

interface. If a device primarily performs one specific function, it is called a “specialized

8

device”, otherwise, it is referred to as a “multipurpose device”. Examples of the former type

include digital cameras, speakers, printers, keyboards, display devices etc., while examples

of the latter include PDAs and laptops.

The capabilities of each device can be summarized in their attributes. Attributes

can be static (which do not change with time) or dynamic (which change with time). For

example, a network digital camera can have a static attribute “resolution” which can take

values like 320x240, 640x480 etc. Examples of dynamic attributes include location (absolute

or relative, depending on the availability of GPS), power levels, available computational

power (or load), and available communication bandwidth. In this paper, we only consider

specialized devices with their principal attribute, i.e., their main function. Multi-attribute

extensions are possible to our work on the lines of [1].

A service is a functionality provided by a device or a collection of cooperating devices.

Although hierarchical service composition3 is possible using our modeling scheme, in this

work, we only consider services provided by single devices. Multiple devices can exist in the

MANET for providing the same service.

A node is an abstract representation of a device or a collection of devices characterized

by a minimal set of attributes that can offer a particular service. A node is simple when it

represents a single physical device. It is complex when it represents multiple simple nodes.

We consider simple nodes only in this paper. We refer to the principal attribute of a node or

a device as its class or category or type. Examples of classes include printer, speaker, joystick

etc.

An edge is a necessary association between two nodes with attributes that must be

satisfied for the completion of a task. Examples of edge attributes include causal ordering,

weight, required data rate between nodes, allowable bit error rate, and physical proximity.

4.2 Tasks and Task Graphs

A task can be described as work executed by a node with a certain expected outcome. The

work done by a component of a complex node is considered a sub-task of the bigger task. An

atomic task is an indivisible unit of work which is executed by a simple node. Atomicity is

related to the core capability of a device (described through its attributes), and is partially

3creating more complex services from simpler services that are available in the current networked physical

space.

9

Laptop

PDF Document

Printer Nodes

page 5

page 1

(PDF to PS)

Print Server

Printer

Figure 2: A Smart Printing Service

constrained by subjective design choices.

A task graph is a graph TG = (VT , ET) where VT is the set of nodes that need to

participate in the task, and ET is the set of edges denoting data flow between participating

nodes.

An example may bring further clarity to the abstractions developed so far. Consider

a scenario in which there is a postscript (PS) printer connected to a small computer (print

server) running filtering software that can convert PDF files to printable PS format. The

printer and the computer are each devices that offer a particular service. The printer is

considered a specialized device offering the service of converting PS files into printed pages,

while the computer is a multipurpose device which has among its many offered services the

one service of converting PDF files into PS format. The example has been illustrated in Fig.

2.

The printer is a physical device representation of a simple node with certain attributes

(such as print resolution, ink color) that offer the service of converting PS files into printed

pages. Analogously, the print server computer plus its filtering software can be viewed as a

representation of a PDF → PS converter node. By taking these two nodes together we can

form a complex node that offers a “PDF printing service”. A task we have in mind is the

printing of one PDF document. In this specific case, based on subjective criteria, we define

an atomic task to be the printing of one page of the document4. The entire document can

be then printed on a set of available printers as shown in Fig. 2. Note that in this scenario

we formed a new service (PDF printing) by combining two existing ones. Granted that this

4We did not come up with any objectively quantifiable argument as to why the atomic task should not

be the printing of a dot in the paper. Subjectively, we believe atomic operations at that level are too

cumbersome to manage at such high-level abstraction.

10

(i) U : [−;SS] [SS;−] (iv) M : [−;SS]

(ii) SS : [U ;LS,D] [U ;U] [K;LS,D] [M ;LS,D] (v) LS : [SS;−]

(iii) K : [−;SS] (vi) D : [SS;−]

Table 1: Tuples for the Presentation Task

example is simple (even trivial), we believe that research that enables such capability in

today’s MANETs for arbitrary device types and quantities is essential for tapping into the

networked environment’s full potential.

4.3 A Data-flow Tuple Architecture

Every class of device participating in a task possesses a set of tuples representing the task

requirements in terms of the data flow from other classes of devices into the current class,

and from the current class to other classes. Each tuple corresponds to a logical unit of data

processing that is needed between the distributed components of an application. Consider the

smart presentation application described in Sec. 3. The following data flows can characterize

a sample presentation: (i) Presenter’s PDA (U) sends data to Smart Storage (SS) with

appropriate presentation software. SS then displays the data on the Display (D), Local

Screen (LS), and some corresponding notes on the PDA screen (U)(ii) Keyboard (K) data

(from the presenter typing on the keyboard) and Mouse (M) clicks are sent to SS which

interprets them and relays them to D and LS.

To represent such application data flow between nodes we employ a generalized tu-

ple architecture. If a node of class X receives data from nodes of classes A, B and C,

and sends the processed data to nodes of classes D and E for a certain application flow

(e.g. mouse commands or keystrokes), we can represent this flow using the following tuple:

X : [A,B,C;D,E]. Such an application data flow can be specified in a file using a standard-

ized language and a Task Graph (TG) can be generated from it easily. The aforementioned

application data flows can be written as tuples as shown in Table 1 and they translate to

the task graph shown in Fig. 1(a).

Having a tuple architecture for a task serves two purposes: (1) It is a structured

specification of the data flows in a task from which a task graph can be derived, and (2) after

the embedding of the task graph on the MANET, it governs the flow of actual application

data at each participating device.

The example of a data-flow tuple presented above contains only the essential infor-

11

A

B C

D

User

R1

R2

C2

A2

B2

C1

B1

A1

D1

D2

R1

R2

C2

A2

B2

C1

B1

A1

D1

D2
User User

(c) Embedding #2(b) Embedding #1(a) Task Graph

Figure 3: Example of Task Graph Embedding

mation for data exchange, namely the data source and the data destination. In general, the

edges in a TG can have attributes such as channel error rates, bandwidth, etc. which reflect

the QoS needs of the distributed application. These, and requirements such as proximity

(since devices like keyboard, mouse etc. should be located as near the user as possible) can

also be integrated in the TG via the tuple architecture. One direct way of implementing it

is to introduce a proximity attribute of the edge and specify it in the tuple. Implementation

details of the proximity attribute are beyond the scope of this paper, and we reserve it for

future study.

4.4 Embedding Task Graphs onto Networks

The first step in executing a distributed application on a set of specialized devices is to dis-

cover appropriate devices in the network and to select from those, some suitable devices that

are needed to execute the more complex application. Mathematically speaking, embedding a

task graph TG = (VT , ET) onto a MANET G = (VG, EG) involves finding a pair of mappings

(ϕ, ψ) such that ϕ : VT → VG and ψ : ET → PG, where the class of v ∈ VT is the same

as that of ϕ(v) and PG is the set of all source-destination paths in G. Fig. 3(a) depicts a

hypothetical task graph. Figures 3(b-c) show a sample network topology with two possible

embeddings of TG on it.

The entire process of device discovery, selection of a device from multiple instances

of devices in the same category, and the assignment of a physical device to a logical node in

the task graph is referred to as instantiation. The collective process is called embedding or

task-based anycasting.

12

4.5 Metrics for Performance Evaluation

In general, the embedding process maps edges in TG to paths in G. Average Dilation of an

embedding is the average length of such paths taken over all edges in TG. Mathematically,

if ‖a, b‖G denotes the length of a shortest path between nodes a and b in G, dilation is given

by: Davg = 1
|ET |

∑

(x,y)∈ET

‖ϕ(x), ϕ(y)‖G. Dilation is an important metric since it impacts the

throughput between instantiated devices. An embedding with large dilation signifies long

paths between directly communicating devices, which is undesirable in MANETs since TCP

throughput drops significantly with increase in hop distance [14]. In contrast, an embedding

with low dilation results in better task throughput. We consider the weighted version of the

metric in Sec. 4.6 where we formally describe the optimal embedding problem.

Instantiation time is another useful metric which measures the time taken to instan-

tiate a node in TG on G. When an embedding is disrupted owing to network failures, it also

measures the time taken to find a replacement device.

A useful metric for measuring the resilience of the protocols to failures is Average

Effective Throughput, (AvgEffT), which is the average number of application data units

(ADUs) actually received at instantiated data sinks divided by the number of ADUs that

were supposed to be received at the intended targets in an ideal situation5. Therefore,

0 ≤ AvgEffT ≤ 1.

4.6 Optimization Problem Formulation

We formulated the minimum embedding problem as the following optimization problem:

Let C be a set of principal attributes (or classes) of specialized devices. Let

G = (VG, EG) be a graph corresponding to a MANET of specialized devices, with

the class of each device in VG belonging to C. Let TG = (VT , ET) be a task graph

such that the class of each node in VT belongs to some S ⊆ C. Also, a function

w : ET → <+ defines edge weights which could signify data rate requirements or

importance of edges with respect to the task. Find mappings ϕ : VT → VG and

ψ : ET → PG, where the class of v ∈ VT is same as that of ϕ(v) and PG is the set

of all “paths” in the network G, such that the weighted average dilation given

5If a relaying node in the path from source to sink gets uninstantiated, effective throughput will be

affected since certain data flows will be dumped and will not reach the data sinks.

13

U
v

v
B

�
�

�
�

��vA

w1 w2

∀i : vAi
= 0

∀i : vBi
=

∑
k∈ΓB

[min
j
{vkj

+ wB,k × ‖Bi, kj‖G}]

�
�

�
�

��vC v
D

A
A
A
A
AAv
E

w3 w4 w5

∀i : vCi
= 0vDi

= 0 vEi
= 0

vU = min
i
{w1‖U,Ai‖G} + min

i
{vBi

+ w2‖U,Bi‖G}
6

direction of
value
propagation

Figure 4: Optimal Solution based on the Principle of Optimality

by:

Davg =
1

∑
e∈ET

w(e)

∑

e=(x,y)∈ET

w(e) ‖ϕ(x), ϕ(y)‖G (1)

is minimized, where ‖a, b‖G denotes the shortest path between devices a and b

in G.

4.7 An Optimal Polynomial-time Algorithm for Embedding Tree

Task Graphs

We present an optimal algorithm (with respect to Davg) for embedding or anycasting a tree

task graph onto a MANET at a given instant of time. The running time is polynomial in

|G| as well as |TG|. The algorithm minimizes searching in the solution space by taking

advantage of the tree structure of TG, and is based on the principle of optimality6. The

algorithm requires that the node executing the algorithm have a complete knowledge of the

topology of the network at the given instant of time.

The algorithm proceeds by the propagation of a certain value function from the leaf

nodes of TG towards the root node U . It comprises of the following steps:

1. Perform a BFS traversal of the tree TG and assign a level L to each node starting from

U which has L = 0.

6Principle of Optimality holds for problems whose structure is such that their optimal solutions contain

the same for the smaller sub-problems.

14

2. Now begin assigning a value, v to nodes starting from the highest level, Lmax ≤ |VT |.

If the node under consideration, say X, is a leaf node in TG, for all instances Xi in G

of class X, assign value zero, i.e., ∀i : vXi
= 0.

3. If X is not a leaf node, consider its children at every instance Xi of X in G. For

instance Xi, for every child node Y of X, carry out the following optimization step:

sweep through all the instances Y in G, and select the instance Yj which minimizes

the quantity vYj
+ w(X,Y)‖Xi, Yj‖G.

The crux of the idea is that the principle of optimality holds because of the tree

structure of TG: if Xi is selected by its parent and is optimal, then the choice of Yj is

optimal too. This greatly reduces the search space. After carrying out this step for all

children of X for Xi, assign the sum of the calculated minimum values to vXi
. Fig. 4

illustrates the procedure for a task graph of 6 nodes7.

4. Complete this value assignment for all instances of all nodes at a given level in TG

before considering lower level nodes. At U , choose the children such that vU is mini-

mized (note that there is only one instance of U). Now, we have the optimal instances

of all nodes which minimize the dilation metric in Eq. 1, and hence have an optimal

embedding.

Now, we calculate the running time of the above algorithm. Step 1 takes O(|VT |+|ET |)

time. If the nodes with the same level are pushed onto a stack after traversal, then nodes

with L = Lmax will reside at the top and value propagation can occur efficiently. Now, since

in the worst case, Lmax = |VT | = O(|VT |) (although in more balanced trees, it is logarithmic

in |VT |), Step 2 can loop O(|VT |) times. In Step 3, every edge in TG is mapped to a shortest

path in G. Suppose there are |C| classes of devices in G with |VG|
|C|

instances of each class. For

every parent instance, each child instance is considered, the shortest path is computed (in

O(|VG|
2) time) and a minimization step performed (in O(|VG|

|C|
) time). Hence this mapping

process for all edges will take O(|ET | ×
|VG|
|C|

(|VG|
|C|

× |VG|
2 + |VG|

|C|
)) = O(|ET |

|VG|4

|C|2
) time. Note

that the Step 2 loop is subsumed in this calculation. Since |VG| is the dominant term, the

time complexity is given by the above expression itself. If we use All Pairs Shortest Path

algorithm (running time is O(|VG|
3) and extraction of shortest path cost is O(1) assuming

a random access storage) instead of the Dijkstra’s Source-Destination Shortest Path, then

running time of the entire process is O(|ET |
|VG|2

|C|2
+ |VG|

3) = O(|VG|
3).

7ΓB is the set of children of B in TG. kj is an instance in G of child k of B in TG.

15

This algorithm has the following drawbacks: (1) it is centralized and does not have

a low time complexity, (2) it needs entire topology information at a particular device which

we believe is unrealistic for large MANETs that we consider in this paper, and (3) it is not

adaptive to mobility of devices. Hence, in Section 5 we propose a distributed greedy heuristic

approach which albeit suboptimal, is much simpler and less time consuming, and reasonably

efficient in operation.

Now, if TG is a general graph (and not a tree), then the task embedding problem

becomes much harder. The principle of optimality may not hold in case of general graphs

because the optimal embedding of every pair of nodes and the edge connecting them cannot

be done independent of other edges and nodes in TG, as can be done if TG were a tree. In

case of a tree, as we propagate the values from the leaves to the root, the optimal embeddings

of each sub-tree are retained and used later while embedding a node with lower value of L.

This is not possible for any general task graph with greater connectivity than a tree.

Since there are |VT | distinct classes of devices in TG, and |VG|
|C|

instances of each

class in the network G (|VT | ≤ |C|), the total number of possible embeddings is |VG||VT |

|C||VT | .

Hence, the search space for an optimal brute force algorithm is exponential in |VT |, which is

clearly unacceptable. The combinatorial structure of the problem prompted us to look for

a heuristic solution, the basic idea of which is very simple: find a spanning tree STmax of

TG with the maximum weight and then embed that tree in G using the algorithm described

before. It is easy to see that the edges of TG which are not in STmax will not be considered

by the embedding process and can be mapped to very long paths and give highly suboptimal

results without any bounded approximation factor. Any better solution will have to involve

partitioning TG into smaller components which can be embedded independent of each other.

Finding such components and then embedding them onto the network both are likely to

have high time complexity. Hence, we trade off complexity for optimality and look for

greedy heuristic solutions which are simple and distributed in nature.

5 A Distributed Task Embedding Approach

A centralized approach is often preferable when there is some existing static infrastructure

with a fixed base station node or a directory server, devices are less mobile and more con-

nected with each other, and the probability of node and link failure is low. In the Sec. 4.7 we

described a centralized solution which requires knowledge of the entire network and yields

optimal results for tree TGs. However, when we consider a dynamic and mobile distributed

16

Specialized Node

Data Sink

Data Source

BFS tree edge

non−BFS edge

Root

Root

Root

A B

C D

E

A B

C D

E

A B

C

D

F

G

H

E

Figure 5: Task Graphs: (a) Tree, (b,c) Non-Tree Graphs

environment such as a MANET of low power devices, no device in the network may possess

adequate computational power to execute that algorithm. Also the MANET graph could

change by the time the optimal dilation is calculated. Moreover, it is hard for one device

to track the changes in topology between participating instances using reactive MANET

routing protocols such as DSR.

It is also hard to guarantee that a device acting as a centralized controller will always

be connected to the rest of the network. When a disconnection or partition occurs in the

network, a new controller may have to be elected, and that device will have to compute a

new embedding. Although it may be easier to find close-to-optimal solutions (with respect

to particular performance metrics) using a centralized approach than a distributed one, the

latter is more robust and adaptive to mobility since there is no single point of failure. Hence,

we feel that localized distributed algorithms are better suited for such dynamic MANET

environments.

Services such as device discovery and selection can be implemented in an intermediate

layer (say, TG layer) between the application and network layers. Our approach assumes the

presence of routing support in the MANET. However, one can also envision the TG layer

to be embedded in the network layer for performance improvements (not considered in this

work).

5.1 A Distributed Algorithm for Instantiation of Nodes

In this section we present a distributed algorithm for the instantiation of nodes (or anycasting

of the corresponding service) in a given task graph. The corresponding distributed protocol

has been specified by the finite state machines shown in Figs. 7 and 8.

17

The principal goal of the algorithm is to produce an embedding of a TG onto a

MANET with the objective of minimizing Davg. In this work, we assume that each hetero-

geneous device can provide a single type of service, and that all nodes in the network are

simple. Our concept can be easily extended to incorporate the case where multiple types

of services are provided by one particular device. We assume the presence of a MANET

routing protocol (e.g. DSR, AODV etc.) and a reliable transport protocol (TCP).

All devices in the network execute copies of the same algorithm except the user

node, U which executes a different algorithm since it acts as a state synchronizer (or coor-

dinator) in the initial phases of the embedding process. Any device in the network other

than the main coordinator can exist in one of the following states at any instant of time:

NOT INSTANTIATED, WAIT FOR ACK, or INSTANTIATED. The main coordinator can

exist in TG UNINSTANTIATED or TG INSTANTIATED state. A task graph TG is sub-

mitted by the user node’s application layer to its TG layer which begins the embedding

process.

Initially the coordinator U is in state TG UNINSTANTIATED (which means the task

graph has not been instantiated yet) and all other nodes are in state NOT INSTANTIATED

(the node has not been instantiated by the coordinator). The embedding process begins at

U with a distributed search which proceeds through the MANET G hand-in-hand with a

breadth-first search (BFS) through TG. Fig. 5(c) depicts a task graph with its BFS and

non-BFS edges. We call the spanning tree on TG induced by BFS and rooted at U , a BFS-

tree (BFSTTG) of TG8. We propose a greedy solution to keep the dilation of the embedding

low: the algorithm begins from U by progressively mapping the nodes of BFSTTG to nearest

devices and the edges to shortest paths in G. Instantiation of any pair of nodes x, y ∈ VT

cannot affect each other if x is not a parent of y in BFSTTG, or vice versa. Hence, the

search can proceed in a distributed manner along the branches of BFSTTG. Note that

unlike the optimal algorithm proposed in Sec. 4.7, this algorithm greedily instantiates nodes

in TG starting from U and searches only the local space around an instantiated device for

instantiating the next node.

The salient steps of the algorithm have been illustrated in Fig. 6 by means of a

time-based message diagram. First, nodes which are neighbors of the user node, U in TG

are visited parallely, and their instances are discovered in the network. U issues broadcast

8We assume here that all edges of TG have equal weight. If the weights are unequal, a Maximum Weight

Spanning Tree should be computed and its edges should be used for performing the embedding instead of

the BFS-tree. Rest of the steps are similar to the ones taken for embedding a BFS-tree with obvious changes

in nomenclature.

18

(user node)

Node CNode B

(instance j) (instance k)

Root NodeNode A

(instance i)

I’m a candidate
ACK

ACK
confirmation

Broadcast Query for type C

I’m a candidate

HELLO neighborHELLO neighbor

process

I’m a candidate

ACK

confirmation

TCP flows

UDP flowsCN_QUERY to CN

confirmationSubtree
Subtree

Subtree confirmation

HELLO ACK
HELLO ACK

HELLO neighbor

HELLO ACK

(all pairs not shown here)

Broadcast Query

for type B
for type A

Now, periodic HELLO messages/ACKs are exchanged

between every pair of instantiated neighbors, both ways

all
confirmations

received

start
instantiation

Node C

(user node)

TASK GRAPH

Node A

BFS−tree edges

Non−BFS−tree edges

Node B

Coordinator
Local

Coordinator

Root

Leaf Nodes

T
IM

E

Now, send instantiated TG/tuples to selected devices

Figure 6: Dynamics of the Embedding Scheme

search queries for each neighbor (types A and B) in TG9. The query types in the search

packet are A and B respectively. A packet is rebroadcasted by the TG layer of a device, D if

it does not match the search query type, the time-to-live (TTL) value in the packet has not

reached zero, and if D has not seen the same broadcast (identified by broadcast sequence

numbers) before.

When a free instance Bj of type B gets a search packet, it sends a candidate query

packet to the synchronizer/coordinator U expressing its willingness to participate in the

task. Bj changes its state to WAIT FOR ACK. U checks the state of the instantiation of

TG node B and sends an acknowledgment to Bj if B has not been instantiated yet in its TG.

The coordinator U is responsible for accepting and rejecting replies from several candidate

devices in the network before the discovery is completed. The first candidate device that

replies to a search query packet of type B becomes the instance of B at U .

Along with the acknowledgment, U also sends a list of device types that are in the

sub-tree of TG rooted at B (such as C). U does not send explicit negative acknowledgments

to all other instances of B. Instead, a candidate Bk starts a timer as soon as it sends a

candidate query to U . If the timer expires before it receives an ACK, it puts itself in

9The broadcast is controlled by executing it at the TG layer rather than the IP layer. Essentially, a

device in the network broadcasts a packet to all its one-hop neighbors which examine the state of the packet

and decide whether to rebroadcast it or not.

19

NOT INSTANTIATED state again. This is more scalable than U sending NACKs, albeit

at the cost of tying Bk in WAIT FOR ACK state for a longer time. An acknowledged

candidate Bj changes its state to INSTANTIATED, and confirms its role to U . If there

are any uninstantiated nodes rooted at B in the TG, then Bj issues broadcast search query

packets for all those node types and the instantiation proceeds further. Bj acts as a local

coordinator for all nodes in its sub-tree. After receiving individual confirmations from selected

node instances in its sub-tree, it aggregates them into one collective confirmation packet

and sends it to U . When U receives confirmations for all node types in TG, it sends the

instantiated-TG and tuples to the selected devices.

The details of our protocol have been illustrated in Figs. 7-8 by means of finite state

machines (FSM diagrams) that need to run on the devices in the network for finding the

embedding. In our opinion, the user devices are best suited for acting as coordinators since

they usually originate the application data flows, and even under mobility, always remain

near the user.

After the instantiation information is exchanged, the user application can start data

transmission. The flow of data will be governed by the instances of the corresponding tuples,

and in the ideal situation, all data originating at the source should reach the instances of

the sink nodes in TG (Ai and Ck in the example in Fig. 6) after being relayed by the

intermediate devices (Bj).

The task graph itself is sent as control data during the instantiation process. Once

the instantiation process is complete, the selected set of devices communicate with each

other using the underlying TCP layer which sits on top of the MANET routing layer (DSR

in our case). TCP is used to exchange control and data packets since packet losses due

to route errors are very common in MANETs. Our protocol does not assume anything

specific about the routing protocol running on the MANET although we favor reactive/on-

demand protocols in principle over proactive ones. Hence we chose DSR for our simulation

experiments.

5.2 Handling Mobility of Devices

In this section, we present in detail how our instantiation algorithms react to the mobility of

devices. If the devices in the network are highly mobile during the lifetime of a distributed

application running on the network, the network topology and previously established con-

nections may change, and this may disrupt the application. Therefore, in the presence of

20

Start

CN_QUERY arrived from node of type X

(X is already instantiated)

CN_QUERY arrived from node of type X

(X is not instantiated)

1. Instantiate X

2. Send back CN_ACK

Query for all types

of devices in TG

TG_UNINSTANTIATED

(typically USER node)

Num_inst == #nodes in TG

Send task graph (INST_TG) to instances

Send (in−out) tuples

TG_INSTANTIATED

Lost BFS Child instance

Send SEARCH_Q_REINST

CN_QUERY pkt arrived

CN_Q_REINST pkt arrived

for the same type of device

Signal Application layer

(send nothing)

Send REINST_TG or nothing

candidate rejected (send nothing)

3. acked(X) = 1

CN_CONFIRM arrives from leaf

Num_inst ++

Collective CN_CONFIRM

OR

Num_inst += #children of R

which is a root of a BFS−subtree

arrives from a level 1 child R

Figure 7: Coordinator Device Protocol FSM

(request−type == my device type)

SEARCH_QUERY pkt arrived

Send CN_QUERY to CN

S
en

d
 C

N
_
Q

_
R

E
IN

S
T

 t
o
 l

o
ca

l
C

N

S
E

A
R

C
H

_
Q

_
R

E
IN

S
T

DATA pkt arrived

Sent to App layer

Instantiate the TG node

from local CN

RE−INST_TG pkt arrives

Inform main CN

HELLO_ACK arrived

if (!old) reachable[src] = 1

HELLO_PKT arrived

Send HELLO_ACK

if (!instantiated) then instantiate

and send CN_ACK

CN_QUERY pkt (me: local CN)

if all immediate children have confirmed,

send Collective CN_CONFIRM to parent

if collective pkt => send upstream to parent

CN_CONFIRM pkt (me: local CN)

UNINSTANTIATED

Rebroadcast pkt

SEARCH_QUERY pkt arrived

SEARCH_QUERY pkt arrived

(different device type)

Rebroadcast pkt

INSTANTIATED

WAIT−FOR−CN_ACK

Send HELLO_PKT to

neighbors

INST_TG pkt

Lost BFS Child instance

Broadcast SEARCH_Q_REINST

CN_Q_REINST pkt

for the same type of device

Signal Application layer

A
C

K
 t

im
er

 e
x
p
ir

es

Clear instantiation state

Detect loss of BFS Parent

INST timer expired
without data

OR

SEARCH_QUERY pkt

Rebroadcast pkt

Send INST_TG

4. Find uninstantiated neighbors in TG

1. Instantiate the TG node

2. Send CN_CONFIRM to CN

3. Extract TG from previous pkt

5. Initiate search for remaining types

CN_ACK arrives from main/local CN

Figure 8: Non-Coordinator Device Protocol FSM

21

(user node) (instance j) (instance k)(instance i)
Node B Node CNode C Root Node

H
HELLO packet

HA
HELLO−ACK packet

X

X

H

H

HA

HA

H
H

T
IM

E

detected loss

C(k) does not reply

X

Node C

(user node)

TASK GRAPH

Node A

BFS−tree edges

Non−BFS−tree edges

Node B

BFS−parent
of C

BFS−parent
of A, B

Non−BFS

Confirmation

Send TUPLES

parent of B

of BFS−parent B(j)

Packet did not reach
before timer expired

of BFS−child C(k)

detected loss

(it is still not free)

broadcast for type C

I’m suitable

Send REINST_TG

T
im

e−
o

u
t

P
er

io
d

(C(k) uninstantiates itself)

(Start HELLO)

(over 2 logical TG hops)

Inform Logical Neighbors

Inform Root CN
(Start HELLO)

Figure 9: Re-instantiation of Devices

mobility, it is no longer sufficient to permanently select specific devices and appoint them to

execute the application – continual monitoring must be performed for detecting disruptions,

and replacement devices must be selected for resuming the application.

5.2.1 Detection of Disconnections

When mobility causes network partitions or disconnections, the instantiated devices may

no longer be able to communicate if the partition breaks all paths between them. In such

situations, new instances need to be selected. The necessary first step in this direction is the

detection of disconnections.

Mobility of devices may cause network partitions or disconnections, and two instanti-

ated devices may no longer be able to communicate if all paths between them are broken. We

propose a lightweight, soft-state exchange protocol for detecting disconnections in an instan-

tiated TG. The protocol requires each instantiated device to send periodic HELLO messages

(with period T) to its logical neighbor instances in TG, which reply with a HELLO-ACK.

This has been demonstrated in Fig. 9.

Each instantiated device specially keeps track of its BFS parent and BFS children.

For example, in Fig. 5(c), the instance of type C keeps track of the instance of type A

(its BFS parent) as well as of the instances of types F and G (BFS children). If a BFS

22

parent device stops hearing from one of its BFS children10, it uninstantiates its child and

starts searching for a replacement of the same type. The child meanwhile would stop hearing

HELLO-ACKs from the parent (assuming bidirectional links), and will uninstantiate itself.

This has been illustrated in Fig. 9. On average, if the HELLO timer is set to T seconds at

every instantiated device, disconnections will be detected after T
2

seconds. State transitions

that result from this process have been shown in the FSM diagrams in Figs. 7 and 8.

Mobility of devices may also result in lengthening or shortening of routes between

device instances, and ideally, if there is no disconnection/partition, the application should

proceed without disruption. But such ideal conditions may not hold in reality where route

failures can trigger route discovery which along with TCP re-transmissions after timeouts

may sometimes take several seconds to complete. Hence, this can result in HELLO-ACKs not

coming back in T seconds which results in the conclusion that a disconnection has happened,

even when the nodes are reachable from one another.

Recently, researchers have proposed solutions to the above problem based on explicit

notification of route errors to TCP [8]. In this study, we do not attempt to alter TCP or

DSR (including their default timer settings), and simply build our protocol on top of these

protocols. Hence, if a device does not receive a HELLO-ACK from its neighbor in T seconds,

we deem the neighbor to be disconnected. A reasonable value of T is one which is not low

enough to cause significant control overhead11, and not high enough such that disconnections

are not detected fast enough. For our simulations, we chose T = 7seconds (> 6s, the default

TCP re-transmission timer).

5.2.2 Process of Re-instantiation and Bookkeeping

If a BFS parent device detects a disconnection with its child at the expiry of its HELLO

timer, it issues a broadcast search query for the same type of the child. The re-instantiation

process then proceeds like the earlier instantiation process with a small simplification that

the CN CONFIRM step is omitted, since the BFS parent here handles one disconnection at a

time. Also, the coordinator device is not involved in this process, and the BFS parent device

acts like a local coordinator. After finding a new device, the BFS parent instantiates it in

its own copy of TG, and sends a portion of the re-instantiated TG to the new child device.

10The parent concludes this if it does not get a HELLO-ACK from that child before the expiry of its

HELLO timer
11Although exchanging HELLO messages with higher frequency could result in the DSR caches having

fresher routes

23

g’ 1−logical−hop broadcasts its neighbor table

c finds g’ (g’ doesn’t know about d)

c sends portion of TG to g’

d does not know about g’ yet

g’ knows about d now

d knows about g’ now

(this is useful if c or d are disconnected)

c knows that g’ knows about d

a,b,e come to know about g’

c,d 1−logical−hop broadcast their neighbor tables

g gets disconnected from c

c searches for new g

d does not do anything

c detects disconnection

Root

a b

c

d e

f

g

h

Root

a b

c

d e

f

h

X X

g’

Root

a b

c

d e

f

h

g’

Figure 10: Bookkeeping after Re-instantiation

Fig. 10 helps appreciate the reason behind doing this. a, b, . . . , h, g′ are device instances.

Our protocol addresses the problem of state maintenance after disconnections, and

attempts to solve it locally, i.e. without involving the coordinator node. Each instantiated

device knows the addresses of its parents (both BFS and non-BFS), its children, its children’s

parents, and its children’s children12. With a little thought, one can see that information

about this portion of TG is enough to handle single node disruptions in the instantiated task

graph. However, there is one situation which cannot be adequately handled by this technique:

a network partition such that 2 nodes connected by a non-BFS edge get disconnected from

their parents. e.g., d and g get disconnected from c and a respectively, in the same HELLO

period. a finds d′, and c finds g′ but a tells d′ about g and c tells g′ about d (from their

2-logical-hop neighbor tables), and a deadlock situation occurs where d′ tried to contact g

and d′ tries to contact d. To solve this, we adopt an approach where a non-BFS parent asks

for the coordinator’s help if it loses its non-BFS child. Since the coordinator is kept informed

by newly instantiated nodes, such a situation can be avoided by taking its help. Note that if

the coordinator is unreachable from this node instance, it is because of a network partition

alone (since we do not have any timers for such messages), and in that case, a chunk of the

instantiated network has been disconnected from the rest (containing the coordinator). In

such situations, repair occurs soon at the BFS-parent node instances whose HELLO timers

expire.

12Essentially, this is 2-logical-hop information except for parent’s parents information which is unnecessary.

24

5.2.3 Impact of Disruptions on the Application Layer

The application layer of every participating device keeps up-to-date (in-out) tuple informa-

tion for parent and children devices. If the running task gets disrupted by disconnection of

some participating devices, then it is the responsibility of the BFS-parent device to transfer

the application state to the newly instantiated replacement device, and then resume the ap-

plication data-flow. Meanwhile in data packets reaching old device instances are dropped by

those devices which would be in the NOT INSTANTIATED state after being disconnected.

Our average effective throughput metric tries to capture the effectiveness of our disruption

handling algorithm by measuring the fraction of the data that actually made it to the data

sinks from the source. A higher layer buffer management scheme at the BFS-parent device

instance can increase the reliability of task completion.

Simulation Parameter Value

Number of Devices 50, 100
Simulation Area 1000m× 1000m
Transmission Radius 250m
Mobility Model Random Waypoint ([7])
MANET Routing DSR
#Classes of Devices 12§

Size of TG: (|VT |, |ET |) (6, 5), (6, 7), (9, 11)
Simulation Time 600s
MaxSpeed 1 − 20m/s
Pause Time 0 − 600s
Data Rate at Source U (12500, 5): medium
(B = Burst size (bytes), (1000, 10): low
P = Time period (sec)) (2500, 1): freq. medium

Table 2: Simulation Parameters, Tx = 250m

6 Simulation Results

We simulated the algorithms (and protocols) described in Sec. 5 using the popular network

simulator ns-2[22] for two different scenarios. The simulation parameters for the scenario

depicting a large open area with nominal radio transmission range of 250m have been listed

in Table 2. We show simulation results for task-graphs in Fig. 5 – we refer to them as Tree

TG, Non-Tree TG-1 and Non-Tree TG-2 respectively. The instantiation process began at

§With uniform probability distribution

25

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 D
ila

tio
n

Area = 1000x1000 m2

Tx range = 250 meters
Types of Specialized Devices = 12
Pause Time = 0 sec

50 devices − Tree Task Graph
50 devices − Non−Tree TG 1 (6,7)
50 devices − Non−Tree TG 2 (9,11)
100 devices − Tree Task Graph
100 devices − Non−Tree TG 1 (6,7)
100 devices − Non−Tree TG 2 (9,11)

Figure 11: Average Dilation vs. Speed

1 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 T
im

e
fo

r
In

iti
al

 E
m

be
dd

in
g

[s
ec

on
ds

]

Area = 1000x1000 m2

Tx range = 250 meters

Pause Time = 0 sec

Types of Specialized Devices = 12

50 Devices
100 Devices

Figure 12: Average Time for Embedding of
TG-2

50s, and at 60s, a CBR source at the user/root node started sending data to the data sinks at

the three different load granularities specified in Table 2. The results have been averaged over

three different random specialized device patterns on two different sets of mobility scenario

files. Devices which are not part of the current instantiated TG do not relay data packets,

and such packets are not buffered13.

We begin with results for the medium load scenario: (B,P) = (12500, 5). We consider

the constant mobility scenario (PauseT ime = 0) for a range of maximum speeds. We

observe from Fig. 11 that the average dilation for the MANET with 100 devices does not

vary greatly with speed. This means that the average number of physical hops between

two instantiated nodes in TG is low and remains approximately constant under mobility.

Actually, even if a HELLO message does not reach a device within expiration time, owing to

the uniform distribution of device categories in space, the re-instantiation process will find

another device with similar attributes within a range that keeps the dilation value constant.

A similar pattern is observed for the network with 50 devices, although Davg is higher in

that case owing to a 50% lower device density.

Fig. 12 compares the average time taken for embedding TG-2 on both MANETs.

We observe that in general, more time is taken for embedding/anycasting the same TG

on the denser MANET although devices are likely to be found closer on average in that

MANET (as is observed from the dilation curves). This can be explained by the fact that

13In other words, if a device which was part of a TG becomes disconnected while there is a packet in

transit, the packet is lost.

26

SEARCH QUERY broadcast traffic occupies significant bandwidth in the initial phase of

the embedding process (even after controlling it by mechanisms mentioned in Sec. 5.1), thus

delaying the flow of control packets such as CN ACK and CN CONFIRM. Also, there are

more instances of each category which receive SEARCH QUERY broadcasts in the denser

MANET and a co-ordinator device takes more time to process their responses while pro-

ceeding with the instantiation process. Hence the aggregate embedding time increases.

We plot AvgEffT for different TGs for both 50 and 100 device MANETs in Fig.

13 (top two figures). We can see clearly that in general, effective throughput drops with

increase in mobility speed. In the figures at the bottom of Fig. 13, we plot the average

number of re-instantiations underwent during the entire simulation time. The rate of change

in network topology increases with speed causing more network partitions (mainly in the 50

device MANET) or route errors (in both MANETs). These in turn prevent HELLO packets

from arriving in time, and this triggers more re-instantiations. Since packets caught in transit

during the re-instantiation process are dropped (as mentioned earlier, we do not consider

application layer buffering in this work), AvgEffT is directly affected by re-instantiations.

In spite of Tree TG having more re-instantiations than TG-1 (we will explain the

reason for this phenomenon in the next paragraph), it yields better AvgEffT . This is

because the data tuples of TG-1 (as well as TG-2) involve flows along non-BFS edges in

the graph. Also, here we are only plotting the re-instantiations, and not all disruptions.

When a non-BFS parent loses a child instance momentarily due to HELLO timeouts, a re-

instantiation will not be triggered since that is the responsibility of the BFS parent of the

child instance; Hence, the throughput is affected until a new instance is found by a BFS

parent and the non-BFS parent is informed of this event by a 1-logical-hop broadcast (as

shown in Fig. 10), or a route to the old instance is restored. Also, Tree TG has sinks at all

depths unlike TG-1 – the latter’s effective throughput suffers more from a re-instantiation

of an intermediate relay node.

Although Tree TG is a sub-graph of TG-1, it suffers more re-instantiations because

data flow along the non-BFS edges og TG-1 results in the presence of more valid alternate

routes (or parts of them). Hence, when a route error happens along a BFS edge (the primary

cause of re-instantiations) of TG-1, often these alternate routes come to the rescue before

the HELLO timer expires, thus reducing the rate of re-instantiations. TG-2 generally suffers

more re-instantiations since it is a larger graph with more depth.

We can observe that TG-1 and TG-2 generally have much lower throughput than Tree-

TG for the dense MANET case, especially at moderate to high speeds. Most of this drop in

27

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 E
ffe

ct
iv

e
T

hr
ou

gh
pu

t

Area = 1000x1000 m2

Tx range = 250 meters
Number of Specialized Devices = 50
Types of Specialized Devices = 12

Pause Time = 0 sec

Tree Task Graph
Non−Tree TG 1 (6,7)
Non−Tree TG 2 (9,11)

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 E
ffe

ct
iv

e
T

hr
ou

gh
pu

t

Area = 1000x1000 m2

Tx range = 250 meters
Number of Specialized Devices = 100
Types of Specialized Devices = 12

Pause Time = 0 sec

Tree Task Graph
Non−Tree TG 1 (6,7)
Non−Tree TG 2 (9,11)

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Degree of Mobility [MaxSpeed in m/s]

N
um

be
r

of
 R

e−
in

st
an

tia
tio

ns
 (

in
 6

00
 s

ec
)

Area = 1000x1000 m2

Tx range = 250 meters

Number of Specialized Devices = 50

Types of Specialized Devices = 12

Pause Time = 0 sec

Tree Task Graph
Non−Tree TG 1 (6,7)
Non−Tree TG 2 (9,11)

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Degree of Mobility [MaxSpeed in m/s]

N
um

be
r

of
 R

e−
in

st
an

tia
tio

ns
 (

in
 6

00
 s

ec
)

Area = 1000x1000 m2

Tx range = 250 meters

Number of Specialized Devices = 100

Types of Specialized Devices = 12

Pause Time = 0 sec

Tree Task Graph
Non−Tree TG 1 (6,7)
Non−Tree TG 2 (9,11)

Figure 13: Medium Load scenario: Variation of Speed

throughput can be attributed to the disconnections between non-BFS parent and children

which happen more often at such speeds, since the paths are likely to be longer for non-BFS

edges, on average. We believe that these disconnection effects are more pronounced in dense

MANETs because of the following interesting phenomenon: in a dense network, moderate-

high speeds cause frequent route errors without disconnecting the network. Since DSR uses

caching, source routing and ring-zero search14, the routes contained in each device’s cache

become stale at high speeds. Stale routes trigger route errors which in turn trigger a route

recovery mechanism at the source. For high density MANETs, more extensive route caching

is likely at intermediate nodes with presence of more alternate routes. This may result in

multiple unsuccessful attempts before a route discovery is successful for these longer paths

which non-BFS edges have been mapped to. When this route caching/recovery mechanism

14A device requesting routes initially queries its 1-hop neighbors, and these neighbors can answer with

routes in their caches.

28

1 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Degree of Mobility [MaxSpeed in m/s]

D
av

g
 [A

ve
ra

ge
 D

ila
tio

n
in

 h
op

s]

Area = 1000x1000 m2

Tx range = 250 meters
Types of Specialized Devices = 12
Pause Time = 0 sec

50 Devices − low load
100 Devices − low load
50 Devices − freq. load
100 Devices − freq. load

1 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 T
im

e
to

 R
e−

in
st

an
tia

te
 a

 N
od

e
[s

ec
on

ds
]

Area = 1000x1000 m2

Tx range = 250 meters

Pause Time = 0 sec

Types of Specialized Devices = 12

50 Devices − low load
100 Devices − low load
50 Devices − freq. load
100 Devices − freq. load

1 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 E
ffe

ct
iv

e
T

hr
ou

gh
pu

t,
A

vg
E

ffT

Area = 1000x1000 m2

Tx range = 250 meters
Pause Time = 0 sec
Types of Specialized Devices = 12

50 Devices − low load
100 Devices − low load
50 Devices − med load
100 Devices − med load
50 Devices − freq. load
100 Devices − freq. load

1 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 N
um

be
r

of
 R

e−
in

st
an

tia
tio

ns

Area = 1000x1000 m2

Tx range = 250 meters

Pause Time = 0 sec

Types of Specialized Devices = 12

50 Devices − low load
100 Devices − low load
50 Devices − med load
100 Devices − med load
50 Devices − freq. load
100 Devices − freq. load

Figure 14: Effect of Variation in Rate and Granularity of Traffic for TG-2

is coupled with the TCP back-off mechanism, which assumes congestion rather than route

updates, it results in longer delays in packet delivery. Since our protocol requires periodic

exchange of HELLO messages over TCP, a lost HELLO packet triggers re-instantiation.

Effect of Variation in Rate and Granularity of Traffic We now examine the effect

of variation in rate and granularity of traffic on the metrics for task graph TG-2 in Fig.

14. We plot both 50 and 100 device cases for different load patterns on the same scale.

The parameters for the low load and frequent medium load patterns are given in Table

2. A maximum aggregate throughput of 300kbps can be reached in the frequent-medium

scenario assuming simultaneous transmission at all instantiated devices in accordance with

the underlying tuple architecture.

29

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Degree of Mobility [Pause Time in sec]

D
av

g
 [A

ve
ra

ge
 D

ila
tio

n
in

 h
op

s]

Area = 1000x1000 m2

Tx range = 250 meters
Max Speed = 20 m/s
Types of Specialized Devices = 12
[TG−2 with 9 nodes, 11 edges]

50 devices
100 devices

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of Mobility [Pause Time in seconds]

A
ve

ra
ge

 E
ffe

ct
iv

e
T

hr
ou

gh
pu

t

Area = 1000x1000 m2

Tx range = 250 meters

Max Speed = 20 m/s

Types of Specialized Devices = 12

[TG−2 with 9 nodes, 11 edges]

50 Devices
100 Devices

Figure 15: Effect of Varying Pause Time ((B,P) = (2500, 1))

The average dilation results (Fig. 14(a)) are similar to the medium load case, as

expected – we can observe that Davg is impacted mainly by device density and not by the

traffic rate. Next, we consider the amount of time taken to discover and re-instantiate a single

node under disruption. From Fig. 14(b) we can observe that the higher density scenario

has better performance for a given load type. A larger number of candidate devices in the

environment increases the likelihood of finding another suitable device once the existing one

is disconnected. However, we observe that the average re-instantiation times are higher for

frequent-medium than those in the low load scenario. The 50 device MANET suffers more

because of the compounded effect of sparse density (which means more hops) and more

frequent transmission of data packets in the neighborhood resulting in more contention and

hence delays.

Fig. 14(c) plots the AvgEffT curves for all three sets of load patterns. We can see

that for the 50 device MANET, AvgEffT is consistently lower for medium and frequent-

medium traffic loads than for low loads. On the other hand, for 100 device MANETs,

throughput improves as traffic load becomes frequent for higher speeds. This can be at-

tributed to the following reason: for dense MANETs, the route caches in the neighborhood

are much fresher for frequent-medium and medium loads than for low loads. When speeds

are high, route errors and repeated cache misses become dominant factors in determining

effective throughput – frequent loads prevent the route caches from getting stale and thus

help in quicker recovery from route errors, and hence AvgEffT improves. This can also be

observed from Fig. 14(d) which demonstrates a significantly less number of re-instantiations

for frequent-medium and medium loads than low loads for the 100 device MANET.

30

0.1 0.5 1 2 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 D
ila

tio
n

(in
 n

um
be

r
of

 h
op

s)

Area = 50x50 m2

Tx range = 10 meters

Types of Specialized Devices = 12

Pause Time = 30 sec

50 devices: Tree Task Graph
50 devices: Non−Tree TG 1 (6,7)
100 devices: Tree Task Graph
100 devices: Non−Tree TG 1 (6,7)

0.1 0.5 1 2 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Degree of Mobility [MaxSpeed in m/s]

A
ve

ra
ge

 E
ffe

ct
iv

e
T

hr
ou

gh
pu

t

Area = 50x50 m2

Tx range = 10 meters

Types of Specialized Devices = 12
Pause Time = 30 sec

25 devices: Tree Task Graph
25 devices: Non−Tree TG 1 (6,7)
50 devices: Tree Task Graph
50 devices: Non−Tree TG 1 (6,7)
100 devices: Tree Task Graph
100 devices: Non−Tree TG 1 (6,7)

Figure 16: Short Tx range scenario: (a) Dilation, (b) AvgEffT

Effect of Variation in Pause Times Now we investigate the effect of variation of pause

times (PT), which is the amount of time a device remains static after completing a random

movement. The maximum speed is kept constant at 20m/s and data flow parameters are:

(B,P) = (2500, 1). The results have been shown in Fig. 15. We observe that the dilation

increases very gradually when mobility of the MANET reduces, and then after a certain

PT, it gradually falls when the MANET becomes increasingly static. For the static case

(PT = 600s), the devices in the MANET are uniformly distributed and Davg does not change

much due to re-instantiations. For the constant mobility case (PT = 0s), re-instantiations

happen frequently but because of the uniform density of devices in the neighborhood, a

configuration with low Davg is discovered most of the time. However, for intermediate levels

of mobility, re-instantiations do not happen that often and infrequent, non-simultaneous

mobility of devices often stretches the routes which increases Davg slightly.

We also observe an expected phenomenon of AvgEffT increasing (almost steadily)

from 0.5 to almost 1.0 when PT increases from 0s to 600s. The denser MANET is observed

to yield slightly better performance for this scenario as opposed to the lower speed/constant

mobility scenarios that we have examined earlier. We attribute the reason for this to the

fact that in denser, static MANETs, shorter paths are needed to communicate between two

devices (as reflected by a lower value of Davg too), and there is a lower frequency of route

errors which results in lesser packet loss.

¶With uniform probability distribution

31

Simulation Parameter Value

Number of Devices 25, 50, 100
Simulation Area 50m× 50m
Transmission Radius 10m
Mobility Model Random Waypoint
MANET Routing DSR
#Classes of Devices 12¶

Size of TG: (|VT |, |ET |) (6, 5), (6, 7)
Simulation Time 600s
MaxSpeed 0.1 − 5m/s
Pause Time 30s
Data Rate at Source U (12500, 5): medium

Table 3: Simulation Parameters for Short Transmission Range Scenario

6.1 A Short Range Communication Scenario

Next, we evaluate the performance of our embedding protocol in a scenario with a lower

radio transmission range. Essentially we are trying to model a reasonably sized hall full

of occupants carrying specialized devices that are equipped with short range radios. The

simulation parameters have been listed in Table 3. The five different speeds correspond to

very slow walking, walking with a normal speed, brisk walking, running, and fast running,

respectively.

Fig. 16(a) shows the variation in dilation with speed of motion. We can see that

the dilation is lower for the 100 device MANET than the 50 device MANET for both task

graphs. This is because the network is more dense in the former case and the likelihood

of finding a suitable device nearby is high. Another point to be noted is that the dilation

of the TG-1 case is higher than the tree case. This is to be expected since TG-1 has extra

(non-BFS) edges which are not necessarily mapped onto short paths on the physical network.

One interesting observation here is that the dilation values drop when the speed is increased

moderately. This happens because at moderately high speeds, the devices come closer to

each other more often and that reduces the dilation. However, if the speed increases further,

the associations between nearby devices are not formed due to very high relative mobility

between them, and hence the dilation increases.

Fig. 16(b) shows the effect of mobility on AvgEffT . The performance for the 25

device MANET is dismal owing to the sparseness of the scenario. For very low speeds,

performance in both the 50 device and 100 device MANETs is close to ideal. However, with

32

gradual increase in speed, AvgEffT drops much more drastically than in the 1000m×1000m

scenario that was considered earlier in this section. This is because the MANETs considered

here are more sparse than their respective counterparts in the 1000m× 1000m scenario, and

hence the impact of increased mobility is harsher.

7 Conclusions

In this paper we presented a task-based framework for executing a distributed application on

a network of specialized, mobile devices. We developed a task graph abstraction for applica-

tions by taking into account the dependencies induced by the data flows existing between the

components of an application. We described the task-based anycasting/embedding problem

and presented an optimal poly-time algorithm with respect to an average hop-count measure

called dilation, for the special case where the task graph is a tree. We also described how it

can be heuristically extended for general graphs. Owing to the unreasonable requirements

and time complexity of the aforementioned algorithm, we presented a more practical dis-

tributed heuristic algorithm (and protocol) for anycasting a given task graph onto a MANET.

We also presented a scalable, local detection and repair mechanism for recovering from task

disruptions caused by mobility of devices.

We showed a plethora of simulation results for evaluating the salient properties of the

proposed distributed protocol. From our simulation studies, we observed that our protocol

was able to instantiate and re-instantiate TG nodes quickly with low dilation, and yielded

a high effective throughput for scenarios with low mobility and reasonably high effective

throughput for more mobile situations. We also noted that in some high mobility scenarios,

the performance of our protocols suffered due to the non-aggressive retransmission timeout

mechanism of TCP and aggressive route caching done by the underlying routing protocol,

DSR. Increasing the rate and frequency of the traffic load actually helped improve the effec-

tive throughput in such situations.

In this work, we did not simulate heavy loads since standard TCP acts as a major

bottleneck over multiple hops under heavy loads [14]. Our focus in this work was to demon-

strate the viability of the proposed dynamic task-based anycasting approach in MANETs

using existing routing and transport protocols. We believe that much superior task execu-

tion throughput can be achieved if standard TCP is replaced by feedback based schemes

such as the one proposed in [8] – our future efforts will be directed towards such endeavors.

Although we do not focus on reliable task execution in this paper, we note that it can be

33

achieved with buffering and re-transmissions in the application.

References

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and imple-

mentation of an intentional naming system,” Proc. 17th ACM SOSP, Kiawah Island,

SC, December 1999.

[2] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski, “Chal-

lenges: An Application Model for Pervasive Computing,” Proc. 6th ACM MobiCom,

Boston, MA, August 2000.

[3] J. Beck, A. Gefflaut, and N. Islam, “MOCA: A Service Framework for Mobile Computing

Devices,” Proc. ACM MobiDE, Seattle, WA, August 1999.

[4] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a media access proto-

col for wireless LAN’s,” Proc. SIGCOMM ’94: Conference on Communications Archi-

tectures, Protocols and Applications, London, England, September 1994, pp. 212-225.

[5] Bluetooth SIG, http://www.bluetooth.com

[6] S. H. Bokhari, “On the Mapping Problem,” IEEE Trans. on Computers, Vol. 30, No.

3, 1981, pp. 207-214.

[7] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu and J. Jetcheva, “A Performance Com-

parison of Multi-Hop Ad Hoc Network Routing Protocols”, Proc. 4th ACM MobiCom,

Dallas, TX, 1998.

[8] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash, “A Feedback-Based

Scheme for Improving TCP Performance in Ad Hoc Wireless Networks,” IEEE Personal

Communications Magazine, February 2001.

[9] B. P. Crow, I. Widjaja, J. G. Kim, P. T. Sakai, “IEEE 802.11 wireless local area

networks,” IEEE Communications Magazine, Vol. 35, No. 9, September 1997, pp. 116-

126.

[10] M. Esler, J. Hightower, T. Anderson, and G. Borriello, “Next Century Challenges: Data-

Centric Networking for Invisible Computing The Portolano Project at the University of

Washington,” Proc. 5th ACM MobiCom, Seattle, WA, August 1999.

34

[11] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next Century Challenges:

Scalable Coordination in Sensor Networks,” Proc. 5th ACM MobiCom, Seattle, WA,

August 1999.

[12] M. Gerla and J. T.-C. Tsai, “Multicluster, mobile multimedia radio network,” Wireless

Networks 1, 1995, pp. 255-265.

[13] E. Guttman, “Service Location Protocol: Automatic Discovery of IP Network Services”,

IEEE Internet Computing, July 1999.

[14] G. Holland and N. Vaidya, “Analysis of TCP Performance over Mobile Ad Hoc Net-

works,” Proc. 5th ACM MobiCom, pp. 219-230, Seattle WA, August 1999.

[15] P. Jacquet, P. Muhlethaler, A. Qayyum, A. Laouiti, L. Viennot, and T. Clausen,

“Optimized Link State Routing Protocol,” Internet-Draft, draft-ietf-manet-olsr-04.txt,

September 2001. Work in Progress.

[16] T. Hodes, R. Katz, E. Servan-Screiber, and L. Rowe, “Composable Ad-Hoc Mobile

Services for Universal Interaction,” Proc. 3rd ACM MobiCom, 1997.

[17] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless Net-

works”, in Mobile Computing, edited by Tomasz Imielinski and Hank Korth, chapter 5,

pages 153-181, Kluwer Academic Publishers, 1996.

[18] P. Karn, “MACA – A new channel access method for packet radio,” Proc. 9th

ARRL/CRRL Amateur Radio Computer Networking Conference, September 1990, pp.

134-140.

[19] R. Monien and H. Sudborough, “Embedding one Interconnection Network in Another,”

Computing Suppl. 7, 1990, pp. 257-282.

[20] C. E. Perkins, E. M. Royer, and S. R. Das, “Ad Hoc On-Demand Distance Vector

(AODV) Routing,” Internet-Draft, draft-ietf-manet-aodv-08.txt, March 2001. Work in

Progress.

[21] Sun Microsystems, “Jini Technology Core Platform Specification,”

http://www.sun.com/jini/specs

[22] VINT Network Simulator - ns (version 2). http://www.isi.edu/nsnam/ns/

35

