
Networked Parking Spaces: Architecture and

Applications∗

P. Basu and T.D.C. Little
Department of Electrical and Computer Engineering, Boston University

8 Saint Mary’s St., Boston, MA 02215

Telephone: (617) 353-8042, Fax: (617) 353-1282

pbasu@bu.edu, tdcl@bu.edu

MCL Technical Report No. 07-01-2002

Abstract– Finding a parking space is a common challenge faced by millions of city-dwellers
every day. As common is the revenue generation by fee and fine collection in these municipalities.
Wireless ad hoc networking technologies offer a new and efficient means to both simplify the
process of parking and find collection as well as extending the convenience for drivers. In
this paper we describe a multi-hop wireless parking meter network (PMNET) that, when
coupled with a GPS receiver, allows a user (driver) to quickly locate and navigate to an
available parking space. Our solution is achieved by equipping existing parking meters with
wireless radio frequency (RF) transceivers and auxiliary hardware and software. We believe
that this is a compelling application that applies wireless ad hoc networking and low-power,
short range RF technologies. The attractiveness of the proposal stems from the fact that
such a network of nodes can function without any fixed wired or wireless infrastructure such
as cellular or satellite networks. In this work, we model a PMNET as a special class of ad
hoc networks characterized by a combination of static, immobile nodes (parking meters) and
mobile nodes (vehicles). We propose scalable techniques for satisfying a mobile user’s query
in a distributed fashion. In particular, we make use of the static nature of the parking meters
for efficient discovery and location based routing of information between them and users.

∗Proc. IEEE Vehicular Transpotation Conference (IEEE VTC 2002), Vancouver, Canada, September,
2002. This work was supported by the NSF under grant No. ANI-0073843. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

1 Motivation

Imagine the frustration of a group of friends trying to locate parking in a crowded city plaza
(such as Manhattan in New York City or Harvard Square in Cambridge, Massachusetts)
before heading to the theater, ballgame, etc. Each passenger in the car fervently looks for
a parking spot, preferably on-street, at lowest cost, and closest to the destination. If this is
during a busy period, they might circle the area several times in a growing radius until they
find an open spot (or open spots, if they travel in multiple vehicles). In a recent book [1],
Calvin Trillin eloquently captures the psyche of a New Yorker, Tepper who enjoys sitting
in his car all day reading the newspaper, just for the opportunities to turn other would-be
parkers away. The most closely held secret in the story concerns the easy availability of
parking meters on Madison Avenue after 7 PM.

Now imagine a scenario in which the occupants have a feature that responds to a
query of “Find me the closest open spots within 100 yards of Fenway Park” or “Find me
a nearby place where two spots are open” or “Find me a 50c spot near Frank’s restaurant
which allows parking for more than 2 hours,” and the results are presented on an in-car
display almost immediately. The user might select and reserve a parking spot of choice, and
pay the parking fee electronically before driving to the spot. Finally, the use of GPS allows
a personal navigator to show on-screen driving directions to the selected spot.

There is little precedent for our proposal. Subramanian and Katz have briefly mentioned
“parking lot networks” as being an example of generic self-organizing systems [2]. In our
work, we consider the architectural requirements of this application as well as algorithmic and
practical issues. Specifically, we recognize that a standalone PMNET is a static multi-hop
ad hoc network with nodes at fixed geographic positions after their installation. Users who
have a device in their car (a PDA or a car navigation system) with wireless communication
capabilities can query and communicate with the parking meter nodes wirelessly while
driving on the streets. We present a scalable parking spot discovery algorithm and a simple
unicast routing scheme to realize the proposed application. We also argue for a fair pricing
model which is punitive to defaulters.

2 Architecture of a Parking Meter Network

Realization of the application scenario described in Section 1 requires augmentation of
existing parking meter function. Parking meters will require a low-cost, low-power embedded
processor and operating system. They require an inexpensive short-range infra-red sensor
to detect occupancy; and a short-range, low-power RF transceiver to communicate with
neighboring meters and nearby vehicles. Candidate technologies that have support for short
range, low power wireless connectivity are Bluetooth [4], IEEE 802.11b (in low power mode),
and Millenial Net’s i-Bean [3]. In this paper, however, we do not focus on specific technologies
for wireless connectivity, rather, our focus is on algorithms and techniques for enabling the
smart parking space application. We defer discussion of the system hardware for elsewhere.
A few kilobytes of programmable memory is also essential to store non-volatile attributes
as well as volatile state related to the parking meter (a pm-node). A basic schematic of the
hardware requirements is shown in Fig. 1.

Processor
Embedded

System Bus

RF Transceiver
(with antenna)

IR Sensor
Power Unit

(Battery/A.C)
(senses occupancy)

Flash ROM
(for non−volatile

attributes)

DRAM

attributes)
(for volatile

Figure 1: Basic Hardware Modules in a pm-node

Because a pm-node is a stationary entity, it has a fixed geographical location attribute
which can be exploited during the discovery process. Instead of putting GPS receivers into
each of the parking meters, meter deployment can include the use of a portable GPS receiver
to permanently fix the geographical coordinates of each pm-node into its memory. Note that
this location attribute may not be unique since its accuracy depends on that of the GPS
receiver. However, a locally unique ID along with the GPS location attribute can serve as
a globally unique ID (GUID). We refer to these and some other attributes such as “street
location” as non-volatile attributes. Other attributes that are likely to be stored at a pm-
node at any time instant include the size of the spot, its current availability, the fee for use,
and the time limit. These are referred to a volatile attributes. Wirelessly enabling these
devices results in their connection to a virtual network of devices thus allowing them to
function as resources that can be discovered remotely, instead of physically. Fig. 2 shows
a schematic of a wireless multi-hop PMNET that can be envisaged to exist in Manhattan,
New York City.

In addition to supporting drivers seeking parking, PMNETs can be used by the
municipality to simplify and optimize revenue generation from fees or penalties. Although
a detailed game-theoretic analysis of the distinct goals of individuals vs. municipalities will
yield a variety of approaches to parking rules, it is beyond the scope of this paper. Some
representative queries that might be posed by the fee collector or driver are:

Q0: Which streets in the locality have vacant spots right now?

Q1: Which meters are about to expire within 200 yards of my location (GPS coordinate
specified)?

Q2: Is there any parking spot scheduled to become available soon on Main St. until
midnight?

Q3: Locate all vehicles that reside in expired spots.

A local query processing software module structures a query in a suitable query
language before it is dumped in the network via pm-nodes that are reachable from the
user’s current location as shown in Fig. 2. Responses to a query can be sorted by user

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	
	�	�	�	�	

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Occupied metersVacant meters Wireless Network Connections

QUERY

QUERY

Cars going up/left Cars going down/right

Figure 2: A Parking Meter Network in Manhattan, New York City

defined criterion before presentation to the user. The process can be visualized as querying a
physically distributed database formed by pm-nodes possessing dynamically changing attributes.
In this paper, we do not address the details of structuring a user query or a response since
our focus is on algorithms for discovery and scalable updates which are described in the next
section.

3 Algorithms for Parking Spot Discovery

The salient nature of a PMNET is that the pm-nodes are immobile but the content served
by them changes dynamically. In addition to the static, non-volatile attributes such as
geographic location, it is this dynamic content (e.g., is the spot available now?) which is
often of great interest to the users. Most mobile user queries are such that both static and
dynamic attributes of pm-nodes will be needed to resolve them. The algorithms which we
later describe in this section take these factors into account.

Each pm-node in the system will have several components as described in Fig. 3.
The query processing module receives structured queries from mobile users, determines if a
query matches the current values of its relevant attributes and takes appropriate action. If a
query can be satisfied locally, the pm-node responds to the user using the underlying unicast
routing protocol described in Sec. 3.3. In the basic version of the system, if a pm-node
is unable to satisfy the query itself, it rebroadcasts the query to its neighbors. In a more
sophisticated version of the system as proposed in Sec. 3.1, query processing is performed
in a hierarchical fashion on pm-nodes which act as ClusterHeads (CH) for a set of other
pm-nodes.

The status update processing module receives status updates (values of volatile attributes)
from other pm-nodes and updates the local data structures accordingly. These data structures
need to be queried repeatedly while responding to user queries. Fundamentally, there are
two different approaches for performing dynamic status updates in a PMNET. One approach
is to propagate status updates throughout the entire PMNET by flooding or network-wide
broadcast. In that case, when a user U queries an adjacent pm-node, the latter has complete

Volatile System State

Non−volatile State

Module

Status Update

Module

Query Processing

Occupancy

Subsystem

Sensing

User Query
Direct

Update Attributes

Read A
ttr

ibutes

Response to U
 OR
Query CH

Vacant −−> Full
 OR
Full −−> Vacant

Status Updates
to all CHs

another CH

RF module
Subsystem

Routing
Unicast

Query from

Subsystem
Battery

Subsystem

Broadcast

Energy
Monitoring

module

Figure 3: Basic System Architecture

knowledge about the current status of all other pm-nodes in the PMNET, and U’s query can
be satisfied immediately (with minimum delay). Obviously, flooding can consume a large
amount of wireless network bandwidth and may not be desirable in dynamic scenarios where
status updates are very frequent.

At the other end of the spectrum is an approach which is completely demand driven
or reactive, and the pm-nodes do not flood any status updates across the network: U’s query
is broadcast throughout the PMNET and the suitable pm-nodes reply to U via unicast. This
approach can save network bandwidth and storage overhead but increases delays. The third
approach is a hybrid scheme which attempts to minimize user latencies as well as bandwidth
usage for status updates. In Sec. 3.1 we propose one such scheme to improve scalability of
the update/discovery process.

3.1 Scalable Cluster-based Architecture

We propose a hybrid cluster-based approach which utilizes the natural geographical clustering
existing in PMNETs for facilitating quick status updates and speeding up the discovery
process. Every pm-node located on a particular street in a locality possesses a unique street
attribute which can be used to cluster a set of pm-nodes together. The radio transmission
range is assumed to be large enough so that the pm-nodes on opposite sides of a street can
communicate with each other.

Election of Clusterheads In our approach, exactly one of all pm-nodes with the same
street attribute serves as a clusterhead (CH) of the set. The CH can be elected to its role
during installation or can automatically be selected by the following leader election process
among the relevant pm-nodes: each pm-node broadcasts to its neighbors a (ID, street, val)
tuple where val corresponds to a measure of its computing resources1. Every pm-node then
periodically neighbor-broadcasts the maximum val from the same street that it has heard
so far. The pm-node with maximum val is chosen as the CH of the particular street by

1For example, val can be a function of the amount of CPU and memory resources, as well as the remaining
battery power (if applicable)

every pm-node therein. Ties are broken by IDs. This process consumes little bandwidth
as only local communication happens, and that too after installation, failure, or repair of a
pm-node. It can also be triggered when the existing CH’s battery is about to run out, i.e.,
if the pm-nodes run on battery power.

ClusterHeads

source of update

(unicast)

street (i,j)

CH(i,j)CH(i,j−2)

street (i,j−2)

street (i−2,j)

street (i+2,j)

st
re

et
 (

i−
1,

j−
1)

ClusterHead Adjacency Graph

CH(i,j)

Figure 4: Scalable Dissemination of Status Updates

Dissemination of Status Updates A non-CH pm-node of street X upon hearing about
the election of a CH in a neighboring street Y informs its own CH about it. Thus every
CH comes to know about the CH’s in the neighboring streets. This is useful for efficient
dissemination of current status information as the CH nodes in the entire locality form an
overlay graph and the dissemination of status updates is performed only from the affected
CH to the rest of the CH’s by means of unicast. Specifically, each pm-node reports a change
in its status (vacant → full, or vice versa) to its CH which then floods this incremental
information to other CH’s in the PMNET. As a result of this, a user node only needs to
query a nearby CH about the attributes/status of pm-nodes in other streets while discovering
a spot.

Fig. 4 illustrates the process of performing a status update with a specific example.
When a car leaves a parking spot on street(i,j), the corresponding pm-node (marked by
a red filled circle) informs its clusterhead, CH(i,j) about this change. Now, CH(i,j) needs
to send a status update to all other CH’s in the locality. This can be accomplished in
a number of ways. In the first approach, a CH attempts to send reliable updates to its
neighboring CH’s over unicast (utilizing the underlying unicast routing substrate described
in Sec. 3.3) which then re-forward the updates further downstream. To determine who to
forward the updates to, a Clusterhead Adjacency Graph (CHAG) is constructed from the
topology of street intersections2. Now, unicast forwarding needs to be done only along the

2Two CH’s are adjacent in a CHAG if and only if their corresponding streets intersect with each other.

������������������ Vacant Spots present

������������ No Vacant Spots

Empty (Street Cleaning)

������
���
������
��� ������������
������������ 	
			

 ������������

���
���
��
���������
���������
������

��������������������
������
������ ������

������

L1 L3L2

[pm−nodes]

s11 s32s31
s21

s13

[Town]

[Localities]

[Streets]
Expired meters present

Figure 5: Hierarchical Name Trees

edges of a minimum spanning tree of CHAG rooted at CH(i,j). In the second approach,
the dissemination problem is treated as a multicast routing problem where all the CH’s
are sinks in a multicast group and CH(i,j) is the source. This approach however assumes
that all pm-nodes support multicast. The CHAG-based unicast approach is also known as
end-system multicast [5] as it does not assume any multicast support in the intermediate,
non-CH pm-nodes. Moreover, it is easier to guarantee reliability in updates in this approach
in contrast with doing that in the pure multicast based solution.

A CH can choose to disseminate only a salient part of the status update to other CH’s,
e.g., if a pm-node in street S becomes vacant, CH(S) can inform other CH’s of only the fact
that there is an additional vacant parking spot available, instead of furnishing the details of
the spot. Queries similar to Q0 can be readily answered with such condensed information.
However, when a user in street X issues a more involved query, the designated clusterhead
CH(X) may not be able to answer the query right away from this information, but it can
query the relevant CHs (which have reported vacant spots earlier) about the details of the
parking spots at the current time. This approach is advantageous as a CH does not need to
store the status of every pm-node in the city. Instead it stores information only at a coarse
level of granularity. The obvious penalty is that of additional time taken to discover a spot.
This demonstrates that there are several time-space trade-offs in the design of such a system.
The best approach in a particular scenario would depend on factors such as the predominant
nature of queries and their frequency, the frequency of changes, size of the PMNET etc.

3.2 Hierarchical Naming

We propose the use of hierarchical name-trees (similar to MIT’s Intentional Naming System [6])
for answering queries such as Q2. Every pm-node has a unique GUID, “Street” and “Town”
attributes, and other information such as nearby landmarks, which are programmed set at
the time of installation. When CH’s exchange information about pm-nodes, they can create
tree-like data structures with actual pm-node records as leaf nodes, and “towns”, “streets”
and “localities” as virtual nodes in the hierarchy. Fig. 5 depicts a possible instance of a
name-tree which is maintained at every clusterhead pm-node in a street. The triangular
blocks hanging from the “Street” nodes depict the individual pm-nodes and have been used
as a visualization aid. The relative sizes of triangles indicate the numbers of pm-nodes
existing in each street. The various visual patterns inside them characterize the status of
parking on a particular street as a whole at a particular instant of time. Such hierarchical
presentation of information is possible because of the hierarchical geographic clustering of

the pm-nodes.
When the status of a pm-node changes, it informs its CH which reflects the change

in its name-tree. It also floods the update to the other CH’s using the mechanisms described
in Sec. 3.1. When a query such as Q2 is issued by the user, it gets routed to the nearest
CH pm-node and the query processing module on that pm-node searches under the “Street”
metanode in its name-tree. After finding the “Main St.” node, it searches for suitable
parking meters (children of that node in the attribute tree) which can satisfy the request.
Note that the status updates need to occur on a detailed/individual pm-node basis and not
just at an aggregated level such as “Main St. has a 2 vacant spots now.” If aggregates
updates are being used, then the current CH has to query the CH(Main St.) pm-node to
get more details.

The name-tree shown in Fig. 5 can also be visually presented to a user of the system
when he/she submits a general query “Display the overall status of parking in the area”.
It can be an invaluable tool for the fee collectors who then would not have to go to each
individual parking meter and verify if the meter has expired or not. Ideally, a fee collector
can on his/her PDA, zoom in on the streets which have expired meters and navigate to the
meters individually. This can save significant effort and resources of the municipality.

Using additional intelligent data structures which are not described in detail in this
paper, the number of operations necessary for querying and updating status information can
be minimized.

3.3 A Hybrid Unicast Routing Architecture

After a user discovers a set of candidate spots, he/she may initiate communication with one
or more of them to check the validity of the status or to reserve a spot, if possible. A unicast
routing infrastructure is needed to facilitate this. Because pm-nodes are static and possess a
fixed GPS location attribute, the topology of the static part of PMNET changes only when
new pm-nodes are installed or when they break down or have a battery outage. Hence, a
dynamic MANET routing protocol is unnecessary in its full generality for routing between
two pm-nodes.

We propose the use of position based routing schemes [7] for routing between pm-
nodes. Such schemes are ideal in static scenarios since they do not need to exchange packets
or store full routing table information. In position based routing, packets are routed hop-
by-hop in a greedy fashion by forwarding to the neighboring pm-node which is closest to
the destination location coordinate. In regions of the network where such a greedy path
does not exist (i.e., the only path requires that one move temporarily farther away from
the destination), position based routing schemes recover by forwarding in perimeter mode,
in which a packet traverses successively closer faces of a planar subgraph of the full radio
network connectivity graph, until reaching a node closer to the destination, where greedy
forwarding resumes. An example of a position based routing protocol which behaves in this
manner is Greedy Perimeter Stateless Routing [8].

Now, since users of a PMNET are usually mobile, their positions change continuously
until they find a parking spot. Hence, the location coordinates of a user at the time of issuing
the query may not be exactly the same when a pm-node issues a response. Therefore, static
position based routing needs to be augmented slightly in order to facilitate routing in the

reverse path (from pm-node to U). Routing table entries with reverse paths to U are setup
at the intermediate pm-nodes during the forward routing (greedy location-based forwarding)
phase, thus enabling reverse routing of messages to the user at a slightly later time instant.

However, even the aforementioned protocol augmentation is inadequate for handling
routing from a pm-node to a user or between two users at a much later instant of time since
the reverse routing table entries may have become stale owing to the movement of the user
from his/her earlier location. The former mode of communication may be needed when a
particular pm-node wants to inform a user about competitors for a parking spot or if it wants
to warn the user about the expiring time. The latter mode can be used by anonymous users
for negotiations about a spot. In order to solve this problem, we believe that the use of a
standard on-demand MANET routing protocol which does not depend upon any position
information is suitable.

3.4 Competition between Vehicles

So far, we have described a system where one user is trying to discover a parking spot. The
scenario becomes much more interesting when multiple users are looking for parking in a
crowded area. Competition between drivers occurs when multiple vehicles simultaneously
receive an indication of an available spot. In a baseline version of the system, vehicles
which do not ultimately get the spot, query the system again from their new locations
hoping to find a new spot. However, by including more state information, the system can
be improved further. For example, if vehicles v1 and v2 are competing for the same spot
P , the corresponding pm-node can inform one about the other’s current location. If v1 is
physically much farther from P than v2, it cancels its query and searches for another spot.
In the process, v1 saves time by not driving to P .

In a more complex instance of our proposal, we consider the dynamic resource allocation
problem with objectives of maximizing utilization and fairness and minimizing delays, under
stochastic inputs. This is a very hard problem to solve, especially in an online scenario in
which requests arrive frequently, and PMNET nodes must achieve a good allocation quickly
in a cooperative manner. We do not address this problem in this paper and leave it as future
work.

3.5 Fee Structure and User Behavior

Although we have not addressed fee models or rules in this paper, we fully expect that driver
behavior is coupled with the fee structure and the competing goals of the municipality in
system design. For example, if a driver violates the time limit, the system might automatically
debit his/her account instead of issuing a ticket. Our proposal in amenable to such variants,
including an increase in the parking fee in a non-linear fashion after the parking meter
expires. For example, the 2 hour fee could be $2, but if one stays for 3 hours, it could
increase to $10, and then to $30 after 4 hours. The fee structure could thus determine user
behavior and vice versa.

4 Conclusion

In this paper, we proposed an application for a wireless parking meter network in which
drivers can quickly locate and navigate to available parking spaces. Our solution requires
wirelessly enabling existing parking meters yielding a self-organizing, self-managing, and
distributed system relying on techniques in mobile ad hoc networking. In this paper, we
have described in detail algorithms for efficient discovery of vacant spots as well as scalable
dissemination of status updates which attempt to keep both discovery latency and the
bandwidth consumed for status updates low. We believe that the proposed network is both
economically and technologically feasible, although the details of a complete solution are not
shown here.

References

[1] C. Trillin, “Tepper Isn’t Going Out,” New York: Random House, 213 pp. New York
Times book reviews at URLs:
http://www.nytimes.com/2002/01/14/books/14MASL.html
http://www.nytimes.com/2002/02/12/books/12TRIL.html

[2] L. Subramanian and R. Katz, “An Architecture for Building Self-Configurable Systems,”
Proc. MobiHoc 2000, Boston, MA, August 2000.

[3] Millenial Net’s i-Bean. http://www.millenial.net

[4] Bluetooth SIG. http://www.bluetooth.com

[5] Y. Chu, S. G. Rao and H. Zhang, “A Case For End System Multicast,” Proc. ACM
SIGMETRICS 2000, Santa Clara,CA, June 2000, pp 1–12.

[6] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and
implementation of an intentional naming system,” Proc. ACM SOSP 1999, Kiawah
Island, SC, December 1999.

[7] M. Mauve, J. Widner, and H. Hartenstein, “A Survey on Position-Based Routing in
Mobile Ad-Hoc Networks,” IEEE Network, November 2001.

[8] B. Karp and H.T. Kung, “Greedy Perimeter Stateless Routing for Wireless Networks,”
Proc. ACM MobiCom 2000, Boston, MA, August, 2000, pp. 243–254.

