
Time Domain Modeling of Batching under User
Interaction and Dynamic Adaptive Piggybacking

Schemes1

W. Ke, P. Basu and T.D.C.Little

Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts 02215, USA

(617) 353-9877

{ke,pbasu,tdcl}@bu.edu

MCL Technical Report No. 09-30-2000

Abstract– Provision of Video-on-Demand services requires sustained periods of high bandwidth

network and server capacity. Aggregation schemes can be used to increase the supported

customer population under the constraints of this resource. To this end, a number of

aggregation algorithms have been proposed. However, the approaches are difficult to test in

the large scale, and model due to system behavioral complexity. This situation is exacerbated

by the modeling of customer interactions. Therefore, we explore a new technique for modeling

such scenarios by using time domain analysis. By this we refer to the process of estimation

of system characteristics such as the average number of channels used, average number of

customers, etc., as a function of time.

In this paper, we show that time domain modeling of two VoD aggregation schemes is

analogous to finding the time response of linear systems using the well known convolution

theorem. We model two aggregation schemes using this technique: (1) Batching by time-

out and (2) Adaptive Piggybacking employing Snapshot-RSMA [1, 2, 3]. We delineate the

requirements of the VoD system under which this technique can be employed and show that it

yields highly satisfactory estimation results. We also propose a sampling methodology which

gives good estimation results when the modeling of the aggregation scheme is mathematically

too complex.

Keywords: Video-on-demand, time-domain modeling, batching, adaptive piggybacking,

estimation methods, system characterization

1Proc. SPIE Multimedia Computing and Networking (MMCN 2002), San Jose, CA January 2002. This
work is supported in part by the NSF under grant No. NCR-9523958. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

1 Introduction

A VoD system is typically composed of the following elements: server, network and client.

The server is the element in which videos are stored in digital format. The network is the

delivery channel and connects the server to multiple clients. The transmission capacity

of the network is limited and logically divided into channels. Each channel is capable of

transmitting video data at a rate sufficient for VoD purposes, for instance, 4 Mbps for

MPEG-2 streams. In this study we are considering data networks that support both unicast

and multicast delivery.

A stream indicates a sequential transmission of data in time through the network. A

video (or movie) is composed of multiple frames which must be displayed at a pre-specified

rate. Thus one characteristic of a video is its length (L), which in this paper is defined as

the time taken to display the video at its normal display rate (or normal content progression

rate). When a client makes a request to the video server, the server responds by allocating an

available channel and initiating a stream. The data is thus “streamed”, i.e., sent sequentially

in time through the network from the server to the client. Since the delivery is not instantaneous,

we will use the term stream position as a reference to the part of the video that is being

shown in respect to the video’s length. Thus if the video length is characterized by L units

of time, a stream position is a real number p, 0 ≤ p ≤ L.

In our model, the maximum channel capacity at the video server, measured in terms of

the number of channels available, cannot change dynamically, and a channel can be used

either to multicast or to unicast. Multicasting supports multiple clients while unicasting

supports only one, but the amount of bandwidth each occupies at the server is assumed to

be the same in this study. Therefore it is advantageous for the server to serve as many clients

as possible through a single multicast channel. It has been shown that the access pattern

to a video database (e.g., movie rental stores) is skewed, so that often a large percentage

of the population actually accesses only a small number of videos [4]. This encourages the

possibility of serving multiple clients through a single channel, as many will be requesting

the same video. However, since such requests come from different clients scattered in the

network, they tend to be separated in time. Aggregation schemes are algorithms that attempt

to aggregate multiple client requests separated in time to be served by a single channel. In

this paper, we will study two aggregation schemes: Batching by time-out and Adaptive

Piggybacking employing Snapshot-RSMA [1, 2, 3].

Batching delays the response to a client’s request for video. This is done in the hope

2

that other clients will eventually make requests to watch the same video. In this manner the

video server can serve a large number of clients while incurring the transmission cost of a

single channel. Obviously, this scheme imposes a non-zero waiting time on its clients. If the

VoD system allows interactions, a user who is batched with others upon interaction is given

a solo channel for the remainder of the movie. The variable under the control of the VoD

system designer in this scheme is the waiting or batching period W .

Adaptive Piggybacking [1] (or Rate Adaptation [3]) refers to the possibility of changing

the content progression rate without any significant visible effect to the client. This allows the

server to aggregate users whose requests are separated by a short interval of time. These users

are eventually served by a single multicast channel. Many algorithms have been proposed

on how this merging can be achieved [1, 2, 3, 5]. We try to offer a time domain model of

an algorithm that was originally proposed by Aggarwal et al. in [2]. This algorithm couples

dynamic programming with a snapshot algorithm. Basu et al. [3] identified the nature

of the stream merging problem as isomorphic to a special case of the Rectilinear Steiner

Minimal Arborescence (RSMA) problem2 [3]. Thus, in this paper, we refer to this algorithm

as Snapshot-RSMA.

This algorithm yields optimal solution in the static scenario, as shown by Aggarwal et

al. [2]. By static we refer to the scenario in which there will be no new client request

arrivals and existing clients will not interact. And optimal in the sense of minimizing the

cost, which was defined as the number of frames transmitted over the network [2]. To deal

with dynamic arrivals of client requests, Aggarwal et al. suggested applying the dynamic

programming algorithm at regular periods. At the end of one period, the VoD system would

survey the stream positions of clients that arrived during that period (i.e., take a snapshot)

and apply the dynamic programming algorithm to that set of streams. In this paper, the

process of applying the dynamic algorithm is termed recomputation, and the interval between

consecutive recomputation operations is the variable under the control of the VoD systems

designer (we refer to this as the snapshot or recomputation interval R).

Batching systems are simpler to analyze but the introduction of interactions requires

more complex models. Models proposed need be able to take into account client interaction

processes to predict the bandwidth required to support the VoD system. Adaptive Piggybacking

using Snapshot-RSMA is even harder to model analytically. The outcome of the algorithm is

highly dependent on the initial conditions of the system but to the best of our knowledge no

closed form analytical expressions have been proposed to model the behavior the algorithm

2This problems consists of building a rectilinear directed tree in a grid.

3

imposes on the streams. This makes mathematical modeling of the system extremely difficult.

In this paper, we propose a modeling technique that treats the problem in the time domain.

We show that this is a feasible way to model the problem and estimations based on this

model yield results that are fairly close to the ones obtained from simulations. We mention

related work in the area in Section 2. Section 3 discusses the theoretical variables used to

describe a VoD system. Sections 4 and 5 show our technique applied to the Batching scheme

and Snapshot-RSMA scheme respectively. Finally, we review our findings and summarize

our results in Section 6, with some comments on current research directions.

2 Related Work

Batching schemes have been extensively studied in the literature [6, 7]. Dan et al. [6]

studied the problem of capacity planning with statistical guarantees on system performance.

Scheduling policies for batching schemes have also been proposed [7, 8]. Adaptive Piggybacking

was first proposed by Golubchik et al. [1] with some simple merging algorithms. S. W. Lau

et al. studied the complexity of the scheme and proposed some new heuristic merging

methods in [5]. The main emphasis of [5] is on statistical bandwidth estimation using the

proposed heuristics. An optimal solution to the static scenario of Adaptive Piggybacking

was proposed by C. C. Aggarwal et al. [2], in which the authors also proposed the snapshot

algorithm to deal with the dynamic scenario. Basu et al. [3] pointed out that the nature of

the problem is isomorphic to an RSMA problem, which is a more generic framework for the

binary tree merging proposed in [2]. More recently, Golubchik et al. [9] proposed a common

framework to characterize aggregation schemes in general called sync-classes. Work in [9]

does not emphasize any specific merging algorithm, but offers the tools by which different

cost functions and user behavior models can be integrated into the aggregation schemes in

an unified way. Such integration allows the system to compute the optimal merging pattern,

with respect to the cost function utilized.

Our work emphasizes modeling in the time domain. An accurate time-domain model can

yield satisfactory estimates on bandwidth utilization (by estimating the number of channels

in time), as well as gives insight into the different trade-offs when changing system control

variables. The simplicity of our scheme is useful for a VoD system engineer during initial

design phases. Our results show the viability of modeling VoD systems using the principle

of convolution. This principle is usually applied to finding the time response of linear time-

invariant (LTI) systems. Of course, with stream interactions and merging of streams from

4

different recomputation intervals, the superposition property, which is necessary for the

application of the convolution theorem, cannot be satisfied generally. However, in many

instances, when applied, this principle actually yields very satisfactory results. This prompts

us to find the conditions under which it can be applied, rather than dismissing it altogether.

Besides, being able to treat the VoD system in this manner means that we need to study

mainly the impulse response of the system, which hopefully is simpler than treating the whole

set of streams in the VoD system. By impulse response we mean the behavior of the VoD

system, in terms of the number of channels required to support streams that arrive during

one batching period or one recomputation interval. We exemplify the application of this

principle through modeling the behavior in time of the number of channels in 2 aggregation

schemes.

In the next section we will lay the foundations of our model and show the reasoning that

prompted us to propose our technique.

3 Modeling a VoD system

We begin our analysis in this section with a search for proper models for client arrival process

and client interaction processes. We then follow with a discussion of the two aggregation

schemes and show how their characteristics suggest the application of the convolution theorem

as a guiding principle for time-domain modeling.

A study conducted by Paxson and Floyd [10] showed that individual sessions of Internet

utilization can be modeled as a Poisson process. We adopt this result and model the client

request arrival in the VoD system as a Poisson process with mean rate λA. Since we are

modeling an aggregation scheme, we study its behavior for a single video only. Thus, the

rate λA is in fact a composite of the overall client arrival rate at the VoD server multiplied

by the probability of accessing a particular movie in the video database3.

Client interaction is also modeled as a Poisson process, with each client interacting with

rate λi. This approach is adopted in a similar manner by other authors [1, 3, 6, 12]. The

length of each interaction is exponentially distributed with mean µ � L, in which L is

the length of the video. Since the interaction processes are independent of each other, the

resultant aggregate process is also Poisson, with rate given by the number of clients in

the system multiplied by λi. We assume that these rates remain constant over time. For

3Video popularity is often modeled in the literature using a Zipfian distribution[11].

5

simulation purposes, we use a single value as the interaction rate of the system. This value

was determined by first estimating the average number of users that will be present in the

system when there are no interactions and then multiplying it by λi.

Notice that in the absence of interactions, the client that arrives at time t0 leaves the

system at time t0 + L. Thus when the VoD system simulation is started, the number of

clients in time steadily increases until L. Starting from this point, clients leave the system as

well as arrive at the system. From the simulation runs we can actually see that the number

of users reaches a plateau [3]. We refer to the system in this condition as having reached

steady-state. Note that even in the presence of interactions, since we assumed that their

duration is exponentially distributed with mean µ � L, this steady-state condition will still

be reached. Although in the presence of interactions it is harder to establish when exactly

the steady-state is reached. Also when employing adaptive piggybacking, different users can

receive different content progression rates, which increases the difficulty in determining when

steady-state is reached. We therefore use a heuristic value, determined from observing the

simulation runs, and consider that the system has reached steady-state after 10, 000 seconds

of simulation time.

One thing we need to mention is that during this study there were no QUIT interactionss.

QUIT interactions are those in which the client chooses to leave the VoD system before the

completion of the display of the video. The absence of QUIT simplifies the problem because

the number of clients in the system can then be tracked roughly by only the arrival rate λA

and the video length L. The types of interactions considered in this work are Fast Forward

(FF), Rewind (RW) and Pause (PAU). The video length L is the third parameter that

influences the performance of the aggregation scheme. We have set it to be 2 hours (7,200

sec.) in our simulations. We have not explored directly its influence in our study, but its

presence is noted and accounted for during our analysis.

In our modeling attempts, we noticed that both aggregation schemes mentioned previously

have a component that repeats itself in time. For the Batching scheme, client requests are

batched during a waiting period and then released. For the Snapshot-RSMA algorithm, client

requests arrive during a recomputation interval, create new channels and are subjected to

the recomputation process at the end of the interval. This repetitive pattern suggested the

possibility of looking at the long term system behavior (in terms of the number of channels

needed) as a sum of the smaller components, i.e., from each batching period or recomputation

interval. Clearly, this is analogous to the application of the convolution theorem in finding

the system’s time response of a linear time-invariant (LTI) system. In particular, the VoD

6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

100

2RR 3R

4321

. . .

N
um

be
r

of
 C

ha
nn

el
s

Time (s)

Figure 1: Response of a system to a periodical train of impulses with

period R

system behavior can be seen as the response to a periodical train of impulses, with period

determined by the batching period W or recomputation interval R. By impulse we refer to

a function that satisfies the following two properties:

δ(t) =

{

∞ , t = 0
0 , t 6= 0

(1)

∫

∞

−∞

δ(t) dt = 1 (2)

When an impulse is applied as the input signal of a system, the system response is termed,

rather obviously, the impulse response. For LTI systems, if the impulse response is known,

then the system response for any input signal can be found by applying the convolution

theorem4. In our case we show that the VoD system response modeling problem can be

treated as if there were a periodical train of impulses applied to the system, and the system

response is the infinite sum of the impulse responses of the system.

The idea of infinite sum of impulse responses is illustrated by Fig. 1. Suppose the

response of a system to an impulse is the function numbered “1” in Fig. 1. Then suppose

the system is excited by an impulse every R units of time. The individual responses will be

like the functions numbered 1 to 4 in Fig. 1, and the system response will be the sum of

the functions 1 to 4 plus any other responses that may happen in the future. This basically

is how we propose to model the VoD system. Each individual numbered function in Fig. 1

would be the response of the VoD system, in terms of the number of channels needed, due

4There are certain conditions that the input signal must satisfy in order to apply the convolution theorem
but which are not relevant to our present discussion.

7

to a single batching period or recomputation interval. And we can find the average number

of channels needed in steady-state by summing up the individual components.

Notice that, unlike real LTI systems, the VoD system cannot be characterized by one

single impulse response, at least not in the Adaptive Piggybacking (Snapshot-RSMA case).

When the recomputation interval (R) in the Snapshot-RSMA becomes small in comparison

to the client inter-arrival period (1
λA

), streams that arrive during different recomputation

intervals influence each other, in the sense that streams from different recomputation intervals

can be merged together. This means that the impulse responses are being changed according

to the input signal. Thus the total system behavior cannot be modeled as the sum of

the independent responses from each recomputation interval. In other words, under such

circumstances, the superposition principle does not apply.

Our concern then, when we model the two schemes, is in finding the restrictions of our

model and check what valid estimates we can draw from the results we obtain. In the next

section, we will start by analyzing the Batching scheme.

4 The Batching Scheme

In this section we study a time-out based batching scheme. The first client request that

arrives sets a timer that will expire after W units of time. W is the batching or waiting

period. All users who arrive within this time period are said to be batched together and will

be served by a single multicast channel upon the end of W units of time. We will use the

term batched channel to refer to this initial channel. After W units of time, the first user

that arrives requesting the same movie will set another timer, and this process repeats itself

indefinitely. If a client interacts during the video, a new channel will be allocated to that

client, which will remain with the client until the end of the video.

4.1 Without Interactions

In the absence of interactions, one batched channel will not influence the other, the superposition

principle does apply and the system has a constant number of channels, on the average. Thus

with a batching period of W and new client request arrival rate λA, the expected interval

between two new channel allocations is given by the waiting time W plus the expected

interval for a new arrival, which in our case is 1
λA

. The average new channel allocation

8

λA\W (s) 300 600 900 1200

1/120 0.9765 0.9737 0.9904 1.0039
1/60 1.0014 1.0010 1.0017 0.9971
1/30 1.0020 0.9974 0.9997 0.9992
1/12 1.0062 1.0010 0.9982 1.0001

Table 1: Ratio of the predicted over

the simulated values for the average

number of channels in steady state

in the Batching scheme with λi = 0

λA\W (s) 1200 900 600 300

1/120 1.0037 0.9959 0.9903 0.9977
1/60 0.9854 0.9948 0.9904 0.9915
1/30 0.9898 0.9907 0.9914 0.9876
1/12 0.9884 0.9918 0.9923 0.9909

Table 2: Ratio of the predicted over

the simulated values for the number

of clients batched in each channel in

the Batching scheme with λi = 0

interval is given by W + 1
λA

and the average number of channels CB in this scenario is

roughly given by Eq. 3.

CB =
L

W + 1
λA

(3)

In Table 1 we check the accuracy of Eq. 3 through simulation. We first simulated the

Batching scheme for various arrival rates λA and batching periods W . For each case we

sampled the number of channels in the VoD system during steady state for 20,000 sec. of

simulation time and averaged the sampled values. Then we divided the value predicted

through mathematical analysis by the value obtained through simulation to check how close

they were to each other. This is how we obtained the ratios in Table 1. The same procedure

was taken to obtain the values in Tables 2 and 3.

The next value we investigate is the average number of clients that are batched in each

channel during the batching period. This value can be obtained by Eq. 4.

NB = 1 + EλA
[W] = 1 + λA W (4)

EλA
[W] is the expected number of arrivals in the waiting period W when the arrival

rate is λA. To this we add one because with the batching scheme employed here we are

guaranteed one client at the beginning of the waiting period. We compare the predicted

values of Eq. 4 to simulation results in Table 2.

Because with this scheme more than one client will be served by a single channel, we

9

λA\W (s) 300 600 900 1200

1/120 0.9796 0.9805 0.9637 0.9509
1/60 0.9751 0.9752 0.9758 0.9763
1/30 0.9828 0.9865 0.9858 0.9845
1/12 0.9892 0.9939 0.9957 0.9944

Table 3: Ratio of the predicted over

the simulated values for the average

number of clients per channel in

steady state in the Batching scheme

with λi = 0

define gain as the ratio of the average number of clients per channel in steady state over the

average number of clients per channel if there are no aggregation schemes (i.e., one). A good

estimate of the gain of the system allows the VoD system designer to predict reasonably the

capacity needed for the system.

To obtain such estimate, notice that in the Batching scheme, clients who are batched

and waiting for a new channel are part of the system but do not occupy any channel. If the

clients arrive with rate λA, then the average number of clients seen by the system during an

interval T5 is given by λAT

2
and the average number of channels in steady state is given by

Eq. 3. Thus the average number of clients per channel, i.e., the steady state gain GB of the

system is:

GB =
λAW/2

L/(W + 1
λA

)
+ 1 + λA W (5)

Table 3 compares Eq. 5 with simulation results.

Tables 1, 2 and 3 show us that the equations deduced in this section fall within 5% of

the simulated values, proving themselves to be fairly accurate predictors of the behavior of

the Batching system in the absence of interactions.

4.2 With Interactions

If we include interactions, clients that have been batched into one channel may not remain

until the end of the video. They may perform interactions and thus generate new channels.

In our modeling, a client that interacts is given a new channel until the end of the video.

5In mathematical terms, we are computing 1

T

∫ T

0
λAt dt.

10

To model the new channel generation process due to interactions we use non-stationary

Poisson arrival process. A batched channel will initially hold NB clients, as determined

by Eq. 4. Each of these clients will interact with rate λi. The resultant new channel

generation process per batched channel can then be viewed as composed of superpositions

of independent Poisson arrival processes, which is in itself a Poisson arrival process. Once

a client interacts, it will stay with a channel of its own and further interactions will not

generate new channels. This means that the new channel generation rate λC is not constant

in time and is dependent on the number of clients that are still in the initial batched channel.

Thus the new channel generation process can be better modeled as a non-stationary Poisson

arrival process. The channel generation rate λC(t) of this process can be approximated by

λi NB(t), where NB(t) is the expected number of users that remains in the original batched

channel at time t. Since each new channel has one interacting client, the expected number of

new channels is exactly equal to the expected number of clients that left the original batched

channel. If we express the above paragraph in terms of mathematical equations, we come to

Eq. 6 and 7.

λC(t) = NB(t) λi (6)

NB(t) = NB(0) −

∫

t

0

λC(s) ds (7)

If we substitute NB(0) = 1 + λA W and solve Eq.s 6 and 7, we can see that λC(t) is:

λC(t) = (1 + λA W)e−λit λi (8)

Note that this is the new channel generation rate for a single batched channel. If we

integrate this over time, and remembering that at time t = 0 there is one channel (the

batched channel), we obtain an expression on the number of channels CB(t) in the system

due to one initial batched channel as given by Eq. 9.

CB(t) = 1 +

∫

t

0

λC(s) ds = 1 + (1 + λA W)(1 − e−λit) (9)

Note that the time t = 0 is the time when the video stream is started, in other words,

one batching period after the arrival of the first client. Since there cannot be more channels

than clients, we limit the possible expected number of new channels by the expected number

of people in the channel. At the end of the video all users exit, and the number of channels

drop to 0. Thus an appropriate expression for the number of channels in the system due to

the very first batched channel is:

11

C(t) =







0 , t ≤ 1
λA

+ W

min(CB(t − 1
λA

+ W)), 1 + λAW) , 1
λA

+ W < t < L + 1
λA

+ W

0 , t ≥ L + 1
λA

+ W
(10)

Of course clients that interact will remain in the system longer than L. In our model, we

assumed that the length of interaction is negligible in comparison to L.

With this we have a prediction model on one batched channel. This is the impulse

response of our modeling process. Notice that since clients who interacted remain in their

channels until the end of the video, there is no interaction between clients from two separate

batching periods. This allows us to describe the system response as the sum of the responses

from each new channel in the system. Assuming that the system parameters remain constant,

each new batching period will contribute in the same manner to the system response.

Mathematically, this translates to Eq. 11.

CBT (t) =

∞
∑

n=0

C(t − n(1/λA + W)) (11)

To check our proposed equations, we simulate the system with different values of λA and

W . Due to space restrictions, we illustrate the evolution of the VoD system in time, in

terms of the number of users and the number of channels, for λA = 1/30, λi = 1/hour and

W ∈ {300, 600, 900, 1200} (Fig. 2).

Fig. 2 shows us that our prediction equations approximate the system behavior in time

well. If we check the steady-state bandwidth requirement, we can obtain the ratio of the

average number of channels needed through simulation and through prediction in Tables 4

and 5. The average is taken from samples starting from t = 10, 000 until t = 30, 000. The

predicted value is obtained by evaluating Eq. 11 numerically at the same points sampled by

the simulation and then computing their average.

From Tables 4 and 5 we see that our predictions fall within 5% of the simulated value

most of the time, with two instances when the error was more than 5% but still below 10%.

The larger error for those two instances are due to the higher interaction rate (λi = 1/hour)

and the relatively high ratio between the client inter-arrival time and the batching period.

This lower arrival rate means that there will be fewer arrivals in each batching period, and a

more accurate characterization would need longer simulation runs. But even with these two

instances, our model can track the average number of channels required during steady state

fairly well.

12

0 1 2 3

x 10
4

0

50

100

150

200

250

300

C
ha

nn
el

s
or

 U
se

rs

Time (s)

W = 900

Users
Channels
Predicted

0 1 2 3

x 10
4

0

50

100

150

200

250

300

C
ha

nn
el

s
or

 U
se

rs

Time (s)

W = 300

Users
Channels
Predicted

0 1 2 3

x 10
4

0

50

100

150

200

250

300

C
ha

nn
el

s
or

 U
se

rs

Time (s)

W = 600

Users
Channels
Predicted

0 1 2 3

x 10
4

0

50

100

150

200

250

300

C
ha

nn
el

s
or

 U
se

rs

Time (s)

W = 1200

Users
Channels
Predicted

Figure 2: Time response of batching with λA = 1/30, λi = 1/hour

λA\W (s) 300 600 900 1200

1/120 1.0316 0.9958 1.0265 0.9867
1/60 1.0284 1.0035 0.9797 1.0001
1/30 1.0173 1.0023 0.9932 0.9823
1/12 0.9991 1.0140 0.9836 1.0086

Table 4: Ratio of the predicted over

the simulated values for the average

number of clients per channel in

steady state in the Batching scheme

with λi = 0.5/hour

λA\W (s) 300 600 900 1200

1/120 1.0858 1.0369 1.0040 1.0138
1/60 1.0557 1.0160 1.0177 1.0184
1/30 0.9920 0.9819 0.9999 0.9934
1/12 0.9967 0.9833 0.9877 0.9918

Table 5: Ratio of the predicted over

the simulated values for the average

number of clients per channel in

steady state in the Batching scheme

with λi = 1/hour

13

We have thus developed a model for the Batching by time-out scenario with interaction

support. Our model makes good estimates on the number of channels required during steady-

state even in the presence of high interaction rates.

5 The Snapshot-RSMA Scheme

Batching schemes rely on delaying the response time to client requests. A new idea proposed

by Golubchik et al. [1] rely on different content progression rates for video streams while

these are being sent across the network. In such a scheme, the start-up latency to a client is

negligible. And it is during the time of display that different streams have their progression

rates altered and eventually merged together and served collectively. This concept has been

termed Adaptive Piggybacking. Many algorithms have been proposed on how to choose

the display rate of each stream in a VoD system so as to minimize network bandwidth

requirements. Snapshot-RSMA is one such algorithm, and it is the object of study in this

section.

The Snapshot-RSMA scheme derives its name from its main two components. Snapshot

refers to the action of obtaining the positions of non-interactive streams in the system at

regular intervals. RSMA refers to the mathematical nature of the merging problem, which

consists of building a binary tree with minimum path length on a rectilinear grid. The

solution to this problem is obtained through a dynamic programming algorithm.

In this scheme, all new client requests are served immediately, i.e., a new channel is

allocated, a new stream is initiated and the normal display rate is given to the stream. This

display rate is maintained until the time a new recomputation takes place. Recomputations

are separated by R units of time, also known as the recomputation interval. At recomputation,

the dynamic programming algorithm is applied and display rates are determined for all non-

interactive streams. There are two options available for the display rate: the normal display

rate (Sn = 1) or the accelerated display rate (Sa = 32
30

). The display rate value of 1 means

that for each second in the real world, 1 sec. worth of the video is being displayed. The

accelerated rate obviously imply that for each second in the real world, more than one second

of “video time” is being displayed. The frame rate of the normal display rate is 30 frames

per second, while the accelerated rate displays 32 frames per second (thus the rather odd
32
30

notation for Sa). The different display rates for the streams allows stream merges. Such

merges are advantageous for the VoD server since they release channels that can be reused.

14

While studying this scheme, the first problem we faced was the lack of any analytical

formula that can model the merging process. The merging process is determined by the

dynamic programming algorithm, and such process is highly dependent on the initial condition

of the system, i.e., different stream positions might lead to different results. Since the

stochastic nature of the Poisson arrival process makes the modeling of the merging process

under Snapshot-RSMA particularly challenging, we will start with a simpler arrival process,

namely the uniform arrival process. We chose the uniform arrival process because the

behavior of the dynamic programming for uniformly spaced streams is known. Thus it

is possible to track the system behavior in time and see how closely our model matches

reality.

The optimal merging tree for uniformly spaced streams will simply merge the streams 2

by 2, and the resulting streams also in a 2 by 2 fashion, and so on. Now, two consecutive

streams separated by d seconds (in “video time”) can meet after d

∆S
, where ∆S = Sa − Sn.

To see why, consider that at time t = 0, stream i is at position d > 0 and given display rate

Sn (normal) and stream j is at position 0 with display rate Sa (accelerated), then they will

meet when Sa t = d + Sn t, i.e., when t = d

(Sa−Sn)
.

Suppose that initially we had CS(0) channels that are equally spaced by 1
λA

and their

display rates are determined by the RSMA algorithm at time t = 0. Since they are equally

spaced, the optimal tree will simply merge them in pairs. Thus after 1
λA∆S

the streams will

have merged in pairs and there will be 1
2
CS(0) streams left. This is the first merging point.

We will at this point give some specific names to the streams to facilitate our explanation.

We will consider the leading video stream as the “first” stream (the one closest to the end of

the video) and sort the other streams in decreasing stream position order. Thus the “first”

merging point is when the first stream meets the second stream, the third meets the fourth,

the fifth the sixth, and so on. Since we assumed all streams are equally spaced, the second

stream was 1
λA

apart from the first stream. Now if we give thought to this process, it is

evident that the second merging point will be when the first stream meets the fourth stream.

At that point in time the original CS(0) streams will be merged into 1
4
CS(0) streams. This

will happen at time t = 3
λA ∆S

(notice that the first and the fourth stream are separated by
3

λA
). In fact, if we carry this on, we will arrive at Eq. 12 for the number of channels after a

recomputation.

CS(t) =
CS(0)

λA ∆S t + 1
, t =

1

λA∆S
,

3

λA∆S
,

7

λA∆S
, · · · (12)

We illustrate our reasoning with Fig. 3. In it, CS(0) = 8. At time t = 0 a recomputation

15

λΑ ∆ S

λΑ ∆ S

λΑ ∆ S

T
im

e

t = 1/

t = 3/

12345678
0

1

1

1 t = 7/

458

8

Program Position

NormalFast

Figure 3: Merging pattern of eight uniformly spaced streams

process took place and streams 1 to 8 are given different display rates. Because they are

uniformly spaced, the Snapshot-RSMA algorithm merges them in consecutive pairs. The

first merge takes place at time t = 1
λA∆S

. As a result, from the initial eight streams only

four are left. From the resulting four streams, streams 1 and 4 will merge, and streams 5

and 8 will merge. They were originally (at time t = 0) separated by 3
λA

, and thus these two

pairs will merge when t = 3
λA∆S

. Finally only one stream is left after the merge at time

t = 7
λA∆S

, joining the original streams 1 and 8. This last stream may eventually join with

other streams in the system or it may reach the end of the video before that.

Notice that in between the merging events the number of streams remains constant. If

we define the window function W (t, τ) as:

W (t, τ) =







0 , t < 0
1 , 0 ≤ t < τ
0 , t ≥ τ

(13)

then a more accurate description of CS(t) would be:

CS(t) =

∞
∑

n=0

CS(0)

2n
W (t −

2n − 1

λA∆S
,

2n

λA∆S
) (14)

Before proceeding, we would like to point out some issues. Note that CS(0) is divided

by 2n indefinitely, which potentially can make CS(t) < 1. This simply means that if there

16

were other streams besides the initial set CS(0), then at time t when CS(t) < 1, merges

would have happened. This will become relevant as we develop our ideas in the following

paragraphs. Also, we need to emphasize that Eq. 14 does not attempt to predict exactly

the evolution of the number of channels in time. If CS(0) is a power of 2 and if there are

no interactions, then Eq. 14 is exact, but if that is not the case, merges will not take place

at the times predicted, and Eq. 14 becomes only an estimate. The point to be stressed is

that we are attempting in this paper to obtain a broad picture on the general behavior of

the number of channels in time. The time t = 0 in Eq. 14 is actually the time immediately

after a recomputation process.

With all the above discussion in mind, we will formulate a more accurate equation for

the Snapshot-RSMA scheme. If we look at the scheme’s evolution in time, initially (from

t = 0 - this is the system time) new clients will arrive, generating new channels at the same

rate as the arrival rate λA. At time t = R a recomputation will happen and the number of

streams will change according to Eq. 14. At time t = L streams will start reaching the end

of the video and will exit gradually. To model the client exit behavior we will resort to a

linear model. The client that arrived last in the recomputation interval should receive the

accelerated display rate always, since it is the trailing stream. If we assume, for modeling

purposes, that it arrived at t = R, the time of its exit will be R + Sn

Sa
L. Likewise, the first

client to arrive in the recomputation interval will be given normal display always, since it is

the leading stream. Considering that this leading client arrived at time t = 0, it will exit

at time t = L. Because of the cost formulation proposed in [2], in the event of a merge

between the trailing stream and the leading stream, the leading stream remains6. To model

this behavior, we determined that if the number of channels at time t = L is less than one,

then all streams have merged and all will exit together with the leading stream. However,

if the number of channels at time t = L is greater than one, then the exit pattern will be

linear from t = L until t = R + Sn

Sa
L. A more complete formulation for the behavior on the

channels that arrived during a single recomputation interval can then be given by Eq. 15.

6The cost formulation in [2] involves the number of frames until the end of the video, not the time taken
to show it. It is therefore independent of the display rate. This favors the survival of the leading stream, so
that it can stay longer and merge with other streams.

17

CS(t) =



































0 , t ≤ 0
λA t , 0 < t ≤ R

∑

∞

n=0
CS(R)

2n W (t − R − 2n
−1

λA∆S
, 2n

λA∆S
) , R < t ≤ L

0 , t > L, if CS(L) < 1

CS(L) − CS(L)

R+ Sn

Sa
L−L

t − L , L ≤ t ≤ max(L, R + Sn

Sa
L), if CS(L) ≥ 1

0 , t > max(L, R + Sn

Sa
L)

(15)

Eq. 15 describes the evolution of the number of channels in time due to client arrivals

during 0 < t < R. Note that because the trailing stream is always given an accelerated

display rate, it will go further apart from the leading stream from the following recomputation

interval. This is a consequence of the Snapshot-RSMA scheme and it leads us to believe

that it will favor merging the streams that arrived within the same recomputation interval.

However, because the recomputation process takes into account all streams watching the

same video, if the video length is long enough, clients that arrived in different recomputation

intervals can still be joined together. In mathematical terms, this means that the number

of streams from that recomputation interval effectively falls below one. This is what we

pointed out previously. Note that the natural clustering mechanism favors our impulse

response modeling of the system, since each recomputation interval would contribute in

an independent manner to the overall system response. However, merges of streams from

different recomputation intervals do happen in the long term and needs be addressed in our

model. Allowing the number of streams from each recomputation interval to fall below one

actually takes into account the merges while still preserving the independent character of

each recomputation interval.

Assuming that there are no significant differences in the responses from each recomputation

interval, we sum the contribution of each recomputation interval to obtain the system

behavior. The evolution in time of the number of channels in Snapshot-RSMA is then

given by Eq. 16. Note that Eq. 16 is exactly the convolution of Eq. 15 with a periodical

train of impulses with period R (the first impulse starting at time t = 0).

CST (t) =

∞
∑

n=0

CS(t − nR) (16)

To check Eq. 16 we ran simulations again. We show some time domain results for

λA = 1/12 and λA = 1/120 in Fig. 4. From the figures we can see that our model, while

not completely successful in its exact accuracy, still closely matches the system behavior.

18

0 0.5 1 1.5 2 2.5 3

x 10
4

0

100

200

300

400

500

600

C
ha

nn
el

s
or

 U
se

rs

Time (s)

Users
Channels
Predicted

0 0.5 1 1.5 2 2.5 3

x 10
4

0

10

20

30

40

50

60

C
ha

nn
el

s
or

 U
se

rs

Time (s)

Users
Channels
Predicted

λA = 1
12

, R = 300 λA = 1
120

, R = 300

Figure 4: Simulation vs Prediction for Snapshot-RSMA, Uniform Arrival

λA\R(s) 150 300 600 900 1200

1/120 0.9505 0.9684 0.9570 0.9895 0.9809
1/60 0.9709 0.9981 0.9962 1.0168 1.0063
1/30 0.9621 0.9653 0.9639 0.9174 0.8825
1/12 0.9305 0.9409 0.9265 0.9100 0.9098

Table 6: Ratio of the predicted

over the simulated values for the

average number of channels in

steady state in the Snapshot-RSMA

scheme (Uniform Arrival case)

In fact, if we compute the estimate of the average number of channels in the system (for

t > 10, 000) by prediction and by simulation, we see that our model can predict the average

number of channels within 10% accuracy most of the time, as shown by Table 6. Again, the

predicted value was obtained by evaluating Eq. 16 numerically at the same points sampled

in the simulation and computing their average value.

We found two main sources of error. The first being the fact that most part of the time,

CS(R) is not a power of 2. This means that there will be discrepancies in the progression on

the number of channels in time. The second kind of error happens when the recomputation

interval is too long. Consider that a recomputation took place at time t = R, then, after an

interval of 1
λA ∆S

, according to Eq. 15, CS(R + 1
λA ∆S

) is equal to 1
2
CS(R). Now, because to

the snapshot nature of the algorithm, if R is greater than 1
λA ∆S

, then the 1
2
CS(R) streams

at t = R + 1
λA ∆S

will not “know” how they should act in order to keep the merging rate

predicted by Eq. 15. The result of this loss of knowledge means that the behavior of the

impulse response will differ from the one predicted by Eq. 15 and the accuracy of our model

will be degraded. Thus a recomputation interval R should be of such length that either it

is itself close to (by close we mean equal to or a little bit larger than) 1
λA∆S

or an integer

multiple of R is close to 1
λA∆S

.

19

R (s) 96 150 192 300 384 600 768 900 1200

λA = 1/12 0.9903 0.9305 0.9832 0.9409 0.9540 0.9265 0.8787 0.9100 0.9098

Table 7: Ratio of the predicted over the simulated values for the average number

of channels in steady state in the Snapshot-RSMA scheme with λA = 1/12

To support our analysis, we ran more simulations with λA = 1
12

and added extra values

for R ∈ {96, 192, 384, 768}. Notice that for these values of R, λA R results in powers of 2.

We ran simulations and compute the ratios of the predicted over the simulated values for

t > 10, 000 in Table 7.

For λA = 1
12

, 1
λA ∆S

= 180. Thus for values of R which are close to 180 or which have

an integer multiple close to 180, i.e., R ∈ {96, 192} it is expected that the prediction will

be more accurate, which indeed is what happens, according to Table 7. When R is much

greater than 180 (R ∈ {384, 768}), errors become more evident, according to the results from

the same Table. Also values of R which resulted in CS(R) as non-power of 2 showed more

evident error. This concludes our analysis of the uniform arrival. We will next turn to the

Poisson arrival process.

The stochasticity of the Poisson arrival process does not allow us a nice mathematical

formulation as the one in Eq. 15. If we attempt to predict the average number of channels

needed in steady state by a system with Poisson arrival process by a uniform arrival formulation,

we obtain Fig. 5. In Fig. 5 we plot the ratio of the two values (predicted divided by

simulated).

Fig. 5 shows us that the uniform arrival overestimates the number of channels needed

by the Poisson arrival process in most cases. Indeed, only for λA = 1
12

and recomputation

interval R ≥ 900 does the model underestimate the number of channels. The non-horizontal

slope indicates that the uniform arrival cannot keep up with the nature of the Snapshot-

RSMA applied to a Poisson arrival as the recomputation interval increases. In other words,

the type of the arrival process does matter when modeling the Snapshot-RSMA algorithm

for Adaptive Piggybacking.

Because of the complexity of the mathematical formulation for the Poisson arrival, we

propose here a sampling technique. Basically we try to sample the VoD system behavior

for one recomputation interval. Recall that in our modeling principle, the response for one

single recomputation interval is the impulse response of the system. If we have the impulse

response, then we can predict the time domain behavior of the VoD system according to Eq.

16, in which CS(t) is the sampled function. Basically we obtain numerical values for CS(t)

20

0 200 400 600 800 1000 1200
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Recomputation Interval (s)

A
vg

 N
um

 o
f C

ha
nn

el
s

−
 P

re
di

ct
ed

/S
im

ul
at

ed

1/12
1/30
1/60
1/120

Figure 5: Ratio of prediction using uniform arrival model over

simulation using Poisson arrival

(Eq. 15) through simulation and substitute them as CS(t) in Eq. 16.

To check the accuracy, we plot the ratio of the predicted number of channels vs. results

from simulation in Fig. 6. According to Fig. 6, this “impulse response sampling” method

works best if the average number of arrivals is high in the recomputation interval. Sampling

the system behavior for one recomputation interval cannot reflect any interactions (i.e.,

mergings) between streams from different recomputation intervals. These interactions are

most likely to occur if only a few streams arrived during the recomputation interval, because

in this case the Snapshot-RSMA will attempt to merge streams from different recomputation

intervals. However, we can see that when the influence of inter-cluster interaction is small,

our modeling methodology yields extremely satisfactory results, as seen in Fig. 6.

We can see that in modeling the Snapshot-RSMA case, our principle yields accurate

prediction values. For the uniform arrival process, the resultant mathematical model is built

entirely through analytical means. When the mathematical formulation is too complex, as

in the case of the Poisson arrival, we can resort to sampling the VoD system response to

arrivals that occur during a single recomputation interval and use the result of such sampling

to build a steady state formulation.

21

0 200 400 600 800 1000 1200
0.8

1

1.2

1.4

1.6

1.8

2

A
vg

 C
ha

n
−

 P
re

di
ct

ed
/S

im
ul

at
ed

Recomputation Interval (s)

λ
A
 = 1/12

λ
A
 = 1/30

λ
A
 = 1/60

λ
A
 = 1/120

Figure 6: Ratio predicted/simulated using impulse sampling

6 Conclusion

We have proposed in this paper a principle that can be used to model the response in time of

some types of VoD aggregation schemes. If such aggregation schemes rely on patterns that

repeat periodically, then we propose to model the scheme by obtaining the time response

of one period and summing the responses from each period. Clearly this is equivalent

to obtaining the impulse response and applying the convolution theorem to find the time

response of linear time invariant (LTI) systems. And just like linear time invariant systems,

such modeling principle can only be applied under limited conditions.

We have analysed 2 aggregation schemes: Batching by time-out and Adaptive Piggybacking

employing Snapshot-RSMA. In both instances we showed that our modeling principle yields

highly satisfactory results when the VoD system behaves like an LTI system. In the Batching

scheme that means no stream merges from clients that arrived in different batching periods.

In the Adaptive Piggybacking case, for the Uniform Arrival process, we have shown that

the recomputation interval (or an integer multiple of it) should be close to 1
λA ∆S

to take

full advantage of the merging capacity of the dynamic programming algorithm. For the

Poisson Arrival process, we proposed sampling the response from one recomputation interval

for system modeling. We found that this technique is applicable when the recomputation

interval is large with respect to the inter-client request arrival period. If such conditions are

met, even in the absence of a closed mathematical formulation, we can still obtain satisfactory

22

time-domain modeling results.

There are still other modeling problems that can be tackled in the future. We are

currently investigating the mathematical analysis for the uniform arrival case for Snapshot-

RSMA with support for client interactions. We hope to extend our work to Poisson arrivals

as well, and to examine any limitations that this added support might bring to the impulse

sampling methodology.

References

[1] L. Golubchik, J. C. S. Lui and R. R. Muntz. “Adaptive piggybacking: a novel technique

for data sharing in video-on-demand storage servers”, Multimedia Systems, Vol. 4, No.

3, pp. 140–155, Jun 1996.

[2] C.C. Aggarwal, J.L. Wolf and P.S. Yu. “On Optimal piggyback merging policies for

Video-on-Demand Systems”, Proceedings of the 1996 ACM Sigmetrics, Philadelphia,

PA, USA, pp. 200–209.

[3] P. Basu, R. Krishnan and T.D.C. Little. “Optimal Stream Clustering Problems in

Video-on-Demand”, Proc. Parallel and Distributed Computing and Systems ’98 - Special

Session on Distributed Multimedia Computing, Las Vegas, NV, USA, pp. 220-225, Oct

1998.

[4] T. D. C. Little and D. Venkatesh, “ Popularity-Based Assignment of Movies to Storage

Devices in a Video-on-Demand System”, Multimedia Systems, Vol. 2, No. 6, pp. 280–

287, Jan 1995.

[5] S. W. Lau, J. C. S. Lui and L. Golubchik. “Merging video streams in a multimedia

storage server: complexity and heuristics”, Multimedia Systems, Vol. 6, No. 1, pp.

29–42, Jan 1998.

[6] A. Dan, P. Shahabuddin, D. Sitaram and D. Towsley. “Channel Allocation under

Batching and VCR control in Video-on-Demand Systems”, Journal of Parallel and

Distributed Computing, Vol. 30, No. 2, pp. 168–179, Nov 1995.

[7] A. Dan, D. Sitaram and P. Shahabuddin. “Dynamic Batching Policies for an On-

Demand Video Server”, Multimedia Systems, Vol. 4, No. 3, pp. 112–121, Jun 1996.

23

[8] C. C. Aggarwal, J. L. Wolf and P. S. Yu. “Optimization Issues in Multimedia Systems”,

International Journal of Intelligent Systems”, Vol. 13, No. 12, pp. 1113–1135, Dec 1998.

[9] L. Golubchik, V. S. Subrahmanian, S. Marcus and J. Biskup. “Sync Classes: A

Framework for Optimal Scheduling of Requests in Multimedia Storage Servers”, IEEE

Transactions on Knowledge and Data Engineering, Vol. 12, No.1, pp. 60–77 Jan/Feb

2000.

[10] V. Paxson and S. Floyd “Why We Don’t Know How To Simulate The Internet”,

Proceedings of the 1997 Winter Simulation Conference, Atlanta, GA, 1997

[11] A. S. Tanenbaum, Computer Networks, Third Edition, Prentice Hall PTR, 1996

[12] V. O. K. Li, W. Liao, X. Qiu and E. W. M. Wong, “Performance Model of Interactive

Video-on-Demand Systems”, IEEE Journal on Selected Areas in Communicatinos, Vol.

14, No. 6, Aug 1996

24

