ACM SIGCOMM 2001 Poster Session

A New Task Based Approach for Supporting Distributed Applications on Mobile Ad Hoc Networks

Prithwish BasuWang KeThomas D.C. LittleDept. of Electrical and Computer Engineering,
Boston University, Boston, MA.

This work is supported by the NSF under grant no. ANI-0073843

A Smart Presentation Application

Optimal Sensing in Sensor Networks

Position	Optimal Sensors	Sensing Graph
A B C D E	$ \{1,2,3,4\} \\ \{3,4,5,6\} \\ \{5,6,7,9\} \\ \{5,7,8,9\} \\ \{8,9,10,11\} \} $	(data) S_2 (proximity) S_2 S_3 S_4

Task Graphs and Embedding

Optimization Problem Formulation

- Given:
 - MANET (at some instant): $G = (V_G, E_G)$
 - Task Graph: $TG = (V_T, E_T)$
 - Weight function: $w: E_T \to \Re^+$
- Find mappings $\varphi: V_T \to V_G$ and $\psi: E_T \to P_G$ such that Average Dilation is *minimized*:

$$D_{avg} = \frac{1}{\sum_{e \in E_T} w(e)} \sum_{e=(x,y) \in E_T} w(e) \|\varphi(x),\varphi(y)\|_G$$

Optimal Algorithm for Tree TGs

Distributed Heuristic Algorithm

- Instantiation proceeds from the root of TG
- Algorithm is simpler and more practical for MANETs
- Only *local* device instances are involved

Disruption Detection and Recovery

- Each node instance detects disconnections from logical neighbors.
- HELLO-ACK doesn't arrive in time → Disconnection is detected
- Only BFS-parent instances perform re-instantiation of children.

Simulation Results

Contributions and Significance

- Algorithms and protocols that exploit the *nature* and *requirements* of a given distributed task for discovering *suitable* devices for cooperative execution of the task.
 - First step towards efficient, dynamic execution of complex distributed tasks on a collection of mobile devices.
 - Each device is capable of performing simpler tasks.
- Algorithms detect and adapt to network partitions which may be caused by mobility of devices.
- Decoupling a service from a particular device address is desirable in mobile failure-prone environments.
- Enables seamless execution of ubiquitous computing tasks.
- Enables harnessing of distributed computing power in an infrastructure-less environment.