
BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

A TASK BASED APPROACH FOR MODELING DISTRIBUTED

APPLICATIONS ON MOBILE AD HOC NETWORKS

by

PRITHWISH BASU

B.Tech., Indian Institute of Technology, New Delhi, 1996

M.S., Boston University, 1999

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2003

c© Copyright by
PRITHWISH BASU
2003

Dedication

To Mimi and Babiji

For their love, sacrifice, constant encouragement and support

and

To Paul Erdös

For his exemplary creativity and dedication to research

iv

Acknowledgments

Many people have remarked that writing this portion of the dissertation is more

difficult than writing the thesis itself. Indeed realizing that to be true I embark on this

tough task which is delightful in its own way.

First and foremost, I thank my advisor, Prof. Thomas D.C. Little, without whose

inspiration, encouragement and support, this dissertation would not have come to fruition.

During my stay of over six years in the Multimedia Communications Laboratory, Prof.

Little has always been there as a constant source of ideas, guidance, encouragement, and

friendship. He is the one from whom I learned how to think critically about any research

problem. I greatly admire his inimitable knack of thinking out-of-the-box on almost any

technical topic of discussion while keeping a probing eye on detail. I am still trying to

learn that art. Prof. Little’s futuristic visions of the applications of our research have

really shaped the way I think about wireless mobile computing. I will always remember

the lab meetings on Tuesdays which were very productive and never dull thanks to his

unconventional insights into the problem domain and his focused approach towards steering

the research goals of the lab. His mode of advising was perfectly suited to my style of doing

research – enough freedom to let me develop my own ideas and timely advice to check my

thought processes from leaving the domain of pragmatism.

Prof. Little’s impact on my education was not limited to shaping my ability to

think critically on research problems. My technical writing and presentation skills improved

dramatically over the years following his valuable tips and advice. He always told me that

a significant outcome of the process of earning a doctorate is becoming an “independent

researcher.” I can claim to be one now thanks to his invaluable guidance and the confidence

he had in my capabilities. These words are inadequate to express my gratitude towards

him.

I benefited from the advice and guidance of many other faculty members at Boston

University. In particular, Professors John Byers and Jeffrey Carruthers and were especially

v

generous with their time, support and encouragement, of which this dissertation has been

the primary beneficiary. Prof. Avresky was a big source of encouragement and guidance

during the initial phases of my dissertation research. In general, the entire faculty and staff

of the Electrical and Computer Engineering Department and some in the Manufacturing

Engineering Department (notably Prof. Yannis Paschalidis) have been very supportive and

helpful, and I remain grateful to all of them for making my education at BU thoroughly

enjoyable.

I owe much gratitude to Dr. Jason Redi, my supervisor during my summer internship

at BBN Technologies and later a thesis reader. Many discussions with him have helped me

gain significant knowledge in the practical aspects of the field of mobile ad hoc networking.

I am deeply indebted to my colleagues at MCL, particularly Rajesh Krishnan during

the initial years and Ke Wang afterward. Many a times, interesting informal discussions with

them unfolded into ideas for subsequent publications. I really enjoyed working with them

during the course of my stay at BU. Other colleagues whom I have enjoyed collaborating

with at MCL are Ashok Narayanan, Gulrukh Ahanger, Leslie Kuczynski, Naved Khan,

Karthikeyan Srinivasan, and Salma Abu Ayyash. Because of them my life in the MCL was

never a bit boring. Besides specific advice and support, my colleagues helped me maintain a

keen sense of humor and equilibrium through the never-ending process of earning a doctorate

degree.

My apartment mate Arnab Majumdar deserves special credit for keeping me inter-

ested in many theoretical problems in mobile ad hoc networks some of which I am still

grappling with. Discussions with a physicist at wee hours in the morning with Bob Dylan

or Tom Waits playing in the background definitely helps one get a fresh perspective. The

Senguptas of New Bedford, Palash Banerjee, Ekta Aggarwal, Shantanu Desai, Arindam

Mandal, Shameek Gupta, Reetabrata Mookherjee, Pavi Gupta, Vivek Mittal, T. Girish

Pai, Nitin Thaper, Rahul Bhotika, Pratul Agarwal, and Arvind Gopalan are a few friends

that have borne the burden of chatting with a talkative, perennial Ph.D. candidate to keep

vi

him in high spirits. I will also never forget the special encouragement that I periodically

received from Arijit Sarcar, my friend and mentor during my early days at BU. Many other

friends go unmentioned here; I sincerely beg their forgiveness for keeping their anonymity.

This dissertation is based upon work supported by the National Science Foundation

under Grant No. ANI-0073843. I thank them for their support. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author and

do not necessarily reflect the views of the National Science Foundation.

Last, I thank my parents, sister, grandparents, and other family members for all

that they have given me. This dissertation is a tribute to their love, patience, and support.

vii

A TASK BASED APPROACH FOR MODELING DISTRIBUTED

APPLICATIONS ON MOBILE AD HOC NETWORKS

(Order No.)

PRITHWISH BASU

Boston University, College of Engineering, 2003

Major Professor: Thomas D.C. Little, Associate Professor of

Electrical and Computer Engineering

ABSTRACT

Mobile ad hoc networks (MANETs) are inherently prone to network partitioning and

link failures due to node mobility. Distributed applications executed on such environments

must cope with these events. In this dissertation, a novel application execution framework

and model called a task graph is presented that enables a class of distributed applications

suitable for MANETs. The framework allows the representation of the logical requirements

of a distributed application via a set of sub-tasks that are assigned to computing devices with

suitable attributes for their execution. Each sub-task is represented as a node in a graph

and patterns of data-flow between them induce dependencies among the corresponding

nodes, thus resulting in a task graph (TG) representation. Application requirements can

be expressed in terms of attributes assigned to nodes and edges of the task graph.

Discovery of resources, required for assignment of sub-tasks of the application to

physical devices, is achieved by matching of node and edge attributes of the task graph

with corresponding attributes of physical resources in the MANET. This process is referred

to as embedding of the task graph into the dynamic MANET topology. The corresponding

optimization problem is shown to be computationally hard (NP-complete) with respect to

average graph dilation even when nodes in TG possess distinct attributes. For tree task

graphs with the same property, an exact optimal algorithm is proposed with polynomial

time complexity. Because the optimal solution is impractical, requiring global attribute and

topological information, and quickly invalidated by node mobility, we propose an alternative

viii

approach that can be performed efficiently in distributed fashion. The proposed distributed

protocol utilizes a greedy algorithm that uses local search for discovering suitable candidate

nodes with matching attributes while satisfying the constraints imposed by the task graph

structure. The proposed protocol is also capable of recovering from node and route failures

inherent in a MANET by scalable mechanisms of disconnection detection, re-instantiation,

and TG-patching.

The proposed algorithms are evaluated using a set of metrics proposed for quanti-

fying the performance of MANETs and that of distributed applications executed on them.

Simulation results are reported for application scenarios with varying complexity of task

graphs, network traffic, and device mobility patterns. These results demonstrate that in-

stantiation of large task graphs occurs reasonably fast even under high mobility scenarios.

For example, a 63 node binary tree task graph takes less than 10 seconds to instantiate on

average on a reasonably dense MANET consisting of 100 devices that are moving randomly

with an average velocity of 10 m/s. Effective throughput is high up to medium degrees of

mobility and degrades gracefully with further increase in mobility. Finally, we demonstrate

the viability of the approach by the implementation of a proof-of-concept prototype using

a network of devices including desktop workstations and handheld computers.

ix

Contents

1 Introduction 1

1.1 Problem Description . 3

1.2 Contributions . 6

1.2.1 Significance . 7

1.3 Additional Examples of Application Scenarios 7

1.4 Organization of the Dissertation . 14

2 Background and Related Work 16

2.1 Mobile Ad hoc Networks . 17

2.2 Service Discovery Techniques . 20

2.3 Task Graphs . 23

2.4 Multicast, Overlay Networks, and Anycast 24

3 A Task Based Approach for Resource Discovery in Mobile Ad Hoc Net-

works 27

3.1 Terminology . 28

x

3.1.1 Preliminaries . 28

3.1.2 Tasks and Task Graphs . 30

3.1.3 A Taxonomy of Tasks . 31

3.2 A Data-flow Tuple Representation Model for Distributed Tasks 33

3.3 Embedding Task Graphs onto Networks . 35

3.4 Metrics for Performance Evaluation . 36

3.5 Optimization Problem Formulation . 38

4 Task Embedding: Theoretical Foundations and New Algorithms 39

4.1 General Graph Embedding . 40

4.2 Restricted Cases of Graph Embedding . 42

4.2.1 CC-SUBISO is NP-complete . 42

4.2.2 CC-EMBED is NP-complete . 45

4.2.3 An Optimal Polynomial-time Embedding Algorithm for Tree Task

graphs with Distinct Labels . 47

4.2.4 Application of TreeEmbed for Non-tree Task Graphs 50

4.2.5 A Greedy Algorithm for Embedding 53

5 Distributed Task Embedding on Mobile ad hoc Networks 55

5.1 A Distributed Algorithm for Instantiation of Heterogeneous Task Graphs . 56

5.1.1 Operations of the Distributed Version of GreedyEmbed 57

5.2 Instantiation of Non-Heterogeneous Task Graphs 67

xi

5.3 Handling Device Mobility . 71

5.3.1 Detection of Disconnections . 76

5.3.2 Re-instantiation and Bookkeeping Algorithms 80

5.3.3 Handling Multiple Disconnections 86

5.3.4 Handling Disconnections During Instantiation 91

5.3.5 Impact of Disconnections on the Application Layer 92

6 Performance Evaluation 93

6.1 Simulation Results for the Heterogeneous Case 95

6.2 Simulation Results for the Homogeneous Case 112

6.2.1 Effect of Variation in Size and Depth of Task Graphs in Static Scenarios112

6.2.2 Effect of Variation in Spatial Node Density 121

6.2.3 Performance Evaluation under Mobility 125

6.3 Discussion . 143

7 Design and Implementation of a Proof of Concept Prototype 146

7.1 Overview of the Experimental Testbed . 146

7.2 Design and Implementation of a Task Based Application Framework 149

7.2.1 Design Decisions . 151

7.2.2 A Skeleton Application taskapp . 155

7.2.3 Currently Unsupported Features . 155

xii

8 Extensions to the Task Graph Based Modeling Approach 160

8.1 Hierarchical Task Graphs . 162

8.2 Service Composition using Hierarchical Graphs 163

8.2.1 Structure of a Complex Node . 163

8.2.2 Instantiation of Hierarchical Task Graphs 164

8.2.3 Distributed Algorithms for Hierarchical Task Graph Instantiation . . 168

8.3 Recovering from Disconnections caused by Mobility 179

8.3.1 Detection of Disruptions in Service 180

8.3.2 The Recovery Process . 182

8.4 Discussion . 183

9 Conclusions and Future Work 185

9.1 Conclusions . 185

9.2 Future Work . 187

9.2.1 Effect of Proactive Routing Protocols 188

9.2.2 Scalability Issues . 188

9.2.3 Optimizations in the Embedding Process 189

9.2.4 Better Handling of Burst Disconnects 190

9.2.5 Implementation Challenges . 190

A Approximation Factors for the TreeEmbed Algorithm 191

A.1 Calculation of the Approximation Factor . 193

xiii

B Metrics for Performance Evaluation of Distributed Anycastable Applica-

tions 197

Bibliography 201

Biography 210

xiv

List of Tables

3.1 Data-Flow Tuples for the Smart Presentation Task 35

5.1 Packet Types used in the Distributed Embedding Protocol 61

6.1 Simulation Parameters (Heterogeneous Case) 94

6.2 Instantiation Time (in seconds) . 98

6.3 Simulation Parameters (Homogeneous Case with Mobility) 124

xv

List of Figures

1.1 Smart Office and Home Applications . 4

1.2 Scalable Coordination in Multi-team Field Operations 8

1.3 Task Graphs for Wireless Polling . 11

3.1 A Smart Printing Service . 30

3.2 Example of Task Graph Embedding . 36

4.1 Transformation from CLIQUE to CC-SUBISO 44

4.2 Outline of the Exact Optimal Polynomial-Time Algorithm 50

5.1 Finite State Machine Representation of the Salient Characteristics of the

Instantiation Protocol: (r.<PKT> represents a packet reception event and

s.<PKT> represents a packet transmission event. Data-flow tuple transmis-

sions are not shown.) . 58

5.2 Task Graphs: (a) Tree, (b,c) Non-Tree Graphs 59

5.3 Dynamics of the Distributed Embedding Scheme 63

5.4 An Example of Re-Instantiation . 71

xvi

5.5 Detection of Disconnections: A and B are Parent–Child Instances 77

5.6 Re-instantiation of Task Graph Nodes . 79

5.7 An Example of TG-patching . 80

5.8 Logical Neighbor Table Information . 83

5.9 Bookkeeping using 2-hop Logical Neighborhood Information 84

5.10 TG-patching an Instantiated Task Graph 86

5.11 Effect of Double Disconnect on a Non-BFS Edge 88

5.12 Handling Double Disconnect with Help from Root Coordinator 89

5.13 Types of Affecting Disconnects . 90

6.1 Average Dilation vs. Speed . 96

6.2 Average Effective Throughput: Variation of vmax, N = 100 99

6.3 Average Effective Throughput: Variation of vmax, N = 50 100

6.4 Average Number of Re-instantiations . 101

6.5 Average Re-instantiation Time . 102

6.6 Average Source-to-Sink ADU Delay . 103

6.7 Source-to-Sink ADU Delay vs. Hops (for TG2; vmax = 10 m/s) 104

6.8 Effect of Cross Traffic: Average Effective Throughput 105

6.9 Effect of Cross Traffic: Average Source-to-sink Delay 106

6.10 Effect of Varying PT on Dilation at vmax = 10m/s for TG2 107

6.11 Effect of Varying PT on AvgEffT at vmax = 10m/s for TG2 108

xvii

6.12 Effect of Varying PT on ADU Delay at vmax = 10m/s for TG2 109

6.13 Empirical Cumulative Distribution Function of ADU Delay (PT = 600s) . . 110

6.14 Empirical Cumulative Distribution Function of ADU Delay (PT = 0s) . . . 111

6.15 Dilation after Instantiation for k-ary Tree TGs (static scenario) 113

6.16 Instantiation Time for k-ary tree TGs (static scenario) 114

6.17 TCP Delays during Instantiation of a 63 node Binary Tree TG 115

6.18 Broadcast Overhead for Instantiation of k-ary Tree TGs (static) 116

6.19 Control Traffic Overhead at TG-layer for k-ary Tree (static) 118

6.20 Unicast Control Overhead for Instantiation of k-ary Tree TGs (static) . . . 119

6.21 Byte Overhead for Instantiation of k-ary Tree TGs (static) 120

6.22 Effect of Spatial Node Density on the Size of the Connected Component of U 121

6.23 Effect of Spatial Node Density on the Probability of Instantiation 122

6.24 Dilation of a Binary Tree in Random Static Topologies 123

6.25 Instantiation Time (dense networks) . 126

6.26 Instantiation Time (moderately sparse networks) 127

6.27 Instantiation Time (sparse networks) . 128

6.28 Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 5 m/s; PT = 0 sec; 10 simulation runs) 130

6.29 Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 5 m/s; PT = 100 sec; 10 simulation runs) . . . 130

xviii

6.30 Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 20 m/s; PT = 0 sec; 10 simulation runs) . . . 131

6.31 Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 20 m/s; PT = 100 sec; 10 simulation runs) . . 131

6.32 Cumulative Effective Throughput vs. Simulation Time (10 runs) 132

6.33 Effective Throughput vs. Size of TG (dense network) 133

6.34 Average Number of Re-instantiations (dense network) 134

6.35 Time Taken to Re-Instantiate a TG Node (dense network) 135

6.36 Effective Throughput in Moderately Sparse Networks 136

6.37 Effective Throughput in Sparse Networks 137

6.38 Source→Sink ADU Statistics: Hops Traversed and Delay (dense network) . 138

6.39 Source→Sink ADU Statistics: Hops Traversed and Delay (sparse network) . 139

6.40 Average Protocol Overhead in Packets and Bytes (dense network) 141

6.41 Average Protocol Overhead in Packets and Bytes (sparse network) 142

7.1 Screen-shot of MobiEmu Master Screen . 150

7.2 Protocol Packet Formats . 153

8.1 An Example of Service Composition . 161

8.2 A Hierarchical Task Graph and Layered Graphs 162

8.3 Disruption Detection in a Hierarchical Service Instance 181

A.1 The Worst Case Scenario for a Non-Tree Task Graph 192

xix

List of Algorithms

4.1 TreeEmbed(TG,G,w, c1, c2) . 49

4.2 GreedyEmbed(TG,G, c1, c2) . 52

5.1 CoordinatorDeviceInstantiation() . 72

5.2 NonCoordinatorDeviceInstantiation() 72

5.3 HandleTTLTimeout(TTLTimer T) . 72

5.4 HandleSearchQuery(address c, type Qdt) 73

5.5 HandleCandidateResponse(address a, type dt) 73

5.6 HandleAck(address c, type dt, tgid tgid) 74

5.7 HandleReject(address a, type dt, tgid tgid) 74

5.8 HandleConfirmation(address a, type dt, tgid tgid) 75

5.9 QueryForNeighborInstances() . 75

5.10 HandleDisconnects(list[node] parent, list[node] child) 85

5.11 InformLogicalNeighbors(int round) . 85

5.12 LogicalNeighborUpdate(int round) . 85

7.1 UserTaskApp(FILE) . 156

xx

7.2 OtherTaskApp . 156

7.3 ADUTransmit(As) . 158

8.1 DeriveComplexEdgesFromSimpleEdges 166

8.2 HierTGCoordinatorDeviceInstantiation 171

8.3 HierTGNonCoordinatorDeviceInstantiation 172

8.4 HierTGHandleCResp(Packet pkt) . 173

8.5 HierTGHandleConfirm(Packet pkt) 173

8.6 HierTGHandleSubtreeConfirm(Packet pkt; htg node s) 173

8.7 HierTGHandleSearchQuery(Packet pkt) 174

8.8 HierTGHandleAck(Packet pkt) . 174

8.9 HierTGHandleConfirm2(Packet pkt) 174

8.10 HierTGHandleSubtreeConfirm2(Packet pkt) 175

8.11 ContinueDownstreamSearch(Packet pkt) 176

8.12 HierTGHandleBroadcastTimeouts() 176

xxi

Chapter 1

Introduction

Wireless communication has revolutionized society in the last few years. In particular, cellu-

lar telephony has benefited hundreds of millions of people all around the globe serving as an

efficient ubiquitous voice communication medium. Recently, two wireless networking tech-

nologies have begun to transform the vision of “anytime, anywhere data communication” to

reality. These are wireless local area networks (WLAN) and digital packet data transmis-

sion technology over cellular infrastructures. While the former brings broadband wireless

data communication to localized settings such as offices, homes, airports and campuses;

the latter purports to make the same available over a much larger geographical area. The

biggest advantage of these wireless technologies is that they offer seamless communication

between possibly mobile users.

In spite of all the advantages of the cellular and WLAN models, they expect a

complex infrastructure to have been established before the users can communicate. More

specifically, cellular data communication needs the installation of communication towers at

strategic locations over a large geographical area, and WLANs need wireless base stations

or access points for facilitating communication between two mobile users with wireless con-

nectivity. However, if an existing communication infrastructure is expensive or inconvenient

to set up or use, or if it is absent, mobile users with wireless connectivity can still commu-

1

nicate with each other by the formation of a mobile ad hoc network (MANET). Nodes in a

MANET can act as both hosts and routers since they can generate as well as forward pack-

ets, respectively. Since there is no existing communication infrastructure (e.g., a wired or a

fixed wireless base station), MANET nodes are expected to act cooperatively to establish

the network “on-the-fly” and route data packets, possibly over multiple hops.

Traditional applications of such rapidly deployable network architectures are in bat-

tlefield and disaster relief scenarios, one of the first examples being the DARPA Packet

Radio Network PRNET [47]. However, considerable interest in MANETs has been shown

recently in the commercial sector owing to the miniaturization in size of computing devices,

the proliferation in their number, and the increasing demand of people to stay connected

all the time. The advent of wireless networking technologies such as IEEE 802.11 [26] and

low power technologies such as Bluetooth [17] and Zigbee [72] can propel ad hoc networks

to becoming an enabling platform for what is known as pervasive computing or ubiquitous

computing [70].

A MANET is a rapidly deployable, autonomous system of possibly mobile devices

which are connected by wireless links to form an arbitrary graph at any instant of time.

With the increase in popularity of portable devices and wireless connectivity standards,

MANETs are likely to gain popularity in the near future, especially in settings where a

networking infrastructure is expensive, cumbersome, or impossible to construct. We can

conceive of scenarios in which the environment surrounding us consists of a large number of

specialized as well as multipurpose devices, many of them portable, and linked through wire-

less connections, albeit with fluctuating link availability. Ideally, such pervasive networks

can enable a broad range of distributed applications that need exchange of information

between multiple devices.

In this dissertation, we propose a set of techniques for modeling and intelligent

execution of distributed applications (or tasks) on a network of possibly mobile devices in

the vicinity of the user. Our technique takes into account the nature and requirements of

2

a given application task for making decisions about the set of devices that the application

should run on, if there is freedom to do so. We also propose to make the above process

adaptive to network partitions and failures which are common in MANETs.

1.1 Problem Description

Significant previous research on MANETs has focused on networking issues such as channel

access [48, 15], routing [46, 61, 44, 40] and clustering [28, 35, 62]. In contrast, issues related

to application design have received little attention in this context. When a large number

of computing devices become equipped with wireless connectivity, and form an ad hoc

network, they can offer services to other devices for performing several tasks. In such a

situation, since the service providing devices may themselves be mobile, a user cannot rely

on one particular device for a certain service since its reachability and availability is not

guaranteed. Instead, a user must be prepared to access the required service from any of

several devices in the MANET providing similar services, if possible.

We propose and justify a novel scheme for modeling and executing distributed ap-

plications on MANETs that rely on services offered by other devices scattered across the

network. We introduce the abstraction of a Task Graph (TG) for representing higher-level

tasks (or applications) that a user may want to perform, in terms of smaller sub-tasks. It is a

graph composed of nodes and edges, where the nodes represent the classes of devices/services

needed for processing data related to the task while the edges represent necessary associ-

ations between different nodes for performing the task. A service class can represent a

hardware specific service such as a printer, a photocopier, or a digital picture frame, or it

can represent a software service such as a PDF to Postscript format conversion proxy.

When a task is to be executed, specific devices need to be selected at runtime,

and then made to communicate with one another according to the specifications of the

TG. More specifically, for each class of device in TG, one suitable instance needs to be

3

presentation
file

Display

Local
Screen

data flow edge

Wireless Mouse
Wireless

(mobile user)
Wireless PDA

Smart Storage/CPU

proximity edge

Keyboard
auxilliary devices to

control presentation

(possibly mobile)

(can be moved)

device

Music Server

USER

mp3 data

mp3 decoder

Proximity Sensing

signal
Decoded audio

Speaker L Speaker R

Request

(a) Smart Presentation Task (b) Stereo Music Service

Figure 1.1: Smart Office and Home Applications

chosen to take part in task execution. We refer to this process as embedding a TG on a

MANET. When a participating device becomes unavailable, a new substitute device with

similar capabilities needs to be selected to continue the task. Hence, efficient algorithms are

needed for achieving dynamic selection of devices (and their re-selection in events of failure)

specified in TG while honoring the structure of TG. We propose a distributed approach

for solving this problem. We also propose to use the following metrics for measuring the

success of our algorithms: average time for instantiation, quality of the instantiation (the

technical term we use for this is dilation), frequency of disruption of tasks due to mobility or

route failures and subsequent re-instantiation, average effective throughput that is achieved

after application data transmission begins, and delay experienced by application data units

(ADUs).

We now illustrate two pervasive computing applications that are enabled by some

of the ideas presented in this dissertation. Imagine a large hall with a number of display

screens, projectors, wireless keyboards and pointing devices. Also assume that there are

a number of “smart storage” devices which can run popular file-viewing software. These

4

devices can store a presentation file in their local storage and can render them on a display

screen using appropriate software. Devices are untethered and therefore can be moved

around in the room freely. The presenter carries only a PDA (with wireless networking

capability) that hosts the presentation file. The file (or pieces of it) is transferred from the

PDA to a suitable smart storage device depending on the type of presentation software and

other factors such as network distance (in hops) and quality of the route in terms of delay,

bandwidth and error rate. The presenter needs a pointing device, a keyboard, perhaps, and

a local screen to control the presentation, but does not care about which particular devices

actually perform the presentation task. Figure 1.1(a) depicts the presentation task with a

graph where the vertices stand for categories of devices involved in the task and the edges

stand for data flow between devices or other factors like physical proximity to the user.

Assuming that there is no infrastructure support in the hall, a multihop ad-hoc

network is formed among several devices therein. In this scenario, a protocol is required

to discover the most suitable display screen, smart storage device, keyboard, mouse and

local screen with respect to the presenter’s location and data requirements. The presenter

can move around in the hall either naturally or for displaying multiple items at the same

time, and a different set of peripherals may need to be discovered for optimal effect. Note

that the nearest smart storage device containing the suitable viewer may not be the best

one for the nearest keyboard and the nearest display to communicate with. The discovery

process must consider the relationships between vertices in the corresponding task graph.

The presentation task can then be achieved seamlessly without bothering the user with

configuring the chosen peripheral devices.

Figure 1.1(b) illustrates an example of an application for future smart homes. Imag-

ine a user wearing a proximity sensor embedded on her shirt roaming around in the house

while listening to music. When she requests a particular song from a music server (hosted

in the house or somewhere in the Internet), the music server streams the digital music file

to a suitable digital music player in the house which may be a hardware player or a soft-

5

ware decoder residing on a PC. The proximity sensor in the user’s shirt senses the nearest

set of speakers, and the selected decoder device starts streaming the audio to the selected

speakers. If the user moves to another room, the music follows the user automatically since

a new set of devices is dynamically selected, triggered by the proximity sensor.

1.2 Contributions

The following are the key contributions of this dissertation:

• We propose and demonstrate a graph theoretic methodology for the logical repre-

sentation of distributed applications in terms of its components and the information

flow (data-flow) between the components. The methodology loosens the currently

tight coupling between network hosts and the services provided by them. We propose

distributed protocols that discover efficient mappings between logical application com-

ponents and actual physical devices that would execute them. This is performed while

taking the whole nature of the task into account. We formally model this as a task

graph embedding problem.

• We show that both the general as well as a key restricted case of our problem are NP-

complete and hence it is important to search for heuristic solutions that are efficient.

• We propose an optimal embedding algorithm for the restricted case where the task

graph is a tree, and use this as a basis of a solution for general task graphs. We

also propose a greedy solution approach which aims at finding a possibly suboptimal

embedding faster. A distributed version of the greedy protocol was used to perform

the actual embedding.

• We propose a protocol framework for mobility adaptation since mobility of devices is

a common feature of MANETs that can disrupt a running application. Our protocols

adapt to network partitions by first detecting the disconnections between relevant

6

devices and then by rediscovering replacement devices onto which the affected ap-

plication components are mapped. This feature of the protocol makes it truly self

organizing.

• The protocols were validated by extensive simulations and by the development of a

proof-of-concept prototype.

• We also describe several novel applications that could be enabled by the techniques

proposed in this dissertation.

1.2.1 Significance

Existing distributed applications involve a tight coupling between hosts and the services

they provide. In MANETs, such tight coupling may result in sudden application disruptions

because of mobility of devices. Since there may be other devices in the vicinity of the user

offering similar services that an application desires, the execution of the application can be

continued by intelligent selection of devices as proposed by our framework. We believe that

a design philosophy based on the loose coupling between a service and the device(s) offering

it helps in the development of more robust distributed applications in a mobile environment.

Some application scenarios that are enabled by our proposal are listed in Section 1.3.

1.3 Additional Examples of Application Scenarios

In this section we describe a few other application scenarios from diverse domains which

motivated this research. This list is by no means exhaustive. None of the applications

presented in this section exist today. As wireless networking (ad hoc or not) becomes

ubiquitous, we expect applications of the task graph based modeling techniques proposed

in this dissertation to be seen in many more domains which are not obvious to us right now.

7

Team 3

Team 4

Anycast Coordination Graph

Team 1

Team 2

Team 1

Team 3 Team 4

Team 2

Figure 1.2: Scalable Coordination in Multi-team Field Operations

Scalable Coordination in Multi-team Field Operations Imagine an generic scenario

where multiple teams are participating in a certain field activity to achieve a collective goal,

with each team having a specific role in the overall endeavor. The various participants can

communicate with each other during the activity over a wireless ad hoc network. In general,

two types of communication patterns are expected between the participants: (1) intra-team

and (2) inter-team. The intra-team communication is likely to be of a multicast1 nature

since there can be significant overlap between the activities performed by the members of

a team. However, the inter-team communication is likely to be of point-to-point nature, as

a particular team may want to communicate with only a subset of the rest of the teams,

and not all of them. Therefore, instead of forming one large multicast tree where all the

participants are senders and receivers, one can form a number of smaller multicast groups,

each corresponding to a team of workers, connected together by a small anycast2 tree. The

exact patterns of the inter-team communication depend upon the specifics of the activity.

Figure 1.2 shows a hypothetical schematic of one such application involving four teams. The

communication pattern between teams is represented by a so called anycast communication
1Multicast is a network group communication paradigm [69] in which a subset of nodes in the network

communicate with each other; a data packet sent by a node is intended for delivery to all other nodes in the

aforementioned subset.
2Anycast is a paradigm where a data packet is delivered to exactly one node in a set of nodes all of which

can satisfy a given criterion [60].

8

graph which is shown on the right. The dark shapes denote the participants who are

chosen to act as representatives of each team for the purpose of carrying out the inter-team

communications. The intra-team communication on the other hand can occur by multicast.

An example of the above class of applications can be in disaster relief which is one

of the foremost applications of mobile ad hoc networks. There are various teams of workers

involved in such as setting, namely, law enforcement officers, fire fighters, rubble removers,

rescue workers, paramedics, and ambulance personnel among others. Each of these groups

of people have specialized roles in the rescue operations, and they are expected to be in

constant communication with each other through their personal handheld devices. However,

usually all rescue workers do not need to communicate with all others. For example, the

fire fighters receive data from sensors and communicate with paramedics, who in turn need

to communicate with the ambulance personnel only. Hence, just as explained in the generic

example, one can establish certain communication patterns between different groups of

rescue workers such that only messages that are relevant to each group arrive at their

PDAs.

The nodes in the anycast tree are similar to the nodes in a task graph, each belonging

to a specialized type defined by their roles in the rescue initiative, e.g. Police, Ambulance,

Paramedics etc. An edge in an anycast tree joins one member of a specialized team to a

member of another specialized team, if those particular teams need to communicate (e.g., if

fire fighters need to communicate with paramedics, one fire fighter’s PDA acts as the gateway

of communication, and so does one paramedic’s PDA). If multicast communication is used,

data from one member of any team is delivered to all members of all participating teams.

This could result in significant wastage of network bandwidth. In contrast, communication

along the edges of the anycast tree could result in more scalable management of network

resources since the multicast groups corresponding to individual teams are much smaller in

size. Our proposed instantiation algorithms can efficiently establish an anycast tree along

which such communication can occur. If the selected anycast nodes are lost due to network

9

partitions caused by failure or mobility, then replacement nodes can be selected dynamically.

Similar multi-team field operations can be envisaged in battlefield scenarios. Each

high-level operation can involve a number of teams from infantry, air force, marines, and

strategic command physically spread across a certain geographical area. In a futuristic

digital battlefield, these teams are likely to be connected by a wireless ad hoc network [64].

The plan of operation can involve collaboration and coordination among certain pairs of

teams. As in the disaster relief example, an anycast tree can be constructed involving

a single node from each of the teams and the command and control operations can be

communicated along the edges of that anycast tree instead of an all-to-all multicast.

Another burgeoning application area that is gaining interest in academia as well

as the military because of advances in mobile ad hoc networking is large scale distributed

robotics. Complicated tasks can in principle be performed collaboratively by an army of

mobile robots equipped with different types of sensors and actuators just as food is gathered

cooperatively by an ant colony. Our ideas described in this section can be useful where there

is division of labor among the robots.

Distributed Computing Consider the following pervasive computing application: a

journalist is conducting an interview at a location where there is no significant computing

or communications infrastructure. Nonetheless, she wants the transcript of the interview

to be generated automatically in real time using state-of-the-art speech recognition tech-

nology. However, the PDAs or other low power computing devices that she or her crew is

carrying are computationally inadequate to process the speech signal and convert it to text

in real time. To this end, different parts of the captured speech signal at a PDA can be

distributed wirelessly to nearby devices with greater computing power (e.g., powerful lap-

tops with owners willing to spare their CPU cycles), low current load, and required software

to perform the speech-to-text conversion. This task may require access to other services

such as dictionary search etc. Distributed Speech Recognition technology can be used for

10

MALE FEMALE

POLLER

POLLEES

Poll Managers

l samples m samplesk samples p samples q samples r samples

> 35 yrs25 − 35 yrs< 20 yrs 20 − 40 yrs > 40 yrs < 25 yrs

POLLEES

l samples m samplesk samples

< 20 yrs 20 − 40 yrs > 40 yrs

Bleachers

POLLER (at Fenway Park)

seats
Field level

600 clubGrandstand

Poll Managers (nodes)

[Location attributes]

.

(a) (b)

Figure 1.3: Task Graphs for Wireless Polling

the communication between the thin client and the more powerful servers in the network.

After the conversion is done, the results can be seamlessly collected from the machines

participating in the task, and then collated to generate a complete text transcript on the

interviewer’s PDA.

Distributed Computational Games Consider a group of people trying to play a game

of chess against a grandmaster at a crowded marketplace. After every move made by the

grandmaster, the game state is distributed to all current players who distribute the search in

the game tree intelligently to their computing devices which may collaborate with each other

over a MANET and suggest good moves to the players. This is essentially a distributed

search problem which can have very large task graphs which obviously change over time.

Wireless Polling Systems Imagine a football stadium with 70,000 people in it watching

a game. As Emmitt Smith crosses the goal line and creates a new rushing record, the

stadium authorities decide to poll the people in the stadium with a question: “Was Walter

Payton a better running back than Emmitt Smith?” Polling can be achieved over the

11

wireless ad hoc network formed by the PDAs in the stadium.

Now suppose that one wants to conduct a poll in a controlled fashion. Instead of

broadcasting the query to all PDAs in the stadium and processing all responses, one wants

only a fraction of people in the audience to reply as long as people from most profiles are

represented proportionally in the poll results. The advantages of doing this are twofold: (i)

Less wireless bandwidth will be consumed in the polling process, and (ii) The poll results are

likely to represent samples from different sections of the population in a fair and controlled

fashion. The extent of fairness and control in the polling process can be defined by the poller

quantitatively by means of a task graph. A sample task graph depicting a structured poll

is shown in Figure 1.3(a). The POLLER wants a specified proportion of votes (specified by

parameters k, l,m, p, q, r) from males and females in particular age groups as shown in the

figure. The simplest way to perform the poll would be as mentioned before: flood the query

throughout the MANET and collect the responses. In addition, only k, l,m, p, q, and r

responses need to be processed by the POLLER. Since this wastes wireless bandwidth,

expanding ring search [18] can be used until the requisite amount of responses have been

gathered. However, even this suffers from one problem that virtually all pollees will respond

to the single POLLER node which will be swamped with incoming traffic. In fact the nodes

within a few wireless hops of the POLLER will be busy forwarding/routing the incoming

packets towards it.

A task graph based solution can mitigate the above problems by delegating the task

of polling to an intermediate layer of nodes which have enough computing resources and are

less power constrained in their operation. We call these nodes Poll Managers. They conduct

the polls based on the set of profiles that they are responsible for and act as aggregators

of poll results which are processed and then returned back to the POLLER. If the Poll

Managers are spatially spread out uniformly across the network (this will be the case for

the task graph shown in Figure 1.3(b) which contains location based attributes), it will

result in less channel contention and reduce hot spots in the network. Another advantage

12

of using intermediate poll managers is that they can localize the detection of mobility of a

device in the middle of a poll transaction.

Vehicular Networks An interesting application of task based modeling can be seen in

the following futuristic scenario that has been adapted from [21]. Bob is driving his car

on a congested highway with Alice on the passenger seat. Suddenly Alice falls sick, and

Bob has the task of driving her to the nearest medical center immediately. Bob has to find

the fastest route to the hospital in heavily congested traffic. The current in-car navigation

systems are incapable of solving this problem. Now imagine that Bob has a PDA in his

car which is equipped with short range wireless communication capability such that it can

communicate with other cars in its vicinity. Since the highway is congested, the cars in the

neighborhood of Bob’s car have a strong likelihood of being rich in timely information which

they have cached in the recent past about the traffic conditions. Bob’s PDA can attempt

to obtain the necessary information about the fastest route from his current location to the

nearest medical center by using information and services available in its neighborhood.

When Bob speaks his query into his PDA, it decides that to perform the task, the

following services are necessary:

1. A GPS service to determine current location

2. A dynamic traffic information service to give information about the current levels

of congestion in the streets ahead: this can be obtained from cars coming from the

opposite direction

3. A map service to provide the location coordinates of nearby hospitals

4. A route calculation service to calculate the current fastest route from the current

location to any of the nearby hospitals

Now only a subset of the aforementioned services maybe available in Bob’s car (none

may be available). Hence, Bob’s PDA may have to discover suitable instances of these

13

services in its wireless neighborhood and help Bob discover the fastest route to the nearest

hospital immediately. This task can be represented in the form of a task graph where the

services are nodes and the data dependencies between the services are edges. Instantiating

this task graph in this context would be equivalent to discovering the best instances of these

services in Bob’s vehicular neighborhood such that the best route is returned to him as soon

as possible.

In this section, we have purported to give the reader a full flavor of the application

space that can be enabled by the use of approaches proposed in this thesis. We strongly

believe that a variety of other imaginative applications involving constrained resource dis-

covery can be enabled as computing becomes more and more pervasive in future.

1.4 Organization of the Dissertation

The remainder of this dissertation is organized as follows: In Chapter 2 we discuss exist-

ing techniques for performing service discovery in infrastructure based networks. We also

discuss how these techniques fall short of systematically modeling a distributed application

logically in terms of its components, as we have done in this dissertation. In Chapter 3

we show how distributed tasks can be modeled with graphs (hence the name task graphs)

and then formally present the task based resource discovery problem as a graph embedding

optimization problem where the target network is a MANET without any regular structure.

In Chapter 4 we show NP-completeness proofs of some variants of the proposed problem

and give optimal as well as faster heuristic solutions for special cases of the problem. In

Chapter 5 we propose a distributed algorithm for task based resource discovery. We also

present techniques for adapting to disconnections due to mobility of nodes in the network.

In Chapter 6 we present large scale performance evaluation of the proposed algorithms by

simulation. The design and implementation of a proof-of-concept prototype that was built

on a testbed of mobile wireless devices has been described in Chapter 7. In Chapter 8 we

14

extend the basic flat task graph model to a hierarchical one, and present algorithms for

instantiation of hierarchical task graphs. In Chapter 9 conclusions and directions for future

work are presented.

15

Chapter 2

Background and Related Work

The need for locating services rather than specific hosts or devices in the network has

received much attention from the networking research community in recent years. In this

chapter, we first describe the state of the art for mobile ad hoc networks and how they can

be useful in the application scenarios that we envisage in Chapter 1. We then describe the

existing techniques for service discovery in both wired and wireless networks and discuss

their limitations toward our goal of achieving distributed application execution on MANETs.

We then discuss how task graphs have been traditionally used to model complex parallel and

distributed computing applications, and how they can be adapted to serve as a very useful

tool in representing the class of applications presented in Chapter 1. We also discuss briefly

the related communication paradigms of IP multicast and IP anycast in the context of the

Internet as well as MANETs and describe how our work fits into that space. Throughout

this chapter, we identify the gaps that exist between these diverse areas in networking, and

argue how our ideas help in bridging the gap and opening up a new direction of research.

16

2.1 Mobile Ad hoc Networks

If an existing communication infrastructure is expensive or inconvenient to use or setup, or

if it is absent, mobile users with wireless connectivity can still communicate with each other

by the formation of a mobile ad hoc network (MANET). Nodes in a MANET can act as both

hosts and routers since they can generate as well as forward packets, respectively. Since

there is no existing communication infrastructure (e.g., a wired or a fixed wireless base

station), nodes in a MANET are expected to act cooperatively to establish the network

on-the-fly and route data packets possibly over multiple hops.

MANET nodes are equipped with wireless transmitters and receivers using antennas

which can be omni-directional (broadcast), highly directional (point-to-point), steerable, or

some combination thereof. At any instant of time, depending on the nodes’ positions and

their transmitter and receiver coverage patterns, transmission power levels and co-channel

interference levels, a wireless connectivity in the form of a random, multihop graph or ad

hoc network exists between the nodes. This ad hoc topology may change with time as

the nodes move or adjust their transmission and reception parameters. MANETs have the

following salient characteristics among others (from [25]):

1. Nodes in a MANET are free to move arbitrarily; thus, the network topology which is

typically multihop may change randomly, dynamically and rapidly. The network may

consist of both bidirectional and unidirectional links.

2. Bandwidth-constrained, variable capacity links: Wireless links will continue to have

significantly lower capacity than their wired counterparts. In addition, the realized

throughput of wireless communications after accounting for the effects of multiple

access, fading, noise, and interference conditions, etc. is often much less than a radio’s

maximum transmission rate. A direct consequence of the above fact is that congestion

is typically the norm rather than the exception. In other words, it is frequently the

case that the aggregate application demand outstrips the network capacity.

17

3. Some or all of the nodes in a MANET may rely on exhaustible sources of energy such

as batteries. For these nodes, an important system design criteria for optimization is

energy conservation.

The principal focus of MANET researchers has been in the areas of medium/channel

access, routing, and clustering, each of which is briefly summarized below.

Medium Access Control Two fundamentally different types of medium access schemes

are used for scheduling data transmissions in MANETs: deterministic (slotted) access and

asynchronous (random) access. Time division multiple access (TDMA) is a well known

medium access scheme for deterministic bandwidth allocation and quality of service provi-

sion in ad hoc networks. According to TDMA, bandwidth can be allocated to the network

links using a time schedule well known to all nodes. At every slot of such a schedule, links

are activated for transmission such that collisions are avoided at receivers. Determination

of the set of slot allocations in a TDMA based network governs the performance. Since

system-wide clock synchronization is not always possible to achieve in a distributed ad

hoc network setting, Bluetooth uses TDMA locally within piconets which are connected to

form larger ad hoc networks called scatternets. Global synchronization of time references

between different piconets is hard and is unspecified by the Bluetooth standard.

The most popular asynchronous random access protocols is Carrier Sense Multiple

Access with Collision Avoidance (CSMA/CA) used by the IEEE 802.11 wireless LAN stan-

dard [26]. Since collisions occur at the receiver and not at the transmitter, simple carrier

sense does not provide all the information necessary for collision avoidance (e.g., for the

hidden terminal problem [48]). CSMA/CA tries to solve the hidden terminal problem by

adding an RTS/CTS/DATA/ACK exchange for every packet transmission. The Distributed

Coordination Function (DCF) or “ad hoc” mode of IEEE 802.11 allows the formation of a

peer-to-peer ad hoc network. Random access MAC protocols cannot provide any bandwidth

allocation guarantees like well synchronized TDMA based protocols. However, bandwidth

18

guarantees are generally harder to achieve in the absence of global slot synchronization.

Routing Protocols Many protocols have been described in the literature for routing

over multiple hops in MANETs. They fall into the following categories: (1) proactive or

reactive (on-demand), (2) distance vector based or link state based or source route based,

and (3) geographic position based.

Notable reactive protocols include Dynamic Source Routing (DSR) [46] and Ad hoc

On-demand Distance Vector (AODV) [61]. DSR is a source routing approach that discovers

routes by reactive flooding followed by subsequent reply messages from the destination

node. The packet header maintains the routes from source to destination and is utilized

by intermediate relay nodes. DSR uses route caching aggressively for better performance.

AODV operates on-demand but maintains destination indexed routing tables instead of

source routes following a distance-vector approach. An example of a leading proactive

protocol is Optimized Link State Routing (OLSR) [44] which advocates maintenance of

routing tables by efficient flooding of link-state updates from each node.

Zone Routing Protocol (ZRP) [40] was the first solution that attempts to combine

the merits of the proactive and the reactive approaches. It uses a proactive scheme to find

routes within each defined zone and a reactive scheme to discover routes to a destination

in another zone. Some protocols which utilize information about node positions include

Location Aided Routing (LAR) [51] and Greedy Perimeter State Routing (GPSR) [49].

Performance of the above protocols depends upon factors such as node mobility and

application traffic load, and hence no single protocol is the best for every scenario. While

reactive protocols tend to be better under light to moderate loads even under high mobility,

their proactive counterparts fare better when there is heavy traffic in the network under

high mobility [45].

19

Scalability with Clustering As the size of a MANET grows, flat routing schemes do

not scale well in terms of performance. Hence, hierarchical organization or “clustering” is

beneficial in large MANETs for solving this problem. Several clustering strategies have been

proposed in the past and in the recent future for imposing a semi-hierarchical structure upon

nodes in a MANET in order to increase scalability in routing, improve bandwidth utilization,

and to reduce delays for route queries [28, 35, 52, 62, 5, 12]. An excellent description of

cluster based MANETs can be found in [65].

Application level issues in MANETs have not received much attention from the

research community since the application space for MANETs has been limited to file shar-

ing/transfers and streaming media. Devices in a MANET can indeed act as service providing

entities to other devices in the network. With the availability of a large number of resources

in a dense MANET, application and tasks involving multiple resources or services in the

network can be performed cooperatively if suitable coordination protocols are running for

the execution of the task. In this dissertation we focus on such applications of MANETs

and develop a model to logically represent complex distributed applications. Since mobile

devices can move away to an unroutable location and partition the network, a central goal

of a task coordination protocol would be to detect such a situation and attempt recovery.

2.2 Service Discovery Techniques

Service discovery and location have been recognized as important primitives for ubiquitous

computing. Service discovery refers to the process of determining the address of a node

offering a particular service in a networked environment. Service location refers to the

actual process of accessing the aforementioned service on the discovered host. Internet

Engineering Task Force’s (IETF) Service Location Protocol (SLP) [38] is a protocol which

emphasizes the location of a host with desired capabilities and attributes that can provide

a specific named service. SLP describes an IP multicast based approach to locate desired

20

service-to-host bindings.

Sun Microsystems’ Jini [57] is another effort from the industry that attempts to

decouple the service from a specific host. Jini also focuses on the automatic downloading

of drivers for accessing devices that are not recognized by a client system.

Both of the above are centralized directory based schemes where a service registers

itself with a centralized registration server with all its attributes; when a client queries

for a service with specific attributes, the system returns candidate hosts that can satisfy

the client’s needs. MOCA is a variation of Jini without any centralized registry [13]. It

is specifically designed for mobile computing devices. Every device running MOCA has a

service registry component which only the applications running on the local and surrounding

devices can benefit from.

The difference between the approach proposed in this dissertation and the above

schemes is the following: what we are proposing is not merely service location or discovery,

but a complete framework which enables the execution of complex distributed tasks on

MANETs; locating a service is only one aspect of the process of task execution. Moreover,

being centralized in nature, most of the schemes described above are unsuitable for use in

MANETs. Our technique also allows dynamic, on demand composition of complex services

from simpler service instances. This is not the focus of the aforementioned service discovery

schemes. Hence, our approach operates at a logical layer above service discovery and can

co-exist with any of these schemes.

Some researchers have proposed to capture user-intent for discovering appropriate

devices suitable for the user’s tasks. University of Washington’s Portolano project [30]

advocates the use of data centric networking for pervasive computing applications. This

emphasizes the fact that data is of primary importance to the user and it should be appro-

priately massaged and routed to her by the pervasive computing infrastructure.

In MIT’s Intentional Naming System (INS) [1], the user’s intent is abstracted into

21

collections of attribute-value pairs or names that describe what the user application requires.

Specific devices in the network that can offer the desired service are selected by special

entities in the network called Intentional Name Resolvers (INR) when the latter are queried

by the user. The INRs configure themselves into a self-configurable overlay network based

on performance metrics and exchange metadata about names and corresponding network

locations. Name resolution and message forwarding processes are integrated. The late

binding feature of INS is similar in philosophy to the process of instantiation of a task

graph node in our system (see Chapter 3).

Although similar in certain goals, INS differs from our system in two main aspects.

First, it is designed for infrastructure based networks and not MANETs – some nodes in

INS that are dedicated as name resolvers and Domain Space Resolvers are expected to be

static and only some clients and end services are expected to be mobile. Network topology

is not expected to change much dynamically either. Also, mobility in INS is different

from that in MANETs – in the former, service mobility causes location attributes of the

device providing the corresponding service to change and their goal is to maintain seamless

communication with the same device using late binding. In contrast, we are concerned

with mobility that causes a service providing device to become unreachable from another

device that requires the former’s service. Schemes proposed in this dissertation attempt to

recover from such situations. Secondly, INS does not attempt to systematically represent

or leverage the logical relationships between the components of a distributed task for the

discovery of devices. This is our principal focus.

Hodes et al. [41] investigated means of composing services for heterogeneous mobile

clients. Their work primarily focuses on controlling office equipment from mobile devices

and design of client-device interfaces. They too have not addressed the issues involved

in composing complex services from simple devices with specific interaction patterns be-

tween them. In general, none of the aforementioned approaches consider scenarios in which

multiple specialized devices need to offer their services in a cooperative manner for the

22

provision of a more complex service, a case which we believe will be increasingly common

in a ubiquitously networked world.

IBM’s PIMA has a vision somewhat similar to ours. In their vision paper [4], they

argue very briefly for the design of applications by decoupling concerns from specific physical

devices. However, they do not mention any particular approach for realizing this vision in

that paper. Our task graph concept on the other hand is a systematic and concrete approach

which can help realize this vision.

Javaspaces [32] is an object oriented framework proposed by Sun Microsystems for

dynamic communication, coordination, and sharing of objects between Java based network

resources. AirJava [55] combines Sun’s Jini technology and pico-cellular wireless technology

to empower devices to discover each other. We believe that these are orthogonal to our

research since they propose specific technologies to access services in the network.

2.3 Task Graphs

The concept of a task graph (TG) was originally developed and used in parallel computing

and scheduling research community. In that context, TGs are used for representing pro-

grams that can be partitioned into sub-programs which can be parallely executed after they

are allocated to different homogeneous processors connected by regular high-performance

interconnects such as hypercubes or meshes. Key goals there are to find optimal task to

processor assignment which results in minimum total completion time for the program or

minimum total communication cost [19, 56, 43]. Our concept of a task graph is different

from this classical one. We are not specifically concerned with tasks that are to be dis-

tributed among multiple homogeneous processors for speed-up; rather, most tasks that we

envisage in this work will involve several homogeneous or heterogeneous devices that can

be mobile and communicate with each other over failure prone wireless links. Moreover

there is no goal of minimizing the total completion time of the task. However, if we are

23

interested in solving a large scale distributed computing task on a network of homogeneous

mobile devices, then our definition of a task graph will be similar to the classical one. This

makes our task graph formulation more general than the one used in the parallel computing

context.

Also, MANETs are not likely to possess regular interconnection network structures

such as hypercubes, meshes or butterflies as enjoyed by parallel computing platforms; there-

fore, the applicability of the mapping algorithms/heuristics developed for parallel computing

is reduced in our application space. Another salient point of difference is the impracticality

of centralized mapping algorithms for large TGs in MANETs. This is because all devices

in a MANET are likely to possess limited resources and the network topology can rapidly

change with time. Parallel computers or even a distributed network of workstations do not

suffer from the above constraints.

The TG abstraction of a distributed task is advantageous in many ways. It is

inherently distributed, as most pervasive applications and services of the future are likely

to be, since more and more specialized devices will need to communicate with one another to

offer more and more powerful services. It also offers hierarchical composability, as collections

of devices can be logically grouped together to constitute a single node in a TG.

2.4 Multicast, Overlay Networks, and Anycast

IP Multicast is a classical networking paradigm that facilitates communication between a

given group of hosts while utilizing network bandwidth efficiently [69, 27]. The possible

styles of communication are “one-to-many” and “many-to-many.” The Mbone [29] which

was built in 1992 by the IETF is a virtual network consisting of IP routers that support

multicast at the IP layer. It allows multicast packets to travel through routers that are set

up to handle only unicast traffic by means of tunneling which is nothing but the mechanism

of encapsulating multicast packets in traditional unicast packets. Due to the difficulty of

24

achieving community-wide consensus towards implementation of these abstractions at the IP

layer, recently, researchers have proposed application layer solutions using overlay networks

for implementation of these abstractions in the wired Internet. End System Multicast (ESM)

is a recent proposal that advocates creation of application level overlays for supporting

multicast [23]. MANETs do not suffer much from similar deployment problems as their

wired counterparts since every host is likely to act as a router as well. Several approaches

have been proposed by researchers to achieve multicast in MANETs. They have been

compared against each other in [53].

The above approaches facilitate group communication between a given set of nodes

in the network (which may be changing over time). In other words, a packet sent by one

node gets replicated appropriately in the network and delivered to all the participants in the

multicast group. However, our task execution model has significantly different requirements

since (1) the set of devices in the network participating in the application is not pre-specified;

only their logical specification exists (nodes in TG), and (2) the communication patterns

between the logical nodes (edges in TG) can be different from the 1-to-n model. Therefore,

a different set of primitives are needed for this purpose.

Anycasting is a networking paradigm that facilitates location and subsequent com-

munication with any one of a set of distributed servers or service access points in the

network [60]. The primary motivation for anycast in the Internet is for server selection

within a group of replicated servers [39]. More recent proposals on anycasting advocate its

use at the application layer [16]. However, Park and Macker in [59] propose an anycasting

scheme for MANETs that is tightly coupled with the underlying routing scheme (which has

to be link-state based). The Intentional Anycast feature in INS [1], although independent

of the IP routing layer, is closely integrated with the underlying name resolution scheme in

the network. It facilitates delivery of application messages to a device in the network that

best satisfies the name of the requested service.

Our approach and focus in this dissertation are significantly different from the work

25

related to anycasting in [1, 59]. Although we too strongly believe that anycasting can serve

as a powerful tool for decoupling the structure of distributed applications and specific physi-

cal devices that can execute them, we are not restricted to anycasting alone for a particular

service. We instead use anycasting as a useful paradigm for improving the resilience of

the entire distributed application in failure prone environments such as MANETs where

mobility can cause services to become unreachable and thus unavailable during applica-

tion execution. Also, the anycasting scheme presented in this dissertation operates at the

application layer and can operate on any underlying routing and transport scheme.

There have been a few recent research efforts directed towards improving the relia-

bility of distributed applications in the wide area Internet. MIT’s Resilient Overlay Network

(RON) architecture [2] focuses on the construction of an application layer overlay on top

of the existing Internet routing substrate. RON allows distributed Internet applications

to detect and recover from path outages and periods of degraded performance. The RON

nodes monitor the functioning and quality of the Internet paths among themselves, and use

this information to decide whether to route packets directly over the Internet or by way

of other RON nodes, optimizing application-specific routing metrics. Our task execution

protocols share some of RON’s goals related to application resilience; however, owing to

the dynamic nature of MANETs we propose very different techniques for recovery from

disruptions. Moreover, the sources of application outages in both cases are different too.

In RON, outages usually occur due to congestion whereas in MANETs, they occur due to

unreachability of a resource due to physical mobility of devices.

In subsequent chapters, we propose and justify a task graph based framework for

execution of complex distributed tasks on a set of mobile devices that form a MANET. We

focus on the design of protocols for task graph based resource discovery in these MANETs

such that they are adaptive to device mobility and failures during the execution of the task.

26

Chapter 3

A Task Based Approach for

Resource Discovery in Mobile Ad

Hoc Networks

In the past few decades, a variety of distributed applications have been enabled by many

advances in computer networking. A distributed networked application or task is composed

of several components or sub-tasks. These components often execute on different hardware

devices and communicate among each other in order to yield a desired result. Traditional

parallel and distributed computing platforms are comprised of high performance nodes

internetworked with static high capacity links. However, as mentioned in Chapter 1, the

computation and communication substrate offered by a MANET is potentially mobile and

hence, prone to link failures. Therefore, it is necessary to develop a model for a distributed

application which decouples the bindings between its logical components and the actual

hardware devices that they are executed on until application runtime. Additionally, the

model should utilize the component-level structure of an application in order to dynamically

discover and select appropriate devices in the network with desired capabilities for hosting

and executing the aforementioned application components.

27

In this chapter we describe in detail the methodology for modeling distributed ap-

plications on MANETs based on task graphs. We first lay the foundations of the modeling

framework by introducing the necessary terminology and their definitions. We also propose

a simple tuple-based framework for the specification of the components of a distributed

application and show how it translates to a task graph structure. We then present the

formulation of the task embedding (or anycasting) problem in the MANET framework and

propose some important performance metrics that are optimized in the solution process.

3.1 Terminology

3.1.1 Preliminaries

Definition 3.1 A device in our context is a physical entity that performs at least one

particular function such as interaction with its physical surroundings, computation, and

communication with other devices. It may be equipped with an embedded processing

element, sensors and actuators for interacting with the physical environment, a wireless

communication port, and/or a user interface.

If a device primarily performs one specific function, it is called a “specialized device,”

otherwise, it is referred to as a “multipurpose device.” Examples of the former type include

digital cameras, speakers, printers, keyboards, display devices etc., while examples of the

latter include Personal Digital Assistants (PDA) and portable notebook computers.

The capabilities of each device can be summarized in their attributes. Attributes can

be static (i.e., time-invariant) or dynamic (i.e., time-variant). For example, a network digital

camera can have a static attribute “resolution” which can take values like 320x240, 640x480

etc. Examples of dynamic attributes include location (absolute or relative, depending on the

availability of GPS), available computational power, and current load. In this dissertation,

we only consider devices with their principal attribute, (i.e., their primary function). Multi-

28

attribute extensions are possible and are considered elsewhere [1].

Definition 3.2 A service is a functionality provided by a device or a collection of cooper-

ating devices. A service provided by a single device is referred to as a simple service whereas

one provided cooperatively by a collection of devices is referred to as a composite service.

Multiple devices can exist in the MANET for providing the same service. For example, there

can be multiple wireless cameras in the network which a user can choose from for taking a

picture. We refer to this situation as “multiple instances of wireless camera services.”

Definition 3.3 Service composition is the process of construction of an instance of a

composite distributed service from other simple or composite service instances available in

the current networked physical space.

A major portion of this thesis concentrates on the composition of composite services from

simple services only. However, in Chapter 8, we present techniques for achieving service

composition from composite services, as well.

Definition 3.4 A node is an abstract representation of a device or a collection of devices

characterized by a minimal set of attributes that can offer a particular service.

A node is simple when it represents a single physical device. It is complex when it represents

multiple simple nodes. We consider simple nodes only in this paper. We refer to the principal

attribute of a node or a device as its class or category or type. Examples of classes include

printer, speaker, joystick etc.

Definition 3.5 An edge is a necessary association between two “nodes” with attributes

that must be satisfied for the completion of a task.

Examples of edge attributes include causal ordering, relative importance in the overall task,

required data rate between nodes, allowable bit error rate, and physical proximity.

29

Laptop

PDF Document

Printer Nodes

page 5

page 1

(PDF to PS)

Print Server

Printer

Figure 3.1: A Smart Printing Service

3.1.2 Tasks and Task Graphs

Definition 3.6 A task can be described as work executed by a node with a certain ex-

pected outcome. The work done by a component of a complex node is considered a sub-task

of the larger task.

An atomic task is an indivisible unit of work that is executed by a simple node. Atomicity

is related to the core capability of a device, described through its attributes, and is partially

constrained by subjective design choices.

Definition 3.7 A task graph is a graph TG = (VT , ET) where VT is the set of nodes that

need to participate in the task T , and ET is the set of edges denoting data-flow between

participating nodes.

Definition 3.8 Instantiation or Embedding of a task graph TG on a MANET repre-

sented by a graph G is the process of mapping all nodes of TG to nodes in G such that their

attributes match. The process also maps edges in TG to paths (single-hop or multi-hop) in

G.

An example brings further clarity to the abstractions developed so far. Consider a

scenario in which there is a PostScript (PS) printer connected to a computer (print server)

running conversion software that can convert Portable Document Format (PDF) files to

30

printable PS format. The printer node and the computer node each represent devices that

offer particular services. The printer is considered a specialized device offering the service

of converting PS files into printed pages, while the computer is a multipurpose device which

has among its many offered services the one service of converting PDF files into PS format.

This example is illustrated in Figure 3.1 where the task of printing a PDF document to a

single or multiple printers has been logically represented as a task graph.

The printer is a physical device representation of a simple node with certain at-

tributes (such as print resolution, color capabilities) and it offers the service of converting

PS files into printed pages. Analogously, the print server computer plus its conversion soft-

ware can be viewed as a representation of a PDF→ PS converter node. By taking these two

nodes together we can form a complex node that offers a “PDF printing service.” Let a task

be the printing of one PDF document. In this specific case, based on subjective criteria, we

define an atomic task to be the printing of one page of the document.1 The entire document

can be then printed on a set of available printers as shown in Figure 3.1. The mechanisms

of how appropriate physical devices are discovered and selected to perform a sub-task are

discussed later in this Chapter and then in more detail in Chapter 5.

Note that in the above scenario, we formed a new service, PDF printing, by combin-

ing simpler existing ones. Granted that this example is simplistic, we believe that research

that enables such capability in today’s MANETs for arbitrary device types and quantities

is essential for exploiting the networked environment’s full potential.

3.1.3 A Taxonomy of Tasks

We broadly classify tasks into the following distinct categories:

Preassigned Tasks Specific devices need to participate in the task. In this case, nodes

in the task graph already have physical addresses mapped to them and hence discovery is
1We assume that the printer API does not work at the granularity of printing a dot.

31

not required. We refer to these as bound nodes. Therefore, the problem of embedding a task

is simply equivalent to finding suitable (not necessarily the shortest) routes between pairs

of devices that are directly connected by an edge in the task graph. If the optimization

variable is “load” on intermediate forwarding devices instead of delay, algorithms for load

balancing should be executed instead of a shortest path algorithm.

Non-preassigned Tasks In this case we have a number of homogeneous or heterogeneous

computing devices in the network which provide specific services. Unlike the preassigned

case, nodes in the task graph are logical entities and do not signify devices with specified

physical addresses. In fact, any device that can satisfy the requirements specified in the

node’s attribute set is a candidate for participating in the task. We, therefore, refer to such

tasks as “anycastable.” Communication between selected devices need to satisfy the edge

attributes as well. Since all nodes in a task graph corresponding to such a task are free to

be chosen, we refer to them as free nodes. On the contrary, nodes in a preassigned task

are referred to as bound nodes. Optimization of certain performance measures is desirable

during the process of instantiation of task graphs. This is described in more detail in Section

3.4.

Partially preassigned tasks have some nodes in their task graph that are bound

to pre-specified devices. These bound devices have to be selected in the physical network

whereas the remaining free nodes can be chosen smartly. As in anycastable tasks, the choice

of free nodes is governed by certain optimization criteria.

Most existing networked distributed applications fall into the preassigned category

as there is no freedom in the choice of devices and the user decides beforehand which devices

participate in the application. We believe that with the advent of pervasive computing, a

whole class of anycastable tasks will emerge by exploiting the philosophy of loose coupling

between services and the devices offering them.

In the context of the smart presentation application, a pocket PDA containing the

32

presentation slides and a particular overhead display can be bound devices but the keyboard,

the mouse and the smart storage are free devices, instances of which can be smartly chosen

from the available network.

3.2 A Data-flow Tuple Representation Model for Distributed

Tasks

In this section, we propose a simple tuple-based framework for the high level representation

of the logical relationships between different components of a distributed application. The

entire application is modeled by a set of tuples each corresponding to a particular data-

flow in the application. In other words, each tuple corresponds to a logical unit of data

processing that is needed between the distributed components of an application. Every

application component is characterized by a tuple node with the same semantics as that of

a node described in Section 3.1. Each unit of data-flow is originated at a certain tuple node

and is consumed at one or more terminal tuple nodes (called sinks) after being processed and

relayed by a set of intermediate tuple nodes. Consider the smart presentation application

described in Section 1.3. The following data-flows can characterize a sample presentation:

1. Presenter’s PDA (U) sends presentation data (e.g., a Powerpoint slide) to Smart

Storage (SS) which hosts appropriate presentation software.

2. Keystrokes are originated at a wireless keyboard (K) by the presenter.

3. Mouse commands are originated at a wireless mouse (M) by the presenter.

4. SS receives presentation data, keystrokes and mouse clicks, processes the data and

displays them on a projected display (D) and a local screen (LS). SS also extracts

and sends the ASCII part of the presentation and some corresponding notes to the

user on her PDA screen (U).

33

To represent such application data-flow between nodes we employ a generalized

tuple architecture. If a node of type X receives data from nodes of types A, B and C, and

sends the processed data to nodes of types D and E for a certain application flow (e.g.,

mouse commands or keystrokes or something more application specific), we can represent

this data-flow schematically using the following tuple:

X : [A,B,C; {processing};D,E]tag

Each data-flow can be uniquely identified at any node by its tag attribute. We

denote by {processing} the transformation of the incoming data units from source nodes

before they are transmitted to the destination nodes.

Generating Task Graphs from Tuples: Currently, the user node is expected to specify

the data-flows in the distributed application as a set of tuples using a standardized language.

A Task Graph (TG) representation can be generated from a tuple representation quite

easily. Each task graph node is derived directly from the corresponding tuple node since it

bears one-to-one correspondence with the latter. A task graph edge is created between TG

nodes Xi and Xj if a data-flow exists from the tuple node corresponding to Xi and the one

corresponding to Xj .

The application data-flows for the smart presentation application can be depicted

as tuples as shown in Table 3.1 and they translate to the task graph shown in Figure 1.1(a).

Advantages of the Tuple Representation: Having a data-flow tuple representation

for a task serves two purposes: (1) It is a natural and structured specification of the data-

flows in a task from which a task graph can be derived easily, and (2) after the logical

resources specified in the task graph are mapped to physical devices in the MANET, tuples

govern the flow of actual application data at each participating device.

Examples of data-flow tuples presented in this section contain only the essential in-

34

Table 3.1: Data-Flow Tuples for the Smart Presentation Task

ID Node Data-flow Tuples

1 U [−;SS]ppt [SS;−]notes

2 SS [U ;LS,D]ppt [K;LS,D]keys [M ;LS,D]clicks [U ; {ppt→ notes};U]notes

3 K [−;SS]keys

4 M [−;SS]clicks

5 LS [SS;−]ppt,keys,clicks

6 D [SS;−]ppt,keys,clicks

formation for data exchange, namely the data source and the data destination, and whether

the incoming data needs any processing before it is relayed to another device. In general, the

edges in a TG can have attributes such as upper bounds on channel error rates, bandwidth,

etc. which reflect the quality-of-service (QoS) needs of a distributed application. These, and

requirements such as proximity (since devices like keyboard, mouse etc. should be located

as near the user as possible) can also be integrated in the TG via the tuple architecture.

A direct way of incorporating such requirements and task constraints is by specification of

edge attributes in the tuple. For example, consider a scenario where a node of type X needs

to communicate with another node of type D such that the separation between them is

no more than 3 MANET hops and that the average delay over that path does not exceed

10 milliseconds. These two requirements are specified as attributes of the edge e = (X,D)

in the corresponding task graph: e.separation 6 3 and e.delay 6 0.01s. Implementation

details of most of these edge attributes are beyond the scope of this research, and are not

considered further.

3.3 Embedding Task Graphs onto Networks

The first step in executing a distributed application on a set of specialized devices is to

discover appropriate devices in the network and to select from the ones who responded, the

35

A

B C

D

User

R1

R2

C2

A2

B2

C1

B1

A1

D1

D2

R1

R2

C2

A2

B2

C1

B1

A1

D1

D2
User User

(c) Embedding #2(b) Embedding #1(a) Task Graph

Figure 3.2: Example of Task Graph Embedding

devices that are suitable for the execution of the more complex application. Mathematically

speaking, embedding a task graph TG = (VT , ET) onto a MANET graph G = (VG, EG)

involves finding a pair of mappings (ϕ,ψ) such that ϕ : VT → VG and ψ : ET → PG, where

the type or class of v ∈ VT is the same as that of ϕ(v) and PG is the set of all source-

destination paths in G. Figure 3.2(a) depicts a hypothetical task graph. Figures 3.2(b-c)

show a sample network topology with two possible embeddings of TG on it.

The entire process of device discovery, selection of a device from multiple instances

of devices in the same category, and the assignment of a physical device to a logical node in

the task graph is referred to as instantiation. We also refer to the collective process as task

embedding or task-based anycasting [10].

3.4 Metrics for Performance Evaluation

Definition 3.9 The embedding function (ϕ,ψ) maps nodes and edges in TG = (VT , ET) to

devices and paths in G. Average (Maximum) Dilation of an embedding is the average

(maximum) length of such paths taken over all edges in TG. Mathematically, if ‖a, b‖G

denotes the length of a shortest path between nodes a and b in G, average and maximum

36

dilation are respectively given by:

Davg =
1
|ET |

∑
e∈ET

‖ψ(e)‖G =
1
|ET |

∑
(x,y)∈ET

‖ϕ(x), ϕ(y)‖G (3.1)

Dmax = max
e∈ET

‖ψ(e)‖G = max
(x,y)∈ET

‖ϕ(x), ϕ(y)‖G (3.2)

Average dilation is an important metric since it impacts the throughput between

instantiated devices. An embedding with large dilation signifies long paths between directly

communicating devices, which is undesirable in MANETs since TCP throughput drops

significantly with increase in hop distance [42]. In contrast, an embedding with low dilation

results in better task throughput. We consider the weighted version of the metric in Section

3.5 where we formally describe the optimal embedding problem.

Definition 3.10 Instantiation time is a metric which measures the time taken to embed

or instantiate all nodes in TG onto G.

Definition 3.11 Re-instantiation time measures the time taken to find a replacement

device after an embedding is disrupted owing to node, link, or route failures.

Definition 3.12 Average Effective Throughput, (AvgEffT), is the average number

of application data units (ADUs) actually received at instantiated data sinks divided by

the number of ADUs that were supposed to be received at the intended targets in an ideal

situation.2 Therefore, 0 6 AvgEffT 6 1. It is a useful metric for measuring the resilience

of the protocols to failures.

Definition 3.13 Source-to-sink delay is the latency suffered by an ADU as it funnels

itself through various intermediate relay nodes in the instantiated task graph. This metric

is useful for measuring application performance during transmission of task data.

The above metrics are useful in the performance evaluation of our embedding algo-

rithms (see Chapter 6). Additional metrics that have not been investigated in this research

have been listed in Appendix B.
2If a relaying node in the path from source to sink becomes uninstantiated, effective throughput will be

affected because some data-flows will be discarded and will not reach the data sinks.

37

3.5 Optimization Problem Formulation

We formulated the constrained task graph embedding problem as the following optimization

problem:

Let C be a set of principal attributes (or classes) of specialized devices. Let

G = (VG, EG) be a graph corresponding to a MANET, with the class of each

device in VG belonging to C. Let TG = (VT , ET) be a task graph such that the

class of each node in VT belongs to some S ⊆ C. Function w : ET → R+ defines

edge weights which could signify application data-flow requirements.

Find mappings ϕ : VT → VG and ψ : ET → PG, where the class of v ∈ VT

is same as that of ϕ(v) and PG is the set of all “paths” in the network G, such

that the weighted average dilation given by:

D(wt)
avg =

1∑
e∈ET

w(e)

∑
e=(x,y)∈ET

w(e) ‖ϕ(x), ϕ(y)‖G (3.3)

is minimized, where ‖a, b‖G denotes the shortest path between devices a and b

in G.

In the next chapter, we investigate the computational complexity of the general

version of the problem where a task graph can have multiple nodes belonging to the same

class, and then that of a more specialized version of the problem where all nodes in a task

graph belong to distinct classes. We show that the above problem is NP complete in both

these situations. However, the problem becomes tractable when the task graph is a tree with

nodes belonging to distinct classes, and we give a polynomial time algorithm to solve it (see

Section 4.2.3). The solution approach in that section assumes that the user node possesses

the knowledge of the entire network topology as well as that about the capabilities of the

devices in the network. In Chapter 5, we propose distributed algorithms for embedding,

which albeit suboptimal, operate locally and are fast.

38

Chapter 4

Task Embedding: Theoretical

Foundations and New Algorithms

Graph embedding has been extensively studied in the parallel computing literature in the

past [19, 56]. However, researchers restricted themselves to cases in which the host network

has regular topologies such as mesh, hypercube, binary tree, etc. owing to the fact that

most parallel computing platforms are comprised of processors connected in a regular fashion

leading to regular, tightly-coupled networks. Researchers have established bounds on the

mapping problem in some of these restricted settings. In contrast, the application domain

considered in this dissertation is characterized by a loosely coupled group of processing

elements that can be usually represented by a general graph G instead of a regular topology

such as a mesh or a tree. The processing elements are possibly mobile (i.e., G is time varying)

and can provide services to other elements in order to complete a certain distributed task

at hand.

In this chapter, we investigate several variants of the graph embedding problem

for some special cases and establish hardness results for each with respect to minimization

of the average dilation metric. The primary motivation behind proving NP-completeness

39

of decision problems corresponding to the different variants of embedding problems is to

establish that these problems are likely to not admit exact polynomial time solutions and

one should look for approximate heuristic optimization approaches that have polynomial

running time.

Our original contributions in this chapter are threefold: (1) proof of NP-completeness

of the Class Constrained Subgraph Isomorphism problem (Section 4.2.1) and of the Class

Constrained Task Embedding problem (Section 4.2.2), (2) proposition of a dynamic pro-

gramming based exact optimal algorithm, TreeEmbed, for the special case in which the

task graph has a tree structure (Section 4.2.3) (we also propose the use of TreeEmbed

as a heuristic for general task graphs in Section 4.2.4), and (3) proposition of a fast greedy

heuristic algorithm GreedyEmbed which can be used to embed any general task graph

onto a general network graph (Section 4.2.5).

4.1 General Graph Embedding

The most general version of the embedding problem (GEN-EMBED) can be stated as follows:

Instance: (TG,G, k)

1. A task graph TG = (VT , ET) and a host network G = (V,E). All nodes in the network

are identical in capability. The nodes in the task graph are unlabeled which means

any subtask corresponding to a node in G can be executed on any node in the host

network.

2. A real number k

Decision problem: Do there exist mappings ϕ : VT → V , and ψ : ET → PG, in which PG

is the set of all source-destination (s-d) paths in G, such that the average dilation given by

Equation 3.3 is less than k?

40

Theorem 4.1 (GEN-EMBED) GEN-EMBED is NP-complete.

Proof. If ϕ∗ : VT → V is one such mapping, the corresponding edge to path map-

ping ψ∗ can be easily calculated as follows: for a given edge e = (u, v) ∈ ET , ψ∗(e) =

arg minp (p[ϕ∗(u), ϕ∗(v)]), where p[u, v] is a path between vertices u and v in G. ψ∗(e)

is nothing but the shortest path in G between the mapped endpoint vertices of edge e.

Given ϕ∗, ψ∗ can be calculated using Warshall-Floyd’s all-pairs shortest path algorithm

which runs in O(|V |3) time [24]. Now, given ϕ∗ and after calculating ψ∗, we can calculate

the dilation of the embedding using Equation 3.3 in polynomial time. Hence the problem

belongs to NP.

Next we show that GEN-EMBED is NP-hard by a polynomial time reduction from a

general instance of the Subgraph Isomorphism problem (SUBISO) which is long known to

be NP-complete [34].

The SUBISO problem states that if there are two graphs G1 and G2, it is NP-complete

to decide if G1 is isomorphic to a subgraph of G2. Now from a general instance (G1, G2) of

SUBISO, we create an instance (G1, G2, 1) of GEN-EMBED. We observe that G1 is isomorphic

to a subgraph of G2 if and only if G1 can be embedded into G2 with an average dilation

of k = 1. If G1 is indeed isomorphic to a subgraph of G2, choose the subset S of vertices

and T of edges of G2 that belong to the isomorphic subgraph. Hence, there is a one-to-one

mapping between (S, T) and G1. Since every edge in G1 is mapped to only an edge in G2,

the dilation is exactly 1. In the other direction, if G1 can be embedded onto G2 with average

dilation k = 1, it means every edge of G1 has been mapped onto paths of length exactly 1

(only then the average dilation can be exactly 1), and it then follows that G1 is isomorphic

to a subgraph of G2. Since GEN-EMBED is in NP and is NP-hard, it is NP-complete. �

41

4.2 Restricted Cases of Graph Embedding

In the previous section we proved that the general problem of embedding a task graph onto

a host network is NP-complete with respect to the average dilation metric. Now we impose

more restrictions on the embedding problem and show that it remains hard even in most

restricted cases that are interesting to us.

We consider the simplest in which the attributes of all nodes in the task graph are

distinct, (i.e., possess unique labels) and the nodes in the network are labeled too. Multiple

nodes in the network can possess the same label. In this scenario, the mapping process is

more constrained because a candidate mapping must be label preserving. Hence the set of

candidate mappings in this case has a lower cardinality than the one mentioned in Section

4.1. However, we prove that in spite of this restriction the embedding problem is NP-

complete. In future, we refer to the problem as CC-EMBED or Class Constrained Embedding.

In proving the NP-completeness of CC-EMBED, we first prove that the class con-

strained version of the Subgraph Isomorphism problem CC-SUBISO is NP-complete. In other

words, Subgraph Isomorphism is NP-complete even if the vertices of G1 possess unique la-

bels.

4.2.1 CC-SUBISO is NP-complete

The problem is defined as follows:

Instance: Graphs G1, G2 and all nodes of G1 have a unique label from the label universe

C. Hence, if G1 has n vertices, n 6 |C|. G2 is assumed to have N vertices where N > n.

The vertices of G2 have labels assigned to them from C and multiple vertices can possess

the same label.

Decision problem: Is there a subgraph of G2 which is isomorphic to G1 such that the

vertices of the subgraph induced in G2 by the isomorphism possess the same labels as their

42

respective vertices in G1?

Theorem 4.2 (CC-SUBISO) CC-SUBISO is NP-complete.

Proof. If f∗ : VG1 → VG2 is one such isomorphism, there exists a polynomial time algorithm

which can verify that the subgraph induced by the vertex set V ∗ = {v|v = f∗(u), u ∈ VG1} in

G2 is isomorphic to VG1 , by establishing a one-to-one correspondence between the elements

in the respective edge sets. Hence CC-SUBISO belongs to the class NP.

Next, we show that this problem is NP-hard by reducing from the CLIQUE problem

which is known to be NP-complete. Consider a general instance of the CLIQUE problem,

(G, k), where G is an undirected graph with n vertices and e edges, and k is a positive

integer. We transform this instance into a particular instance of the CC-SUBISO problem in

the following manner:

An instance of the CC-SUBISO problem can be specified as (G1, G2, c1, c2) where G1

is the guest graph, G2 is a target or host graph, c1 : VG1 → C is an injective function, and

c2 : VG2 → C is a general function.

Polynomial Transformation

1. Define guest graph instance G1 = Kk where Kk is the clique graph on k vertices.

2. Define the universe of labels C = {1, 2, 3, . . . k}.

3. Define labeling function c1 such that its range is the set C. Hence all the vertices of

G1 have unique labels.

4. Define host graph G2 = G�C where the operation � is defined as follows: replace each

vertex v of G by a set Sv of k vertices labeled 1, 2, . . . , k. We call Sv a “supernode”

of v. Vertices in Sv do not have any edges between them. Then replace each edge

(u, v) in G by k2 edges connecting every pair of nodes (x, y) where x ∈ Su and y ∈ Sv.

Hence G2 has kn vertices, and ek2 edges. Note that c2 is defined automatically. The

transformation has been illustrated in Figure 4.1.

43

Size = k

k

G

,
,

G1

k*k edges each

Supernode
(k vertices)

G2

Figure 4.1: Transformation from CLIQUE to CC-SUBISO

Having defined a polynomial transformation from CLIQUE to CC-SUBISO, we show

that G has a clique of size k if and only if G1 is isomorphic to a subgraph of G2 while

obeying the labeling constraints.

First consider the forward direction. If G has a clique of size k, let us denote the

clique by Q. Now consider the vertices in the set SQ = {Sq | q ∈ VQ} of supernodes in

G2. We can pick a vertex with label 1 from the first supernode, that with label 2 from the

second, and so on till a vertex with label k from the last supernode in SQ. Clearly from the

construction of G2, each of these vertices will induce a clique of size k in G2, and since they

have unique labels, that particular induced clique is isomorphic to the input clique graph

Kk while preserving the labeling.

Next, consider the reverse direction. If there exists a label preserving isomorphism

between G1 = Kk and a subgraph of G2. We show that in that case, G must have a clique

of size k. Since Kk is isomorphic to a subgraph in G2 in a label-preserving fashion, not more

than one vertex from any supernode in G2 can be a part of the induced subgraph. It is easy

to see why this is the case: suppose two vertices u and v are a part of the subgraph induced

by the isomorphism, and they belong to some common supernode. Now by construction of

44

the supernodes, there is no edge connecting u and v and this contradicts the fact that they

are contained in isomorphism image of a clique onto G2. Hence the k vertices of Kk are

mapped onto k vertices with unique labels from different supernodes in G2. The existence

of an isomorphism means all these k vertices in G2 are connected to each other. In other

words, they form a clique which we represent by QG2 . Now, by construction of G2, an

edge (x, y) (where x ∈ Su and y ∈ Sv) in G2 exists only if one exists in G between the

corresponding pre-images of the supernodes, (i.e., u and v). Consider the set of vertices S

in G which are the pre-images of the supernodes that contain the vertices in QG2 . By the

previous argument and the nature of the transformation of G to G2, since QG2 is a clique,

S too must be a clique. Also, its size is k.

Next we show that the transformation happens in polynomial time and the size of

the output instance is upper bounded by a polynomial function of the input size. The input

instance (G, k) can be encoded in 1
2n(n − 1) + log k bits. Since k 6 n, the input size is

O(n2). The output instance can be encoded in 1
2k(k− 1) + k log k+ 1

2nk(nk− 1) + nk log k

bits which is O(n4). Hence the size of the output instance is quadratically upper bounded

by that of the input instance. Also, clearly the transformation takes polynomial amount

of time in the size of the input. Since CLIQUE is NP-hard, so is CC-SUBISO. And, since

CC-SUBISO is in NP, it is NP-complete too. This concludes our proof. �

4.2.2 CC-EMBED is NP-complete

We show that the class constrained version of graph embedding is NP-complete. Formally

the problem can be stated as follows:

Instance: Graphs G1, G2; All nodes of G1 have a unique label from the label universe C.

Hence, if G1 has n vertices, n 6 |C|. G2 is assumed to have N vertices where N > n. The

vertices of G2 have labels assigned to them from C and multiple vertices can possess the

same label. `1, `2 are the corresponding representations for the labeling function.

45

Decision problem: Do there exist label-preserving mappings ϕ : VT → V and ψ : ET →

PG, where PG is the set of all source-destination (s-d) paths in G, such that the average

dilation given by Equation 3.3 is less than k? A label-preserving mapping ϕ is defined as

one which takes a vertex v ∈ VT with label (or attribute) ` to a vertex v′ ∈ V with a label

`.

Theorem 4.3 (CC-EMBED) CC-EMBED is NP-complete.

Proof. The proof is very similar to the one given in Section 4.1. If ϕ∗ : VT → V is one such

mapping, the corresponding edge to path mapping ψ∗ can be easily calculated. For a given

edge e = (u, v) ∈ ET , ψ∗(e) = arg minp (p[ϕ∗(u), ϕ∗(v)]), where p[u, v] is a path between

vertices u and v in G. ψ∗(e) is nothing but the shortest path in G between the mapped

endpoint vertices of edge e. Given ϕ∗, the mapping ψ∗ can be calculated using Warshall-

Floyd’s all-pairs shortest path algorithm as mentioned in Theorem 4.1. Now, given ϕ∗ and

after calculating ψ∗, we can calculate the dilation of the embedding using Equation 3.3 in

polynomial time. Hence the problem belongs to NP.

Next we show that CC-EMBED is NP-hard by a polynomial time reduction from a

general instance of the Class Constrained Subgraph Isomorphism problem (CC-SUBISO)

which by Theorem 4.2 is NP-complete.

The CC-SUBISO problem states that given two graphs G1 and G2, and labellings `1 :

VT → C, `2 : V → C for their nodes (labels in G1 being distinct), it is NP-complete to decide

if G1 is isomorphic to a subgraph of G2 while obeying the label matching property. Now

from a general instance (G1, G2, `1, `2) of CC-SUBISO, we create an instance (G1, G2, 1, `1, `2)

of CC-EMBED. We observe that G1 is isomorphic to a subgraph of G2 in a label-preserving

manner if and only if G1 can be embedded into G2 in a label preserving manner with an

average dilation of k = 1. If G1 is indeed isomorphic to a subgraph of G2 in a label-

preserving manner, choose the subset S of vertices and T of edges of G2 that belong to

the isomorphic subgraph. Hence, there is a one-to-one mapping between (S, T) and G1.

Since every edge in G1 is mapped to only an edge in G2, the dilation is exactly 1. In the

46

other direction, if G1 can be embedded onto G2 in a label-preserving fashion with average

dilation k = 1, it means every edge of G1 has been mapped onto paths of length exactly 1

(only then the average dilation can be exactly 1), and it then follows that G1 is isomorphic

to a subgraph of G2 while preserving labels. Since CC-EMBED is in NP and is NP-hard, it is

NP-complete. �

4.2.3 An Optimal Polynomial-time Embedding Algorithm for Tree Task

graphs with Distinct Labels

Although the CC-EMBED problem is NP-complete with respect to the average dilation metric

for the general graphs, there is an interesting special case of a tree which lends itself to an

optimal polynomial time solution.

We present below TreeEmbed, an optimal algorithm (with respect to Davg) for

embedding a tree task graph TG onto a host network G. The running time is polynomial in

|G| as well as |TG|. The algorithm minimizes searching in the solution space by exploiting

the tree structure of TG, and is based on the principle of optimality.1 The algorithm

requires that the node executing the algorithm have complete knowledge of the snapshot of

the network topology at the given instant of time.

For each node X in TG, algorithm 4.1 seeks to discover the best embedding for each

child node Z at every instance (x) of X in G. After the best child candidates are known

for all instances, the optimal cost embedding ϕ∗ is selected starting at root node U .

The algorithm proceeds by the propagation of a certain value function v(.) from

the leaf nodes of TG towards the root node U . The crux of the idea is that the principle

of optimality holds because of the tree structure of TG: if a device instance x of node

X is selected by its parent and is optimal, then the choice of instance z (of X’s child Z)
1The Principle of Optimality holds for problems whose structure is such that their optimal solutions

contain those for the smaller sub-problems [14].

47

is optimal too. This greatly reduces the search space for an exact optimal embedding.

Moreover, embedding of children nodes can proceed independently of each other because

they possess distinct attributes. After carrying out this step for all children of X for each

instance x, assign the sum of the calculated minimum values to v(x). Figure 4.2 illustrates

the procedure for a task graph of 6 nodes. ΓB = child(B) is the set of children of B in TG.

kj is an instance in G of child k of B in TG.

Theorem 4.4 (TREE-EMBED) TreeEmbed runs in polynomial time.

Proof. The running time of the TreeEmbed algorithm can be calculated in the following

manner: Assigning levels to nodes in TG (Alg.-4.1::2-3)2 takes O(|VT |) time. If the nodes

with the same level are pushed onto a stack, then nodes with L = Lmax will reside at the

top and value propagation can occur efficiently. In the worst case, Lmax = |VT | = O(|VT |);

although in more balanced trees, Lmax = O(log |VT |).

The embedding function ϕx() is calculated for all relevant device instances x in

Alg.-4.1::9-15. Suppose there are |C| classes of devices in G with |V |
|C| instances of each class,

on average. For every parent instance x ∈ V , each child instance z ∈ V is considered by the

embedding algorithm: the shortest path between x and z is computed (in O(|V |2) time);

the minimization step in Alg.-4.1::11 is performed (in O(|V ||C|) time). Since this process is

performed for all edges in TG the time complexity of Alg.-4.1::7-17 is O(|ET | × |V |
|C| (

|V |
|C| ×

|V |2 + |V |
|C|)) = O(|ET | |V |

4

|C|2) = O(|VT | |V |
4

|C|2). Note that the “for loops” in Alg.-4.1::7-8 are

subsumed in this calculation. Since |V | is the dominant term, the time complexity is given

by the above expression itself. Finally, the optimal embedding (ϕ∗, ψ∗) is calculated starting

from the root node in Alg.-4.1::18-26; the time complexity of this step is also subsumed in

the above term.

If we use Warshall-Floyd’s all-pairs shortest path algorithm (running time is O(|V |3)

and extraction of shortest path cost is O(1) assuming random access storage) instead of the
2In this dissertation, we use the notation Alg.-<Algorithm No.>::<line no.(s)> to refer to specific

listings of a particular algorithm.

48

Algorithm 4.1 TreeEmbed(TG,G,w, c1, c2)
1: Given: Tree Task Graph, TG = (VT , ET); w : ET → R+; c1 : VT → C),

Host Network Graph G = (V,E); c2 : V → C);

/* C: attribute universe; c1, c2: attribute fns.; c1 is injective; */

2: ∀X ∈ VT : X is a leaf in TG, L[X]← 0; /* assign levels to each leaf node */

3: ∀X ∈ VT : X is not a leaf in TG, L[X]← 1 + max
Z∈child(X)

L[Z]; /* and the rest */

4: for all (X : L[X] == 0) do

5: ∀x : (c2(x) == c1(X)), v(x)← 0; /* assign value to matching instances */

6: end for

7: for (`← 1; ` 6 Lmax; `← `+ 1) do

8: for all (X ∈ VT : L[X] == `) do

9: for all (x ∈ V : (c2(x) == c1(X)) do

10: for all (Z : Z ∈ child(X)) do

11: z∗ ← arg min
z∈V ∧c2(z)==c1(Z)

{v(z) + w(X,Z)‖x, z‖G};

12: ϕx(Z)← z∗; /* best instance of child node Z for x */

13: v(x)← v(x) + {v(z∗) + w(X,Z)‖x, z∗‖G}; /* update value of x */

14: end for

15: end for

16: end for

17: end for

18: for (`← Lmax; ` > 0; `← `− 1) do

19: S ← {X |X ∈ VT ∧ L[X] == `};

20: while (X ∈ S ∧ child(X) 6= φ) do

21: x← ϕ∗(X); /* note that ϕ∗(U) = U */

22: for all (Z : Z ∈ child(X)) do

23: ϕ∗(Z)← ϕx(Z); ψ∗(X,Z)← ‖ϕ(X), ϕ(Z)‖G; /* optimal embedding */

24: end for

25: end while

26: end for

49

Uv

vB
�

�
�

�
��vA
w1 w2

∀i : vAi = 0

∀i : vBi =
∑

k∈ΓB

[min
j
{vkj

+ wB,k × ‖Bi, kj‖G}]

�
�

�
�

��vC vD

A
A
A
A
AAvEw3 w4 w5

∀i : vCi = 0 vDi = 0 vEi = 0

vU = min
i
{w1‖U,Ai‖G}+ min

i
{vBi + w2‖U,Bi‖G}

6

direction of
propagation
of value : v

Figure 4.2: Outline of the Exact Optimal Polynomial-Time Algorithm

Dijkstra’s single pair shortest path algorithm, then the running time of TreeEmbed is

O(|ET | |V |
2

|C|2 + |V |3) = O(|V |3). �

Although being optimal with respect to the average dilation metric, algorithm 4.1

suffers from the following drawbacks: (1) it is a centralized algorithm and does not have a

low time complexity, (2) it needs entire topology information at a particular device which

may not be realistic for large MANETs, and (3) it is not adaptive to mobility of devices. A

distributed version of the aforementioned optimal algorithm is promising in terms of speed

and scalability but that too involves frequent broadcasts from every instance of a node in

order to compute the optimal embedding. Hence, in Section 4.2.5 we propose a greedy

heuristic approach GreedyEmbed which albeit suboptimal, is much simpler, less time

consuming, and reasonably efficient in operation. A distributed version of GreedyEmbed

is proposed in Chapter 5.

4.2.4 Application of TreeEmbed for Non-tree Task Graphs

If TG is a general graph (and not a tree), then the task embedding problem is much harder

since the principle of optimality may not hold in that case. This is because the optimal

embedding of every pair of nodes and the edge connecting them in TG cannot be done

independently of other edges and nodes in TG, as can be done if TG were a tree. In the

50

case of a tree TG, as we propagate the values from the leaves to the root, the optimal

embeddings of each subtree are retained and used later while embedding a node with lower

value of L. This is not possible for any general task graph with greater connectivity than a

tree.

Since there are |VT | distinct classes of devices in TG, and |V |
|C| instances of each class

in the network G (|VT | 6 |C|), the total number of possible embeddings is (|V ||C|)
|VT |. Hence,

the search space for an optimal brute force algorithm is exponential in |VT |, which is clearly

unacceptable for large task graphs.

This combinatorial structure of the problem prompted us to look for an approximate

solution, the idea of which is essentially the following: find a minimum weight spanning tree,

STmin(TG) and then embed that in G using the TreeEmbed algorithm described in Sec-

tion 4.2.3. The edges of TG that are not in STmin(TG) are considered by the embedding

algorithm; in the worst case they can be mapped to very long paths and thus yield subopti-

mal results without a low approximation ratio. If the task graph is unweighted, we use the

Breadth First Search tree BFSTTG instead. In Appendix A, we derive an upper bound for

the approximation factor α for this heuristic algorithm which may not be tight. This upper

bound is the product of the diameter of TG and the average dilation of BFSTTG in G. We

then derive the approximation factors for several task graphs with special structures such

as a cycle, a mesh and a complete graph. α is low for the cycle but can be high in the worst

case for the other two cases.

A better solution may involve partitioning TG into smaller components which can

be embedded into G independent of each other. Both finding such components and then

embedding them onto G are likely to have high time complexity. Hence, we trade off

complexity for optimality and look for greedy heuristic solutions which are simple and

distributed in nature. We describe a centralized version of one such greedy approach in the

next section.

51

Algorithm 4.2 GreedyEmbed(TG,G, c1, c2)
1: Given: Task Graph, TG = (VT , ET); c1 : VT → C;

Host Network Graph G = (V,E); c2 : V → C.

/* C: attribute universe; c1, c2: attribute fns. */

2: U ← User Node in G; UT ← User Node in TG;

3: TG[UT].address← U ; /* instantiate UT in TG with U */

4: visited[UT]← TRUE;

5: instantiated[U]← TRUE;

6: queue TGQ← nil, GQ← nil; /* create and initialize FIFO queues */

7: TGQ.append(UT); GQ.append(U); /* push UT , U into resp. queues */

8: while (TGQ.empty() == FALSE) do

9: v ← TGQ.pop(); /* get and remove the element from the front */

10: w ← GQ.pop(); /* get and remove the corresponding instance */

11: visited[v]← TRUE; /* mark the TG node as visited */

12: for all (p ∈ neighbors(v, TG)) do

13: /* loop until finding the first non-visited neighbor of v */

14: if (visited[p] == TRUE) then

15: continue;

16: end if

17: /* find nearest available instance of node p in G starting at w */

18: nearest← FindNearest(G,w, c1(p));

19: TG[p].address← nearest; /* instantiate p in TG with nearest */

20: visited[p]← TRUE;

21: instantiated[nearest]← TRUE;

22: end for

23: TGQ.append(p); GQ.append(nearest); /* do this to continue BFS */

24: end while

52

4.2.5 A Greedy Algorithm for Embedding

In Section 4.2.3, we proposed an algorithm which finds an optimal task embedding if the

task graph is a tree. Although the algorithm is optimal for trees, it is not optimal for non-

tree task graphs and it suffers from large time complexity even though it is polynomial. The

principal reason for this is that all devices in the network G are considered as candidates for

embedding and the dynamic programming algorithm chooses the best subset among them

systematically. Moreover, the algorithm may often fail to run in polynomial time if a node

of particular type occurs more than once in TG. Due to these reasons, we felt the need for

a simple algorithm which albeit suboptimal (even for trees) has lower time complexity and

works for the case where all node types in TG are not distinct.

We propose Algorithm GreedyEmbed (4.2) which is a greedy algorithm and it starts

the search for candidate devices from the user node U itself. This embedding algorithm

operates by means of a Breadth First Search (BFS) starting from the user node (root) in the

task graph. At every step of the BFS process, a hitherto unvisited TG node is instantiated

greedily from the current location (in G) of search. In other words, the nearest candidate in

G which matches the requested type is selected. Ties are broken arbitrarily and there is no

lookahead. Now, finding the nearest instance of p in G starting at device w (Alg.-4.2::18)

involves a partial BFS through G rooted at w. This process takes O(|V | + |E|) time in

the worst case and is repeated for every node in TG. This guarantees the shortest path

between w and nearest and results in the total time complexity of O((|V |+ |E|)|VT |) which

is significantly lower than the worst case complexity of TreeEmbed (Algorithm 4.1). This

is primarily because unlike TreeEmbed, GreedyEmbed does not consider all devices in

G as candidates for instantiation. Also, the average case complexity of GreedyEmbed

maybe lower than O((|V |+ |E|)|VT |) because searching for the nearest suitable instance of

a TG node may not require a complete traversal of G.

GreedyEmbed also possesses a few clear advantages over TreeEmbed in its func-

tionality and implementation. Unlike the latter, GreedyEmbed can handle the case in

53

which multiple nodes in TG possess the same attributes. Moreover, distributed implemen-

tations of GreedyEmbed are facilitated easily due to the nature of breadth first search.

We propose a distributed approach based on these principles in the next chapter.

54

Chapter 5

Distributed Task Embedding on

Mobile ad hoc Networks

In Chapter 4 we presented a theoretical foundation of the task embedding problem in the

context of task-attribute based resource discovery on irregular MANET topologies. We pre-

sented an exact optimal algorithm TreeEmbed that executes in polynomial time for tree

task graphs with distinct node attributes, and showed how it can be utilized heuristically

even for general graphs. We also presented a faster, greedy heuristic algorithm GreedyEm-

bed whose solution search space is much more restricted than that of TreeEmbed. Both

these algorithms require knowledge of the entire network topology and of attributes of all

devices at the user node. Such centralized solutions are often preferable when there is an

existing wired or wireless infrastructure with a fixed base station node or a directory server,

devices are less mobile and more connected with each other, and the probability of node or

link failure is low. However, in dynamic, mobile distributed environments such as MANETs,

it can be hard for a device to track and react to the changes in topology between other

participating devices using centralized algorithms and reactive MANET routing protocols.

Moreover, no single device in the network may possess adequate computational power or

energy to continually execute such algorithms.

55

It is also difficult to guarantee that a device acting as a centralized controller will al-

ways be connected to the rest of the network. When a disconnection or a partition occurs in

the network, a new centralized controller, where the algorithm runs, may have to be elected,

and the device must have to compute a new embedding. Although it can be easier to find

close-to-optimal solutions with respect to particular performance metrics using a centralized

approach than a distributed one, the latter is more robust and adaptive to mobility because

there is no single point of failure. Hence, we claim that localized distributed algorithms

are better suited for task embedding in dynamic MANET environments, and propose a

distributed version of GreedyEmbed to achieve the same. Distributed GreedyEmbed

uses local search in a distributed fashion for TG based resource discovery while heuristically

optimizing the average dilation metric. It is also very responsive to disconnections during

instantiation as well as task execution and facilitates local recovery.

A pertinent design question is where the protocol developed in this chapter should

be implemented within the layers of the networking stack. Since our approach assumes the

presence of multihop routing support in the MANET, we advocate that resource discovery

and selection should reside in an intermediate layer (called the TG-layer) between the

application and network layers. However, the requirement of a clean separation between

these layers can be relaxed for better protocol and application performance. Additional

design and implementation issues are addressed in Chapter 7.

5.1 A Distributed Algorithm for Instantiation of Heteroge-

neous Task Graphs

In this section we present a distributed algorithm for the instantiation of nodes in a given

task graph. We also refer to this as anycasting of the corresponding task [10]. Initially, we

consider the heterogeneous case in which each node in the task graph belongs to a distinct

class (possesses distinct attributes). Later in Section 5.2, we discuss the modifications

56

required in the protocol to support the homogeneous and the “mixed” cases as well.

The principal goal of the distributed GreedyEmbed algorithm is to produce an

embedding of a given TG onto a MANET with the objective of optimizing average dilation

(defined in Section 3.4). In this chapter, each device is assumed to provide a single type

of service, and all nodes in TG are assumed to be simple. The proposed concept can

be extended to incorporate the case in which multiple types of services are provided by

one particular device. The presence of a MANET routing protocol such as DSR [46],

AODV [61], or OLSR [44] etc. is assumed for facilitating point to point communication

between two devices. Also, the presence of a reliable transport protocol is essential for the

transmission of certain important protocol control messages and data. In this work, we use

TCP as the transport protocol. A UDP based scheme with acknowledgments, timeouts and

retransmissions can also be used in small networks but in MANETs where congestion is

likely to be a norm rather than an exception, the congestion control semantics of TCP are

important. Later in this chapter and then in Chapter 7 we describe some challenges that

researchers face in the design of a reliable transport protocol for MANETs.

From a given data-flow tuple description (as illustrated in Section 3.2), the corre-

sponding task graph TG is derived; TG is then submitted by the user node’s application

(taskapp) layer to its TG-layer which then begins the embedding (or instantiation) pro-

cess. This occurs on-demand and no proactive exchange of device state is assumed in the

MANET.

5.1.1 Operations of the Distributed Version of GreedyEmbed

A distributed version of Algorithm 4.2 is presented in this section. All devices in the network

execute a copy of the same algorithm. Every device in the system exists in a state s such

that s ∈ S1 × S2, where

S1 = {COORDINATOR, NON COORDINATOR}, and

57

(Parent HELLO timer expires)
Detect loss of BFS parent

Clear all Instantiation State

r.CONFIRM (candidate)

instantiate (candidate) in TG

r.ACK & !=leaf−node

s.CONFIRM (sender)
s.SQRY (for uninstantiated

BFS child node types)

Lost BFS child
instance type: T

s.SQRY(T)
Signal Application

r.INST_TG

s.HELLO
(neighbor instances)

r.INST_TG

s.HELLO
(neighbor instances)

r.SUB−CONF (from final child)

if (!=ROOT) s.SUB−CONF (BFS parent)
else {s.INST_TG, s.TUPLES (all instances)

s.HELLO (child instances) }

r.A
C

K
 &

 =
=

leaf−
node

s.SU
B

−
C

O
N

F (sender)

s.C
O

N
FIR

M
 (sender)

r.R
E

IN
ST

_T
G

 &
 =

=
leaf−

node

s.IN
FO

R
M

 (neighbor instances)
s.H

E
L

L
O

 (neighbor instances)

if (==ROOT)
s.SQRY(T:child type)

s.ACK(candidate)

candidate type not acked/instantiated
r.CRESP(candidate) &

ACK timer expires

s.CRESP(sender), set ACK timer

r.SQRY (my type == query type)

s.CONFIRM (sender)

r.REINST_TG & !=leaf−node

s.HELLO (to logical
neighbor instances)

s.INFORM (neighbor instances)

UNINSTANTIATED WAIT−FOR−ACK

[COORDINATOR]

INSTANTIATED
INSTANTIATED

[LEAF NODE]

SUBTREE

[COORDINATOR]
INSTANTIATED

SUBTREE

Figure 5.1: Finite State Machine Representation of the Salient Characteristics of the In-

stantiation Protocol: (r.<PKT> represents a packet reception event and s.<PKT> represents

a packet transmission event. Data-flow tuple transmissions are not shown.)

58

Specialized Node

Data Sink

Data Source

BFS tree edge

non−BFS edge

Root

Root
Root

A B

C D

E

A B

C D

E

A B

C

D

F

G

H

E

Figure 5.2: Task Graphs: (a) Tree, (b,c) Non-Tree Graphs

S2 = {UNINSTANTIATED, WAIT FOR ACK, INSTANTIATED, SUBTREE INSTANTIATED}.

A device plays the role of a “Coordinator” when it coordinates the process of

instantiation of a subset of the nodes in TG. Only five of the eight possible states in

S1 × S2 are necessary in the protocol; these are depicted in the Finite State Machine dia-

gram in Figure 5.1. All devices except the user device U start in the (NON COORDINATOR,

UNINSTANTIATED) state. U starts execution in the (COORDINATOR, INSTANTIATED) state

which means that it is instantiated itself and is playing the role of a coordinator. It

also means that TG has not been instantiated yet, since in that case U would be in the

(COORDINATOR, SUBTREE INSTANTIATED) state.

The embedding process begins at U with a distributed search which proceeds through

the MANET (represented by G) hand-in-hand with a breadth-first search (BFS) through

TG. Figure 5.2 depicts three examples of task graphs with their BFS and non-BFS edges.

We call the spanning tree on TG induced by BFS and rooted at U , a BFS-tree of TG

(BFSTTG). In this discussion, we assume here that all edges of TG have equal weight. If

the weights are unequal, a Minimum Weight Spanning Tree, STmin(TG) is computed and

its edges are used for performing the embedding instead of the BFS-tree. The rest of the

steps are similar to those applied for embedding a BFS-tree with corresponding changes in

nomenclature. In our algorithm, a coordinator device is responsible for achieving the in-

stantiation of nodes that are its children in BFSTTG. In other words, each chosen instance

59

of a TG node in the network has exactly one BFS parent that acts as its coordinator. An

instance of a leaf node always remains in NON COORDINATOR state.

We propose a greedy solution to keep the average dilation of the embedding low. As

mentioned in Section 3.4, the dilation metric plays an important role in affecting application

performance. Hence, we focus on achieving a task embedding with low dilation. The

greedy mapping algorithm begins from U by progressively mapping the nodes of BFSTTG

to nearest devices in G and the edges of BFSTTG to shortest paths in G. Instantiation of

any pair of nodes X,Y ∈ VT cannot affect each other if X is not a parent of Y in BFSTTG,

or vice versa. Hence, the search can proceed in a distributed manner along the branches of

BFSTTG. Note that unlike the optimal algorithm proposed in Section 4.2.3, this algorithm

greedily instantiates nodes in TG and searches only the local space around a device for

instantiating a child node in TG.

The various packet types used for the execution of the distributed instantiation pro-

tocol are summarized in Table 5.1. The task graph is encapsulated and sent as control

data during the instantiation process. As the instantiation process progresses, the selected

set of devices communicate reliably with one another using the underlying TCP transport

layer which sits on top of the MANET routing protocol layer. TCP is used to exchange

control and data packets because packet losses due to route errors are very common in

MANETs [20]. As mentioned before, it is possible to use reliable UDP (with acknowl-

edgments, timeouts and packet retransmissions) for control messaging but its impact on

network congestion would then be unknown for large networks. We utilize a similar trans-

port during the design of a proof-of-concept prototype as described in Chapter 7. The

proposed instantiation protocol is independent of the underlying routing protocol; in fact,

it can be executed on top of a variety of routing protocols such as DSR [46], AODV [61] or

OLSR [44].

60

Table 5.1: Packet Types used in the Distributed Embedding Protocol

Packet Name Function in Protocol

S QRY contains the names of required resources (broadcast)

C RESP response from a candidate device (UDP unicast)

ACK from a coordinator device to a selected candidate

CONFIRM confirmation from candidate to coordinator

SUBTREE CONF device confirms instantiation of subtree to its coordinator

TUPLES instantiated tuples from parent to child node

INST TG instantiated TG information to children

REINST TG re-instantiated TG information to children

REJECT sent in response to an ACK by an already

instantiated node (to reject instantiation offer)

PREINST HELLO sent from instantiated parent to child before

the entire instantiation process is completed

PREINST HELLO ACK sent as immediate response to a PREINST HELLO

PATCH ACK patch a subtree to handle failures during instantiation

TWOHOP CONFIRM inform about grandchildren during instantiation

PATCH CONFIRM confirm to parent after a subtree is patched for

handling failures during instantiation phase

HELLO exchanged between instantiated neighbors in TG

HELLO ACK sent as immediate response to a HELLO

NEIGHBOR INFORM encapsulate and send logical neighbor table

to logical neighbor nodes in the instantiated TG

INFORM MAIN COORD inform root node about a re-instantiation

ASK MAIN COORD inquire root node about loss of non-BFS child

TASK DATA task application data

61

Choice of MANET Routing Protocol Unless the traffic load is high and rich (source-

destination pairs are widely distributed across the network) and devices are highly mobile,

reactive protocols such as DSR [46] and AODV [61] tend to outperform their proactive

counterparts such as OLSR [45]. Under the scenarios described above, the protocol perfor-

mance is poor for all protocols in general. In this work, although we simulate high mobility,

our traffic patterns are generally localized owing to greedy instantiation (this will become

clear soon). Hence, we use an on-demand routing protocol (DSR, specifically) as a protocol

of choice for our simulation experiments. However, we realize that proactive protocols are

more suitable for facilitating task-aware routing since device state can be piggybacked onto

periodic link-state flood updates and can thus be exchanged easily between devices. We

leave this as a topic for future research (see Chapter 9 for more details).

Details of the TG-Embedding Protocol The salient steps of the distributed version of

the GreedyEmbed algorithm are illustrated in Figure 5.3 by means of a time-based message

diagram for a given TG. First, TG nodes which are neighbors of the user node U are visited

in parallel, and suitable instances of these nodes are discovered in the network. Node U

issues broadcast search queries that are encapsulated in S QRY packets for each neighbor node

in the TG. For example, in Figure 5.3, U queries for devices with same attributes as those

of nodes A and B in TG. The broadcast is controlled by executing it at the TG-layer rather

than at the IP layer. The time-to-live (TTL) value in the S QRY packet is set equal to the

expected diameter of the network. Essentially, a device in the network broadcasts an S QRY

packet to all its one-hop neighbors that examine the state of the packet and decide whether

to rebroadcast it or not. If a device decides to rebroadcast an S QRY packet, it decrements

the TTL value by 1 before rebroadcasting it to its neighbors. Performing the broadcast at

the TG-layer instead of the IP layer yields the following advantages: (1) no special broadcast

storm suppression mechanisms are necessary at the IP layer since intelligent techniques can

be used for suppression of duplicates for mitigating the problem [68], and (2) a device may

choose not to rebroadcast the S QRY packet if it matches the query itself, even if the TTL

62

Node C

(user node)

TASK GRAPH

Node A

BFS−tree edges

Non−BFS−tree edges

Coordinator

Node B

Coordinator
Local

Coordinator Node
(user node)

I’m a candidate

Broadcast Query

Node CNode BNode A

for type B

ACK

ACK

confirmation

confirmation

Broadcast Query for type C

I’m a candidate

(instance i) (instance j) (instance k)

for type A

T
IM

E

instantiation

confirmations

HELLO ACK
HELLO ACK

between every pair of instantiated neighbors, both ways

start

process

all

received

I’m a candidate

ACK

confirmationconfirmation

TCP flows

UDP flows

Now, periodic HELLO messages/ACKs are exchanged

collective subtree

CN_QUERY to CN

now, send instantiated tuples/TG to selected devices

Tuples/TG

HELLO

HELLO_ACK

HELLO neighbor HELLO neighbor

Figure 5.3: Dynamics of the Distributed Embedding Scheme

value is positive (This can be done to save bandwidth).

The S QRY packet includes the principal attributes of nodes A and B. It is rebroad-

cast by the TG-layer of a device D if it does not match the search query type, the TTL

value in the packet has not reached zero, and if D has not seen the same broadcast be-

fore.1 Note that a query can include multiple secondary attributes of a requested node

in addition to its principal attribute; for example, a query can be for [device=printer;

resolution=1200dpi; duplex=yes]. A device which possesses capabilities that not only

match the principal attribute device=printer but also match the other attributes men-

tioned in the query would respond to the query. In the following discussion, X<number>

uniquely represents a device that matches the principal attribute of a certain TG node X.

When a free instance Bj receives an S QRY packet, it sends a candidate response

(C RESP) packet to its coordinator (BFS parent, U) expressing its willingness to participate

in the task. Bj then changes its state to WAIT FOR ACK as it waits for an acknowledgment

to arrive from its coordinator. U checks the instantiation state of the TG node B and
1An S QRY packet is identified by a broadcast sequence number that is incremented by its originator when

the latter performs a new broadcast

63

sends an acknowledgment (ACK) to Bj if node B has not yet been instantiated in its TG.

The coordinator device is responsible for accepting and rejecting responses from several

candidate devices in the network before the instantiation of node B is completed. For

example, suppose that two instances of node B, namely Bi and Bj , respond to U ’s query.

If U receives a C RESP from Bj earlier, it can decide to instantiate node B with device Bj .

In that case, when the C RESP from Bi arrives later, U ignores it since node B has already

been instantiated.

Selection of a candidate device from a set of respondents can be performed on the

basis of several policies. For the purpose of most discussions in this dissertation, we select the

first candidate device that replies to an S QRY for TG node B to become node B’s instance at

U . This is a simple method of selecting a nearby device in an attempt to minimize average

dilation. More sophisticated policies can be used for the selection process; for example,

one can attempt to maximize the energy efficiency and remaining battery lifetime of a

candidate. For that purpose, the candidates need to encapsulate their current attributes in

the C RESP packet. The coordinator then determines its selection based on these attributes.

Another instantiation goal may be to minimize the overlap of routes between any pair of

communicating instances of TG nodes in order to reduce bottlenecks or hot-spots in the

network.

Along with an ACK, U sends a copy of TG listing the node types that are in the

subtree of TG rooted at node B (such as node C). U does not send explicit negative ac-

knowledgments to all other instances of node B. Instead, the responding candidates (Bi

and Bj) start respective timers as soon as they send a C RESP packet to U . If a candidate’s

timer expires before it receives an ACK, it transits to the UNINSTANTIATED state again. This

is more scalable from a network traffic point of view than U sending explicit negative ac-

knowledgments to all the unselected respondents (such as Bi), albeit at the cost of tying

them up in the WAIT FOR ACK state for a longer period of time. An acknowledged candidate

Bj changes its state to (COORDINATOR, INSTANTIATED) and confirms its role to U by sending

64

a CONFIRM packet, thus completing a three-way handshake. Bj then assumes the role of

a coordinator since there are uninstantiated nodes rooted at node B in TG, and it takes

the responsibility of instantiating these nodes. For achieving this, Bj broadcasts an S QRY

packet containing the attributes of all uninstantiated children nodes and the instantiation

thus proceeds further. Thus, Bj acts as a local coordinator for all nodes in the subtree of

BFSTTG that is rooted at B.

Instantiation of node B is not complete until the CONFIRM packet arrives at U from

Bj . If a device is an instance of a leaf node in BFSTTG it sends a CONFIRM packet with

the SUBTREE CONF flag set since it does not have to propagate the search further. This

is illustrated in Figure 5.3 where Ck (which is an instance of a leaf node in TG) sends a

subtree confirmation to its BFS parent and coordinator, Bj . The instantiation of node C

at Bj is complete at this stage.

After receiving subtree confirmations from all selected child node instances, the

parent node sends a subtree confirmation (SUBTREE CONF) to its BFS parent (local co-

ordinator) along with a partially instantiated task graph; in the running example, Bj

sends a SUBTREE CONF packet to U after receiving the same from Ck. Simultaneously, it

also transits to the (COORDINATOR, SUBTREE INSTANTIATED) state. On the other hand,

a leaf node instance such as Ai, upon instantiation transits to the (NON COORDINATOR,

SUBTREE INSTANTIATED) state after sending the SUBTREE CONF upstream.

When U receives SUBTREE CONF packets for all its children nodes in TG, it concludes

the instantiation process. At this stage of the protocol, U is aware of the instances of all

nodes in TG that will participate in the task. It then sends the instantiated TG and data-

flow tuples to the chosen devices (node instances) so that each device knows the addresses

of instances of its neighboring nodes in TG. Instead of sending the tuples separately to

each instantiated device, U merely sends them to its children who then relay it downstream

(along the edges of BFSTTG) to their children and so on. This reuses the routes and TCP

connections that have already been established during the earlier stages of the protocol,

65

and thus helps to keep in check new traffic that could result from new route discovery and

TCP handshaking.

An important point to be noted here is that the root coordinator U must send

the instantiated TG to certain devices whose corresponding TG nodes have incoming or

outgoing non-BFS edges incident upon them. For example, because the search process

was carried out along the BFS tree edges of TG in Figure 5.3, Bj and Ai will not know

about each other’s existence unless U tells each about the other. Ideally, for any two given

nodes connected by a non-BFS edge in TG, a node which is their nearest common ancestor

in BFSTTG, has knowledge of their instances. However, for simplicity we delegate the

responsibility of disseminating such information on the root U . For tree TGs, the above

situation cannot arise, and hence U need not disseminate the instantiated TG information

at all. The nature of the instantiation process ensures that each instantiated device keeps all

the information that is essential to it for task data-flow, i.e. the addresses of all its parent

and children nodes. Regardless of the nature of TG, each instantiated device maintains

slightly more information than just parent and child addresses to be able to perform local

repair after suffering disconnections. We address this issue in detail in Section 5.3.

Salient details of state transitions and control packet exchanges in our protocol are

illustrated in Figure 5.1 by means of a finite state machine (FSM) diagram. It should

be noted that packets arriving at a device in a state different from the intended state (in

sender’s view) are discarded; such events are not shown explicitly in the FSM. The user

devices are best suited for acting as root coordinators because they usually originate the

application data flows, and even under conditions of mobility, always remain near the user.

Since the instantiation process is distributed among nodes in BFSTTG, the root coordinator

is not overwhelmed with control packet transmissions and receptions as would be the case

in a centralized approach proposed elsewhere [50].

MANET multicast protocols can play a role in this algorithm, especially for the

dissemination of TG information from the coordinator after the completion of instantiation.

66

However, assuming the presence of multicast support in all MANETs may not be realistic;

therefore, our protocol is not built with this dependency.

After the exchange of instantiation information, the user application can start data

transmission. The flow of data is governed by the instances of the corresponding data-flow

tuples, and in the ideal situation, all data originating at the source should reach the instances

of the sink nodes in TG (Ai and Ck in the example in Figure 5.3) after being relayed by

the intermediate devices (Bj). In reality, application data may not reach the intended sinks

due to disconnections. We propose mechanisms to recover from such situations in Section

5.3.

5.2 Instantiation of Non-Heterogeneous Task Graphs

In the previous section, we presented the basic instantiation protocol that is used when

TG is comprised of nodes with distinct attributes. However, some steps of that protocol

pose problems when there is a large number of homogeneous TG nodes. We illustrate the

situation by a simple example. Consider a homogeneous task graph represented as a line

graph with 4 nodes with the user node at the root: U–X–X–X. The user node queries

for its adjacent node X by flooding the network with an S QRY packet with a high TTL

value. The request can propagate far even if the user node has received C RESP packets

from many candidates. Although this problem existed in the heterogeneous case as well, it

is aggravated in the homogeneous case in the following manner: if the MANET has many

instances of resource X, all of them can respond to the S QRY and can cause significant

redundant traffic in the network.

Another problem associated with the protocol steps defined in the previous section

can be illustrated as follows: all devices which respond to a query enter a WAIT FOR ACK

state for time W just after sending a C RESP packet. In that state, they do not respond

to future queries until the W timer expires and they re-enter the UNINSTANTIATED state.

67

Hence, after U instantiates node X to device xi, the latter queries for node X again but gets

no response from any candidate for a while. This is because the other instances of node X

have been bound unnecessarily for time W by the earlier query from U . This phenomenon

can significantly increase the total instantiation time (for the entire TG) even in a static

network.

The first problem can be solved by adopting expanding ring search. We use this

by starting with TTL = 1; the TTL is then incremented systematically until at least one

device responds to the query. This increment is performed only after waiting for a fixed

delay for a response to come back. In the simulation studies performed in Section 6.2, we

increment the TTL by one after waiting for τ seconds. More aggressive schemes such as

multiplicative increments are also possible.

The second problem can be solved by a more fundamental modification of the pro-

tocol. To this end, we deduced that making the instantiation phase triggered by packet

receptions and not getting “bound” in the WAIT FOR ACK state for a significant amount of

time can help reduce instantiation time as well as the average dilation Davg of the em-

bedding. However, the benefits arrive at the expense of extra protocol traffic. When the

WAIT FOR ACK state is removed, a device Xi stays in the UNINSTANTIATED state even af-

ter responding to a query. It is also enabled to respond to multiple queries from different

sources while remaining in that state until it receives an ACK from a particular source. Im-

mediately after this event, it transits to the INSTANTIATED or the SUBTREE INSTANTIATED

state depending on whether it assumes the role of a non-leaf node or a leaf node in the

task graph, respectively. It then sends a CONFIRM or a SUBTREE CONF packet to the parent

accordingly. Note that Xi had also responded to some other search queries before, hence

it could receive ACK packets from some of these other devices. Since Xi can assume the

role of only one TG node in our model, and it already has done that, it responds to those

particular sources with explicit REJECT packets. This essentially rejects the instantiation

request from the source and instructs it to continue instantiation. The pseudo-code for

68

the revised instantiation process is shown in Algorithm 5.1 (for a coordinator device) and

Algorithm 5.2 (for a non-coordinator device) and associated functions 5.3–5.9.

Function 5.9 (QueryForNeighborInstances) is called by a coordinator device

for instantiation of nodes in the subtree of BFSTTG for which it is root. If there are multiple

children nodes in BFSTTG with same attributes, only one S QRY packet is broadcast since

multiple candidates will hear and respond to the query.

Function 5.3 (HandleTTLTimeout) is called whenever a TTL timer which had

been scheduled after an S QRY was issued, expires. A TTL timer can expire at a device

only when there exists a child node in BFSTTG for which no candidate has responded yet

before the timeout τ . For example, if node S has two children of type X and if only one

C RESP arrives at Sk (an instance of S) within timeout period τ , then the corresponding

TTL timer is not canceled but is allowed to expire after τ . At that instant, Sk broadcasts

another query for node X with a higher TTL (expanding ring search), and the TTL timer

is rescheduled. Only when both children of type X have been responded for does Sk cancel

the TTL timer.

A candidate device responds to an S QRY packet with a C RESP only when it is in the

UNINSTANTIATED state. Otherwise it merely rebroadcasts the query. As shown in function

5.4, a candidate device records the time at which it responds to a certain S QRY, and it does

not respond to subsequent queries from the same source that arrive within ACK PERIOD

(which is a small multiple of τ). This step is taken for allowing the expanding ring search to

spread effectively without duplicating network traffic. We illustrate this with an example.

Consider the earlier example of S having two children of type X in its BFSTTG. Suppose

S has one instance x1 of X within one hop and another one x2 which is within two hops.

x1 responds to the first query with TTL = 1 but after τ , S determines that it has only

received one response (which it has ACK-ed), and broadcasts another query for X with TTL

= 2. Now, x1 which has not received the ACK yet (perhaps due to TCP delays) receives this

second query within ACK PERIOD of the first query. So it merely rebroadcasts the query to

69

the second hop. Had x1 responded to the second query, it would have duplicated network

traffic. This mechanism can be particularly helpful for the instantiation of large TGs in

dense networks.

The handling of a C RESP packet at a coordinator device is shown in function 5.5

(HandleCandidateResponse). If any uninstantiated and un-ACKed children nodes of

type dt (principal attribute of respondent) remain, the coordinator sends an ACK to the

respondent. If not (this means that the coordinator has already sent an ACK for this node),

then the respondent’s address is cached in a queue RespQ for future use. This is useful

because with a certain probability depending on the network topology and the distribution

of resource types in the network, the coordinator may get a REJECT from a candidate

device that has already been instantiated by another coordinator. In such a situation,

the former coordinator has to continue instantiation of that particular node. Function 5.7

(HandleReject) shows how a coordinator handles this. If RespQ is empty, then the

coordinator has to perform a broadcast with an appropriately large TTL in order to get

more responses from candidates. But if RespQ is not empty, the coordinator can send

ACKs to the candidate devices in RespQ one by one. In the worst case, all the devices in

RespQ may have been already instantiated by other coordinators but the probability of that

occurrence is likely to be low. Although we have not mentioned this in the pseudo-code,

one can keep the size of RespQ upper bounded by a value characteristic of the distribution

of resource types in the network. Doing that will prevent the coordinator from sending a

series of unnecessary ACKs to instantiated devices.

The final few steps of the instantiation process are the same as the ones mentioned

in Section 5.1. If an uninstantiated candidate device receives an ACK from a coordinator,

it extracts the task graph encapsulated in the packet into a local variable TG. After

instantiating the appropriate node, it computes BFSTTG and determines whether it needs

to act in the capacity of a leaf node or a non-leaf node. If the former is true, then it sends a

SUBTREE CONF to its parent coordinator, thus confirming its instantiation. However, if the

70

D A

B
C

D

B

A

C

A

B

C

D

B

C

D

A

A’

A’ A’ A’

(d)(c)(b)(a)

(user)

Time

Figure 5.4: An Example of Re-Instantiation

latter is true, then it needs to continue the distributed instantiation process further. After

confirming its instantiation to the coordinator by means of a CONFIRM packet, the candidate

makes itself a coordinator by transiting to the (COORDINATOR, INSTANTIATED) state. It

then continues the instantiation process by querying for its uninstantiated children nodes.

Function 5.6 (HandleAck) shows the pseudo-code for the above steps.

Any coordinator device after receiving a SUBTREE CONFIRM checks if all its BFS

children have sent such confirmation; in that case, it sends one SUBTREE CONFIRM to its

parent coordinator. When the root coordinator (i.e., the user device) receives the final

SUBTREE CONFIRM packet, it deems the instantiation process to be complete. At this instant,

the user node has successfully mapped each node in TG to a physical device in the network

using the distributed algorithm. The user application can then begin.

5.3 Handling Device Mobility

In this section we present how our instantiation protocol reacts to the mobility of devices. If

the devices in the network are highly mobile during the lifetime of a distributed application

running on the network, the network topology and previously established connections can

change, and this can disrupt the application either due to unreachability of devices or due

to frequent route changes. Therefore, in the presence of mobility, it is no longer sufficient to

permanently select specific devices and appoint them to execute the application – continual

monitoring must be performed for detecting disruptions, and replacement devices must be

71

Algorithm 5.1 CoordinatorDeviceInstantiation()

1: mystate← (COORDINATOR, INSTANTIATED);

2: QueryForNeighborInstances(); /* function 5.9 */

3: while (1) do

4: WaitForEvent(); /* returns at the occurrence of an event */

5: if (TA.expired()) then

6: HandleTTLTimeout(TA); /* function 5.3 */

7: else if (C RESP arrived from ai) then

8: HandleCandidateResponse(ai.addr, ai.type); /* function 5.5 */

9: else if (CONFIRM arrived from ai) then

10: HandleConfirmation(ai.addr, ai.type, ai.tgid); /* function 5.8 */

11: else if (REJECT arrived from ai) then

12: HandleReject(ai.addr, ai.type, ai.tgid); /* function 5.7 */

13: end if

14: end while

Algorithm 5.2 NonCoordinatorDeviceInstantiation()

1: mystate← (NON COORDINATOR, UNINSTANTIATED);

2: while (1) do

3: WaitForEvent(); /* returns at the occurrence of an event */

4: if (S QRY(qdt) arrived from ci) then

5: HandleSearchQuery(ci.addr, qdt); /* function 5.4 */

6: else if (ACK arrived from ci) then

7: HandleAck(ci.addr, dt, tgid); /* function 5.6 */

8: end if

9: end while

function 5.3 HandleTTLTimeout(TTLTimer T)
1: T .ttl← f(T .ttl); /* f(x) = x+ 1 or 2 ∗ x etc. */

2: Broadcast(S QRY,T.dt,T .ttl); /* query for type:T.dt with higher ttl */

3: T.resched(τ); /* reschedule ttl timer */

72

function 5.4 HandleSearchQuery(address c, type Qdt)
1: if (mytype == Qdt) then

2: if (timenow − lastresponded[c] 6 ACK PERIOD) then

3: RebroadcastPkt(); return; /* if ttl permits */

4: end if

5: Send UDP Pkt(C RESP, c, mytype); /* respond to c over UDP */

6: lastresponded[c]← timenow; /* suppresses duplicate C RESPs to c */

7: else

8: RebroadcastPkt(); /* rebroadcast query if no match */

9: end if

function 5.5 HandleCandidateResponse(address a, type dt)
1: RespQ(dt).append(a); /* cache respondent’s address for future */

2: for all (X : X is an uninstantiated BFS child in TG and Xdt == dt) do

3: if (acked[Xtgid] == 0) then

4: Send Pkt(ACK, a, Xtgid); /* send an ACK to the respondent */

5: acked[Xtgid]← a; /* mark corresponding TGID as acked */

6: RespQ.pop(); /* pop a from RespQ since it has been acked */

7: if (all children of type dt have been responded for) then

8: Tdt.cancel(); /* cancel corresponding TTL timer */

9: end if

10: break; /* break out of for loop */

11: end if

12: end for

73

function 5.6 HandleAck(address c, type dt, tgid tgid)
1: if (mystate == (NON COORDINATOR, UNINSTANTIATED)) then

2: lastresponded← nil;

3: TG← ExtractTaskGraph(); /* for downstream instantiation */

4: Instantiate myself in TG for tgid;

5: ComputeBFSTree(TG); /* compute BFSTTG and my position in it */

6: if (!IsLeafNode(me, TG)) then

7: Send Pkt(CONFIRM, c, tgid); /* If I am not a leaf node */

8: mystate← (COORDINATOR, INSTANTIATED); /* become COORDINATOR */

9: QueryForNeighborInstances(); /* downstream instantiation */

10: else

11: Send Pkt(SUBTREE CONF, c, tgid); /* I am a leaf node */

12: mystate← (NON COORDINATOR, SUBTREE INSTANTIATED);

13: end if

14: else if (mystate == (COORDINATOR, INSTANTIATED)) then

15: Send Pkt(REJECT, c, tgid); /* already instantiated, hence REJECT */

16: end if

function 5.7 HandleReject(address a, type dt, tgid tgid)
1: acked[tgid]← 0; /* unmark this TGID */

2: a′ ← RespQ(dt).pop(); /* use addresses of earlier respondents */

3: if (a′ 6= nil) then

4: Send Pkt(ACK, a′, tgid); /* send ACK pkt to the new candidate */

5: acked[tgid]← a′; /* mark this TGID as acked */

6: else

7: Broadcast(S QRY, dt, ttl+1); /* query for type:dt with ttl+1 */

8: Tdt.resched(τ); /* reschedule ttl timer */

9: end if

74

function 5.8 HandleConfirmation(address a, type dt, tgid tgid)
1: if (CONFIRM packet) then

2: Instantiate tgid in TG with a;

3: else if (SUBTREE CONF packet) then

4: /* extract downstream instances and instantiate in TG */

5: TGinst ← TGinst ∪ExtractSubtreeFromPkt();

6: if (all BFS children have confirmed) then

7: mystate← (COORDINATOR, SUBTREE INSTANTIATED);

8: if (me 6= root(TG)) then

9: /* encapsulate instantiated subtree rooted at me in TGinst and

send subtree confirmation upstream to my BFS parent */

10: Sbuf ← EncapsulateInstSubtree(me);

11: Send Pkt(SUBTREE CONF, bfs parent, Sbuf);

12: else

13: /* Instantiation of TG has been completed; */

14: Disseminate Instantiated TUPLES to instantiated BFS children;

15: end if

16: end if

17: end if

18: Start exchanging PREINST HELLO or HELLO messages with a;

function 5.9 QueryForNeighborInstances()
1: ttl← 1;

2: for all (X : X is an uninstantiated BFS child in TG) do

3: Broadcast(S QRY,X,ttl); /* query for type:X with ttl = 1 */

4: queue RespQ(X)← nil;

5: TX .sched(τ); /* schedule a ttl timer TX for τ seconds */

6: end for

75

selected for resuming the application. Figure 5.4 illustrates the process of re-instantiation

in the case of disconnections caused by mobility of devices. The task graph in that example

is VT = {user, α, γ, δ};ET = {(user, δ); (δ, α); (δ, γ)}; B is the user device, A and A′ are

instances of α, C is an instance of γ, and D of δ.

Disruptions can occur either during the instantiation phase or in the post-instantiation

phase. In the latter case, all nodes in TG were mapped to a set of physical devices but a

subset of those devices may have been disconnected from the rest of the instantiated set.

In this scenario, the onus of rediscovering new candidate devices and remapping relevant

pieces of the distributed application falls onto the currently instantiated devices. The sit-

uation is similar if disconnections occur before the instantiation has been completed, only

the number of instantiated nodes is smaller.

The necessity of self-organizing instantiation protocols that adapt to changes in

network topology at any stage of operation cannot be overemphasized. Due to the unique

nature of MANETs, device mobility is beyond the user’s control in most situations and can

indeed cause disruption of service. Hence our foremost goal is to design robust protocols that

react to such events and attempt recovery. Another important design goal is to eliminate the

involvement of a centralized controller as far as possible while not unduly complicating the

recovery protocol. A centralized recovery approach has been proposed by us elsewhere [50].

5.3.1 Detection of Disconnections

Mobility of devices can cause network partitions or disconnections resulting in instantiated

devices that may no longer be able to communicate if their interconnection paths are broken.

In such situations, replacement devices must be instantiated in lieu of their disconnected

counterparts. The necessary first step in this direction is the detection of which device(s)

is/are disconnected from which other device(s).

We propose a lightweight, soft-state exchange protocol for detecting disconnections

76

H
E

L
L

O
_P

E
R

IO
D

H
E

L
L

O
_P

E
R

IO
D

disconnection
from B detected

H
E

L
L

O
_P

E
R

IO
D X

A B

(b) Best Case

H
E

L
L

O
_P

E
R

IO
D

disconnection
from B detected

H
E

L
L

O
_P

E
R

IO
D

X

A B

R
T

T
 (

 k
)

(c) Worst Case

A B

R
T

T
 (

 k
)

R
T

T
 (

 k
+1

)

(a) Normal Operation

Figure 5.5: Detection of Disconnections: A and B are Parent–Child Instances

in an instantiated task graph. The protocol requires each instantiated device to send peri-

odic HELLO messages (with period T) to its logical neighbor instances in TG, which reply

with a HELLO ACK. This is illustrated in Figure 5.6. Note that all instantiated devices are

in either of the two states when they start exchanging HELLO messages: (COORDINATOR,

SUBTREE INSTANTIATED) or (NON COORDINATOR, SUBTREE INSTANTIATED).

Each instantiated device keeps track of its BFS parent and BFS children. For the

TG in Figure 5.2(c), the instance of node C keeps track of the instance of node A (its BFS

parent) as well as of the instances of nodes F and G (BFS children). If a BFS parent device

stops hearing from one of its BFS children,2 it uninstantiates this child from its TG and

initiates search for a replacement of the same type. The child meanwhile stops hearing

HELLO ACKs from the parent (assuming bidirectional links), and uninstantiates itself at the

end of two HELLO PERIODs. This is illustrated in Figure 5.6. If the HELLO PERIOD timer is

set to H at every instantiated device, on average, disconnections will be detected after 3
2H

time units, approximately. Function 5.10 (HandleDisconnects) lists the pseudo-code for

detecting disconnections from instantiated neighbor devices.
2The parent concludes this if it does not get a HELLO ACK from that child before the expiry of its

HELLO PERIOD timer.

77

Theorem 5.1 (Average Detection Time) The average time to detect a disconnection

due to a persistent partition is 3
2H − r where H is the HELLO PERIOD and r is the average

time for the round-trip exchange of HELLO messages.

Proof. Figure 5.5 illustrates the three cases of normal operation without any disconnection,

the best case, and the worst case for detecting disconnections respectively. Suppose that a

device A wants to detect if its association with device B has been disrupted. A then sends

a HELLO packet to B which then immediately responds with a HELLO ACK. Suppose r is the

average time for this exchange to occur. r is dependent upon the number of hops A and

B are from each other and on the dynamics of the underlying routing as well as transport

protocols. As shown in Figure 5.5(b), if the actual disconnection occurs just after the HELLO

packet is transmitted, then it will not reach B and hence A can detect the disconnection inH.

However, if the disconnection happens just after A receives a HELLO ACK packet, then it will

not be able to detect the disconnection at the end of H. In fact it will take an additional H

to detect the disconnection if the partition still exists. Now, if the disconnection happens

at time t starting from the beginning of the HELLO PERIOD in consideration, the time to

detect the disconnection using the aforementioned scheme is given by:

Tdetect(t) =

 H − t : 0 6 t < r

2H − t : r 6 t < H
(5.1)

If the disconnection time t is uniformly distributed over the interval [0,H], the p.d.f.

of the disconnection time is given by: f(t) = 1
H , 0 6 t 6 H. Then the mean time to detect

the disconnection can be easily calculated as follows:

E[Tdetect] =
∫ H

0
Tdetect(t) f(t) dt

=
1
H

{∫ r

0
(H − t) dt+

∫ H

r
(2H − t) dt

}
=

1
H

{
3
2
H2 −Hr

}
=

3
2
H − r (5.2)

78

(user node) (instance j) (instance k)(instance i)
Node B Node CNode C Root Node

H
HELLO packet

HA
HELLO−ACK packet

X

X

H

H

HA

HA

H
H

T
IM

E
detected loss

C(k) does not reply

X

Node C

(user node)

TASK GRAPH

Node A

BFS−tree edges

Non−BFS−tree edges

Node B

BFS−parent
of C

BFS−parent
of A, B

Non−BFS

Confirmation

Send TUPLES

parent of B

of BFS−parent B(j)

Packet did not reach
before timer expired

of BFS−child C(k)
detected loss

(it is still not free)

broadcast for type C

T
im

e−
ou

t P
er

io
d

(C(k) uninstantiates itself)

(Start HELLO)

(over 2 logical TG hops)

Inform Logical Neighbors

Inform Root CN
(Start HELLO)

Candidate Response

REINST_TG

Figure 5.6: Re-instantiation of Task Graph Nodes

However, we note that this is only true for persistent partitions. In other words, if a

partition heals during the detection process (due to node mobility), calculation of E[Tdetect]

is much more difficult and not considered here. In other words, Equation 5.2 gives an upper

bound unless the partition gets worse. �

Mobility of devices can also result in lengthening or shortening of routes between

device instances because the underlying MANET routing protocol can adapt to the changes

in network topology due to mobility. In an ideal scenario, if there is no disconnection

or network partition, the application should proceed without disruption. But such ideal

conditions may not hold in reality. Route failures can trigger route discovery which along

with TCP re-transmissions (after timeouts) can sometimes take several seconds to complete.

Hence, this can result in HELLO ACKs not returning within H. This in turn causes a device X

that is expecting a HELLO ACK from device Y to conclude that a disconnection has happened

even when X and Y are in fact reachable from one another.

Recently, researchers have recognized problems with TCP behavior in MANETs.

Holland and Vaidya [42] found that TCP throughput drops significantly when nodes move,

79

B

C

D

A

A’

D’
(a)

C

A

A’

D

D’

(b)

B

Time

Figure 5.7: An Example of TG-patching

due to TCP’s inability to recognize the difference between link or route failures and con-

gestion. Fu et al. discovered that even in static ad hoc networks, packet losses due to

channel contention affects TCP performance significantly [33]. Some solutions to the first

phenomenon have been proposed in the literature that are based on explicit notification

of route errors to TCP [22]. However, the above endeavors are orthogonal to our goals,

and we do not attempt to alter TCP or the MANET routing protocols (nor their default

timer settings); we instead build our protocols simply on top of these protocols. Hence, if

a device does not receive a HELLO ACK from its neighbor in H, we deem the neighbors to

be disconnected from each other. A reasonable value of H is one which is not so low to

cause significant control overhead, and not so high such that disconnections are not quickly

detected. In our simulations, we experimented with H = 7 seconds and H = 14 seconds

(both greater that the default TCP re-transmission timer) and found them to be suitable

for the mobility patterns that we investigated.

5.3.2 Re-instantiation and Bookkeeping Algorithms

A disconnection due to mobility or device failure can occur at two different stages of protocol

execution: (1) during the instantiation phase, and (2) after the instantiation has been

completed. Although the two above scenarios are conceptually the same, there are subtle

80

differences between the two from a protocol standpoint. In this section, we introduce the

basic techniques for achieving re-instantiation once instantiation has been completed. The

principal goal in this endeavor is to retain most of the instantiation below the point of

failure and re-instantiate the task graph minimally, whenever possible. We refer to this

“local repair” process as TG-patching and advocate it instead of the re-instantiation of the

entire task graph below the point of failure. TG-patching has been illustrated with a simple

example in Figure 5.7 continuing the example shown in Figure 5.4.

If a BFS parent device detects a disconnection with its child at the expiry of its HELLO

timer, it issues a broadcast search query for the same type of child. The re-instantiation

process then proceeds much like the earlier instantiation process. This has been illustrated

with a time based message diagram in Figure 5.6. Also, the root coordinator device is not

involved in this process, and the BFS parent device acts like a local coordinator. However,

after the completion of re-instantiation, the newly re-instantiated device informs the root

coordinator about the event directly with an INFORM MAIN COORD packet. The reasons for

doing this will become clear later in this section.

Our protocol addresses the problems of state maintenance after disconnections, and

attempts to solve them locally, i.e., without involving the coordinator node. Each instance

of a certain node X in TG is aware of the addresses of the instances of the parents (both

BFS and non-BFS), the children, the children’s parents, and the children’s children of X

in TG. The devices in the last two categories are referred to as siblings. Essentially, this

is 2-hop logical neighborhood information save the information about the addresses of the

grandparents of X in TG, which is unnecessary.

Definition 5.1 (Logical Neighborhood) If X is a node in a task graph TG, i.e., X ∈

VTG, its neighborhood with respect to the BFS ordering of TG starting from the root is

defined as follows:

TG ngb(X)
4
= X ∪ parents(X) ∪ children(X)

81

If x is an instance of a node X, the logical neighborhood of x is defined as:

logical ngb(x)
4
= {z : z ∈ ϕ(Z), Z ∈ TG ngb(X)}

where ϕ is the embedding function as defined in Chapter 3. Essentially it is the set of

devices in the network which are instances of nodes in the neighborhood of X.

Definition 5.2 (2-hop Logical Neighborhood) If X is a node in a task graph TG, i.e.,

X ∈ VTG, its 2-hop logical neighborhood is defined as:

2hop TG ngb(X)
4
= TG ngb(X) ∪ children(children(X)) ∪ parents(children(X))

If x is an instance of a node X, the 2-hop logical neighborhood of x is defined as:

2hop logical ngb(x)
4
= {z : z ∈ ϕ(Z), Z ∈ 2hop TG ngb(X)}

where ϕ is the embedding function as defined in Chapter 3.

Figure 5.8 depicts the 2-hop logical neighborhood information that each instantiated

device is aware of at a certain instant of time. With a little thought, one can see that

information about this portion of TG is sufficient to handle single node disruptions in the

instantiated task graph. We explain this further with an example. After finding a new

replacement device for its child node, a BFS parent re-instantiates it in its own copy of TG,

and sends a portion of the re-instantiated TG to the new child device. Figure 5.9 illustrates

how 2-hop logical neighborhood information helps in local recovery. a, b, . . . , h are initial

device instances of their respective node types, and g′ is a replacement device with same

capabilities as g.

Function 5.11 (InformLogicalNeighbors) encapsulates the logical ngb informa-

tion at a device and sends it to the other devices in its logical neighborhood. The originator

of the logical neighbor table update encodes round = 1 into the NEIGHBOR INFORM packet

before calling InformLogicalNeighbors(). When a device in the logical neighborhood

receives this packet (as shown in Function 5.12 (LogicalNeighborUpdate), it updates its

82

Root

a b

c

d e

f

h

g

Node Parents Children Grandchildren Siblings

Root – a,b c,d,e –

a Root c,d f,g b

b Root {c},e d,f,g a

c a,{b} f,g h d

d a,{e} {g} – c

f c h – –

g c,{d} – – –

h f – – –

Figure 5.8: Logical Neighbor Table Information

logical ngb, increments round to 2 and sends the updated logical neighbor table to the other

devices in logical ngb. When devices receive a NEIGHBOR INFORM packet with round = 2,

they update their 2hop logical ngb structure accordingly. At the end of this exchange,

nodes in the logical neighborhood of a device possess a consistent view of other instantiated

devices in the neighborhood. This exchange of NEIGHBOR INFORM messages occurs

over TCP because these can traverse multiple hops and their loss can cause inconsistencies

and therefore delays in the recovery process. Also, any additional disconnections during

this exchange can cause inconsistency and that will be detected by HELLO messaging at a

later time.

Lemma 5.1 (Recovery from Single Disconnects) If there is a persistent single device

disconnection, maintenance of 2-hop logical neighborhood information at each instantiated

device is sufficient to accomplish re-instantiation of the task graph locally (TG-patching),

and to make it resilient to single device disconnections in future.

Proof. Since every device has exactly one BFS parent, upon the disconnection of a single

device s from its parents and children, p = parentbfs(s) is the one which detects the discon-

nection and attempts to rediscover a replacement device for the corresponding task graph

node. After p discovers and instantiates a new device s′, the latter needs to know about the

83

Root

a b

c

d e

f

g

h

X X

g becomes disconnected from c and d

c detects disconnection (after HELLO timeout)

c searches for a new instance of g

d does not take any active step (non-BFS parent)

Root

a b

c

d e

f

h

g’

c discovers and re-instantiates g’

g’ does not know about d yet

c sends the 2-logical-hop portion of its TG to g’

g’ knows about d now

d does not know about g’ yet

g’ 1-logical-hop broadcasts its logical neighbor table (lgNT)

Root

a b

c

d e

f

h

g’

d knows about g’ now

c knows that g’ knows about d

c and d 1-logical-hop broadcast their lgNT’s

a,b, and e come to know about g’

(This is useful if c or d suffer disconnection later)

Figure 5.9: Bookkeeping using 2-hop Logical Neighborhood Information

84

function 5.10 HandleDisconnects(list[node] parent, list[node] child)
1: if (reachable[parentbfs.addr] == 0) then

2: Uninstantiate myself; /* I have been disconnected from my parent */

3: else

4: if (∀i : reachable[parentnonbfs[i].addr] == 0) then

5: Do nothing; /* I am the child; Non-BFS parent will react to this */

6: end if

7: if (∀j : reachable[childbfs[j].addr] == 0) then

8: Uninstantiate child[j] in TG and deactivate corresponding data-flow tuples;

9: Rediscover(child[j].dt, child[j].tgid); /* re-instantiate BFS child */

10: end if

11: if (∀k : reachable[childnonbfs[k].addr] == 0) then

12: Deactivate corresponding data-flow tuples;

13: Ask Root Coordinator device about the newer instance of child[k];

14: end if

15: end if

function 5.11 InformLogicalNeighbors(int round)
1: SendPkt(NEIGHBOR INFORM, logical ngb(me), round);

function 5.12 LogicalNeighborUpdate(int round)
1: ReceivePkt(); /* receive a logical neighborhood update */

2: if (round == 1) then

3: Update logical ngb(me); /* update my logical neighborhood */

4: InformLogicalNeighbors(round+ 1); /* propagate logical ngb. info */

5: else if (round == 2) then

6: Update 2hop logical ngb(me) according to rules in Definition 5.2;

7: end if

85

Root

a b

c

e

f

h

X

X

a’

g

d

a becomes disconnected from the rest of the network

Root detects disconnection from a (after HELLO timeout)

Root searches for and instantiates a’

c detects disconnection from a (after HELLO timeout)

But c waits for another HELLO PERIOD before uninstantiating

Root sends a’ patching information (2-hop lgNT)

a’ patches c and hence the subtree rooted at it

Figure 5.10: TG-patching an Instantiated Task Graph

children and other parents that its predecessor s used to have. Since p keeps partial 2-hop

logical neighborhood information, it is aware of children(s), and parentsnonbfs(s). Hence

s′ will be able to get that information readily from p after the re-instantiation is complete.

As a result, s′ will be capable of recovering successfully in future from disconnections of its

children, if any.

Also, since s′ will get non-bfs parent information as well from p, it can inform these

devices about its new existence. These devices can update their 2-hop logical neighborhood

tables upon receiving updates from s′ and can then resume sending application data to

s′. Therefore, this 2-hop logical neighborhood information facilitates the execution of the

entire book-keeping process in a cooperative manner. Also, this process is local in a TG

sense. Figure 5.10 illustrates the steps in the process of TG-patching. �

5.3.3 Handling Multiple Disconnections

Now we present how our re-instantiation schemes attempt to recover from multiple simul-

taneous node disconnections that can occur in an instantiated task graph. Even though

the disconnections happen simultaneously, they may be detected at different times owing

to different start and finish times of HELLO PERIODs at different devices.

Definition 5.3 (Independent Disconnects) If instantiated devices x1, x2, . . . , xk (cor-

86

responding to nodes X1, X2, . . . , Xk ∈ VTG) become disconnected from their respective

BFS parents simultaneously, and all subtrees in BFSTTG rooted at Xi’s are disjoint, we

categorize this as an independent multiple disconnect.

Definition 5.4 (Affecting Disconnects) If instantiated devices x1, x2, . . . , xk (instances

of nodes X1, X2, . . . , Xk ∈ VTG) become disconnected from their respective BFS parents

simultaneously, and ∃i, j : Xi is an ancestor of Xj in BFSTTG, we categorize this situation

as an affecting multiple disconnect.

Lemma 5.2 (Recovery from Independent Disconnects) In case of independent dis-

connects, recovery can be performed as if there are independent single disconnects.

Proof. Consider any two (of k) disconnected nodes X and Y in TG which have been

categorized as independent. Then the subtrees rooted at them respectively (in BFSTTG)

are disjoint. Therefore, either they have the same BFS parent or the subtrees rooted at

their BFS parents are disjoint too. In either case, the process of recovery at parentbfs(X)

is not affected by that at parentbfs(Y). Hence this can be treated as a case of independent

single disconnects, and can be solved by TG-patching.

However, there is one type of disconnection that cannot be adequately handled by

our re-instantiation technique even if the disconnection is independent in nature: a network

partition such that two nodes connected by a non-BFS edge get disconnected from their

BFS parents; (e.g., in Figure 5.11, if d and g get disconnected from b and c respectively, in

roughly the same HELLO period). b finds d′, and c finds g′ but b tells d′ about g and c tells

g′ about d (from their 2-hop logical neighbor tables). Due to the staleness of 2-hop logical

neighborhood information, a deadlocked situation occurs in which d′ and g′ do not come

to know about each other. To solve this problem, we adopt an approach where a non-BFS

parent (d′ here) asks for the root coordinator’s help if it loses its non-BFS child (g′). Since

the coordinator is kept informed by newly instantiated nodes (by an INFORM MAIN COORD

message), situations like above can be avoided. We illustrate this process further in Figure

5.12.

87

Root

a b

c

e

f

h

X

X

g (g’)

d (d’)

b detects disconnection from d (after HELLO timeout)

b searches for and instantiates d’

b tells d’ about non-BFS child g (stale)

c detects disconnection from g (after HELLO timeout)

c searches for and instantiates g’

c tells g’ about non-BFS parent d (stale)

Hence, d’ and g’ do not come to know of each other!

Figure 5.11: Effect of Double Disconnect on a Non-BFS Edge

Note that if the coordinator is unreachable from this node instance, it is due to a

network partition alone (since we do not have any timers for such messages), and in this

case, a component of the instantiated network is disconnected from the rest (containing

the coordinator). In such situations, repair occurs as soon as the HELLO timers expire at

BFS-parent node instances. �

Definition 5.5 (Burst Disconnects) When two of the affecting nodes whose instances

become disconnected from each other are in a parent–child relationship, we refer to the

situation as a burst disconnect. All other types of affecting disconnects are categorized as

non-burst.

Lemma 5.3 (Recovery from Non-Burst Affecting Disconnects) Recovery from an

affecting disconnect which is devoid of bursts is possible by TG-patching.

Proof. Figure 5.13(a) illustrates this scenario and how the TG-patching algorithm can

succeed in the recovery. TG-patching is suitable for recovery because in such a situation,

two affecting disconnects are separated by at least 2 logical TG-hops (as a and c). Hence

there is no parent device x such that 2hop logical ngb(x) contains more than one affecting

disconnects. Therefore parents of all disconnected devices can detect these disconnects,

re-instantiate their children suitably (subject to availability of resources), and finally TG-

patch the remaining devices in the 2-hop logical neighborhood to the newly re-instantiated

88

Root

a b

c

e

f

h

X

X

g (g’)

d (d’)

Events at Root Coordinator:

(A) : Re-instantiation information from g’ (at time tA)

(B) : Inquiry from d’ about its non-BFS child (at time tB)

(A) occurs before (B) (B) occurs before (A)

informs d’ about g’ buffers the request (up to tA)

(more common case) then informs d’ about g’

Figure 5.12: Handling Double Disconnect with Help from Root Coordinator

devices independent of each other. Recovery can thus be achieved. �

Lemma 5.4 (Recovery from Burst Disconnects) Recovery from a burst disconnect is

not possible by TG-patching but occurs eventually.

Proof. Figure 5.13(b) illustrates this scenario and how the recovery algorithm proceeds.

Consider two devices a and c (instances of nodes A and C) in the disconnected burst. Let

a be the BFS parent of c. parentbfs(a) will detect that a has been disconnected, and it

will re-instantiate node A with another device a′. However no instantiated node other than

children of c can detect the latter’s disconnection. Since in our re-instantiation model,

only parent devices take corrective action, a replacement for c can only be chosen by a′.

More specifically, after re-instantiation, a′ receives from parentbfs(a) the information about

2hop logical ngb(parentbfs(a)). Since, a′ is not aware of the disconnection of c from the in-

stantiated tree, it attempts and fails to TG-patch c to itself. When it receives no HELLO ACK

back from c, it detects that the latter has been disconnected and then it must initiate the in-

stantiation process starting at node C. Since a′ only receives the 2-hop logical neighborhood

of its BFS parent, it is not aware of the instances f, g. a′ would have been aware of these

after receiving a NEIGHBOR INFORM message from c had the latter not been disconnected.

Meanwhile, devices in the instantiated subtree rooted at f will not receive HELLO

messages from their parents and will uninstantiate themselves eventually. In other words,

89

Disconnected

Device

Root

b

c

e

h

X

g

d

X

X

X

a

f

a’

f’

c’

f’

h’

g’

a’

Root

b

e

f

h

g

d

X

X

a

c

X

Non−Burst Disconnect Burst Disconnect

Figure 5.13: Types of Affecting Disconnects

in this type of a situation, the entire subtree downstream of the burst disconnect will be

re-instantiated. �

Choosing to store only the 2-hop logical neighborhood information was a design

decision from the standpoint of recovery from disconnections in most situations. However a

more verbose protocol which exchanges more than 2 logical hops of instantiation information

can be applied for more rapid recovery from burst disconnects. We leave this for future

investigation.

Theorem 5.2 (Re-Instantiation) In event of persistent disconnections of instantiated

devices participating in a task, the re-instantiation algorithm described in this section will

facilitate eventual recovery from these disconnects.

Proof. From Lemmas 5.1, 5.2, 5.3 and 5.4, we see that the re-instantiation protocol is

able to recover from both single and several types of multiple disconnects which are of a

persistent nature. �

If the disconnects are transient in nature, the detection algorithm occasionally fails

to detect them with HELLO messaging. This can be advantageous in many situations as

the disconnects are hidden from the re-instantiation protocol. Re-instantiation causes ex-

tra overhead at the TG-layer (due to additional messaging and delays) as well as at the

TaskApp layer (due to retransmission of ADUs); hence its rapid occurrence should be

90

avoided. But, in scenarios when a transient disconnect is detected, it can result in unnec-

essary re-instantiations. In fact in many cases, the re-instantiation algorithm may end up

selecting the same device that was only briefly disconnected. Because of the above reasons,

the value of H in the disconnection detection protocol is of significant importance.

5.3.4 Handling Disconnections During Instantiation

As we remarked earlier, there are a few differences in the techniques used to recover from

disconnections during the instantiation phase and afterward, although the broad principles

are the same. The main difference is the following: during the instantiation phase, the

instantiated devices are not aware of their 2-hop logical neighborhoods until subtree confir-

mations trickle back upstream. Hence, if a device gets disconnected from its child at such a

stage, although it can rediscover a new child, it may have to discard the instantiation that

has already progressed downstream.

The recovery protocol is simpler in this situation because instantiation proceeds only

along the edges of BFSTTG. Hence, unlike the post-instantiation recovery process described

in Section 5.3.2, no instantiated device is even aware of its non-BFS parents or children.

Therefore, a device tracks the reachability of its BFS parent and BFS children alone after

becoming instantiated. This tracking is achieved by a periodic exchange of PREINST HELLO

messages which is a process similar to the periodic exchange of HELLO messages; the only

difference being that the parent devices alone send these messages to their instantiated

children who reply with a PREINST HELLO ACK message.

Before sending a PREINST HELLO message, the parent device (say x) schedules a

timer which is canceled at the instant a PREINST HELLO ACK reply returns from the relevant

child instance (say y). If the above timer expires, then the parent device uninstantiates the

child and searches for a suitable replacement. The child device, on the other hand, starts a

timer as soon as it receives an ACK from the parent, and waits for a PREINST HELLO. If the

latter doesn’t arrive before the timer expires, the child uninstantiates itself. Typically, the

91

child timer is scheduled for twice the duration of the parent’s timer so as not to suffer from

frequent uninstantiations.

After a replacement y′ is discovered, the parent device x attempts to patch its

grandchildren instances (if they have been instantiated) with this newly discovered device.

Note that there are no 2-hop logical neighborhood exchanges that have occurred until this

stage, hence x would know about its grandchildren (y’s children z, w) only if y had informed

x about them. This is done by means of a TWHOHOP CONFIRM message: as soon as y gets a

CONFIRM from its child z, it forwards that information upstream to x as a TWHOHOP CONFIRM.

After x and y′ have the usual instantiation handshake, y′ obtains information about

z and w from x, and it sends PATCH ACK messages to z and w. These devices then respond to

this by PATCH CONFIRM messages which in turn contain the addresses of their child instances.

This is done so that y′ learns its 2-hop logical neighborhood and becomes more resilient

to future disconnects, if any. Even if z or w were in UNINSTANTIATED state, they would

respond to the PATCH ACK, for otherwise, y′ would have to find replacements for z and w.

5.3.5 Impact of Disconnections on the Application Layer

The application (TaskApp) layer of every participating device keeps up-to-date (in-out)

data-flow tuple information for parent and child devices. If the running task gets dis-

rupted by disconnection of some participating devices, then it is the responsibility of the

BFS-parent device to transfer the application state to the newly instantiated replacement

device, and then resume the application data-flow. Meanwhile data packets reaching old

device instances are dropped by those devices which would be in the UNINSTANTIATED state

after being disconnected. Our average effective throughput metric (AvgEffT) attempts to

capture the effectiveness of our recovery algorithm by measuring the fraction of the applica-

tion data that reaches the currently instantiated data sinks from the source. A higher layer

buffer management scheme at the originator of the data-flow can increase the reliability of

task completion. We discuss this further in Chapter 7.

92

Chapter 6

Performance Evaluation

In this chapter we present detailed results of the simulation of our protocols under different

operative scenarios. We simulate the algorithms (and protocols) described in Section 5

using the popular public domain network simulator ns-2 (from ISI and UC Berkeley) [3]

for several different scenarios. We consider a standard mobile ad hoc network which obeys

the IEEE 802.11 standard [26]. Direct Sequence Spread Spectrum (DSSS) with a single

data-rate of 2 Mbps (the default configuration in ns-2) is simulated at the physical layer of

each radio node. The medium access control (MAC) is configured in the Independent Basic

Service Set (IBSS) mode and the Distributed Coordination Function (DCF) mode. These

result in the formation of a multihop ad hoc network. All simulations are conducted for flat

two dimensional rectangular surfaces. The Ground Reflection (Two-Ray) model is used to

model radio propagation (path loss) [36]. The path loss exponent of this model is 4 which

means that the power of the received signal falls as a fourth power of the distance between

a transmitter and a receiver.

All devices are simulated to run the Dynamic Source Routing (DSR) protocol [46]

which is currently a representative on-demand routing protocol for MANETs. For simula-

tion purposes, each device is assumed to perform a certain service which it makes available

to the remainder of the devices in the network. A remote device is assumed to be able to

93

Table 6.1: Simulation Parameters (Heterogeneous Case)

Simulation Parameter Value

Number of Devices, N 50, 100

Simulation Area, A 1500m×300m, 1500m×600m

Transmission Radius, Tx 250m

Mobility Model Random Waypoint ([20])

MANET Routing Protocol Dynamic Source Routing (DSR)

#Classes of Devices, |C| 12 (classes assigned with uniform probability 1
|C|)

Size of TG: (|VT |, |ET |) Tree (6, 5);TG1 (6, 7);TG2 (9, 11) (See Figure 5.2)

Simulation Period, tADU
last − tADU

first 400s

MaxSpeed, vmax 1, 5, 10, 15, 20 m/s

MinSpeed, vmin 0 m/s

Pause Time, PT 0, 100, 200, 300, 400, 500, 600s

Data Traffic Pattern (at U) Constant Bit Rate (CBR), Exponential

Mean ADU size, period 2500 bytes, 1.0s

Cross Traffic Pattern 10 random (source,destination) pairs exchange

(if applicable) 512 byte packets after every 1s interval

broadcast a query for a particular service with the name/type of that service encapsulated

in the query packet. The service-providing device upon receiving a query Q can respond

to the sender of Q if it matches the criteria specified in Q. These responses are sent using

UDP over a well known port. All other types of packets are sent using TCP.1 Simulator

code and relevant software are available via reference [63].

First, we present the results for the heterogeneous case in which all nodes in each

Task Graph possess distinct labels. In other words, this scenario represents a task where

each subtask needs a different type of device to be executed upon. The MANET too consists
1TCP Reno implementations in ns-2 have been used for simulation purposes including the simulation of

the connection establishment phase.

94

of several instances of each type of device. Later on in Section 6.2, we present results for

the homogeneous case in which all nodes in the task graph possess identical labels and so

do all nodes in the MANET.

6.1 Simulation Results for the Heterogeneous Case

The simulation parameters for this case are summarized in Table 6.1. We show simulation

results for task-graphs in Figure 5.2. We refer to them as Tree TG, Non-Tree TG1 and

Non-Tree TG2 respectively. The instantiation process begins at a time when steady state is

reached in the network with respect to MaxSpeed and Pause Time parameters, and almost

immediately, a data source at the user/root node starts sending data to the data sinks using

the four different traffic load patterns specified in Table 6.1. The results are averaged over

seven different sets of mobility scenarios for each case. Devices which are not part of the

current instantiated TG do not relay data packets, and such packets are not buffered. In

other words, if a device which was part of a TG becomes disconnected while there is a

packet in transit, the packet is lost.

Dilation First we analyze the constant mobility scenarios for different simulation pa-

rameters. We evaluate the quality of embedding using the average dilation metric. For

every mobility scenario, dilation is measured initially after completion of instantiation and

subsequently after every re-instantiation event. These values are then averaged over the

simulation time period to yield one value. We observe from Figure 6.1 that average dila-

tion for the embedding scheme does not vary greatly with speed; in fact davg lies between

1.25 and 2 hops for all three task graphs at all different values of MaxSpeed. This means

that the average number of physical hops between two instantiated nodes in TG is low

and remains approximately constant under mobility. This is because of the approximately

uniform spatial distribution of device categories and the reasonable abundance of devices

of each category in the network (5 to 13 of each type).

95

1

1.5

2

2.5

3

1 5 10 15 20

A
ve

ra
ge

 D
ila

tio
n

(i
n

ho
ps

)

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5)
TG1:(|V|=6,|E|=7)

TG2:(|V|=9,|E|=11)

Figure 6.1: Average Dilation vs. Speed

However, we do observe that davg increases when the maximum speed is increased

above 1 m/s. The principal reason for this is the following: at MaxSpeed=1 m/s, re-

instantiations are rare and the davg does not deviate significantly from its value after initial

instantiation. On the contrary, at greater speeds, re-instantiation events occur more fre-

quently because of logical neighbor instances either having moved far away from each other

or having been disconnected by a network partition. Either of these events disrupts the

usual smooth exchange of HELLO message resulting in re-instantiations. Owing to the uni-

form distribution of device categories in space, the re-instantiation process will find another

device with similar attributes within its vicinity. Although that keeps the contribution of

the new path length towards davg low, the hop distances between existing instances along

other TG edges are likely to have increased over time (although not high enough to cause

re-instantiations along these edges). Increased hop distances cause davg to increase at higher

speeds, on the whole.

Another observation from Figure 6.1 is that at lower speeds, davg is lower for Tree

96

than for TG1. This is obvious because, our heuristic algorithm attempts to minimize the

hop count only along the BFS-tree edges of a task graph both during instantiation as well

as re-instantiation; since TG1 has extra non-BFS edges, the minimization does not occur

along those edges; thus the latter has a higher dilation. The above reasoning does not hold

at high rates of mobility as all instantiated paths break more often and device category

distribution is spatio-temporally more uniform in the neighborhood of a device. Hence,

non-BFS-tree edges are likely to be mapped onto paths with similar lengths as BFS-tree

edges quite often, and that causes davg values to be similar for both TG1 and TG2.

Instantiation Time Table 6.2 compares the times taken for instantiating (embedding)

each TG on the MANET. We depict the minimum, maximum, and median times for each

TG for three different maximum speeds. We show the median instantiation time instead of

the average instantiation time since the time samples are skewed. Generally, instantiation

times for TG2 exceed those for TG1 and Tree since the former is a larger task graph and it

needs exchange of packets between a larger number of devices during instantiation. Some

samples are much greater than the rest owing to the dynamics of TCP executed over the

DSR routing protocol during the instantiation process. After the C RESP packet reaches

a coordinator node, it sends ACKs encapsulated in TCP packets since they have a higher

probability of getting lost if sent using an unreliable transport protocol. All subsequent

communication (except S QRY and C RESP packets) also uses TCP. Now, if for some reason

a route error occurs while a TCP transmission has not completed, TCP attempts redelivery

only after waiting for a period of time even if a new route is rediscovered immediately by

DSR. This period can be as large as 6 seconds (default initial retransmission timeout value

in the ns-2 implementation of TCP) if no prior communication has occurred between the two

communicating devices. If a route error occurs shortly after two devices have communicated

using TCP but before another TCP transmission is completed, the retransmission timer

is set based on the round trip time estimate between those two devices and hence it is

usually less than 6 seconds. Hence, we see instantiation time samples larger than 6 seconds

97

Table 6.2: Instantiation Time (in seconds)

N = 100 devices N = 50 devices

Task Graph min max median min max median

Tree (1m/s) 0.795 6.561 1.435 0.278 0.538 0.433

TG1 (1m/s) 0.810 6.819 1.399 0.213 0.416 0.319

TG2 (1m/s) 2.170 7.957 6.674 0.623 6.832 2.170

Tree (5m/s) 0.670 6.111 1.728 0.313 0.416 0.409

TG1 (5m/s) 0.536 7.708 6.278 0.312 0.486 0.383

TG2 (5m/s) 1.742 9.537 7.827 0.576 13.137 6.616

Tree (10m/s) 0.643 1.438 1.216 0.232 6.315 0.551

TG1 (10m/s) 0.842 6.694 1.530 0.321 6.153 0.387

TG2 (10m/s) 3.337 9.168 7.275 0.529 7.515 0.614

Tree (15m/s) 0.749 4.039 1.062 0.331 0.421 0.353

TG1 (15m/s) 0.446 6.511 0.909 0.313 0.548 0.417

TG2 (15m/s) 1.520 4.090 3.241 0.718 13.072 7.310

Tree (20m/s) 0.651 2.062 1.088 0.308 6.224 0.517

TG1 (20m/s) 0.717 4.022 1.484 0.309 6.320 0.409

TG2 (20m/s) 1.361 7.674 5.262 0.472 6.247 0.637

on several occasions. If TCP is augmented with explicit feedback mechanisms (briefly

mentioned in Section 5.3), then instantiation times can be reduced significantly.

Also, we observe no monotonic pattern as a result of increasing mobility of devices.

This can be attributed to the uniform spatial distribution of device categories in all mobility

patterns as well as large variability in TCP timers during the multiple handshaking steps of

the instantiation process. For the N = 50 scenario with the same device density, we observe

that instantiation times are in the same range as in the 100 device network. The median

times are generally lower for the N = 50 case since in a smaller network, broadcast traffic

consumes lower bandwidth and also a lesser number of devices (approximately half) are

98

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 15 20

A
ve

ra
ge

 E
ff

ec
tiv

e
T

hr
ou

gh
pu

t

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : Exponential (no cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : Exponential (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)

Figure 6.2: Average Effective Throughput: Variation of vmax, N = 100

likely to respond to S QRY packets, thus resulting in lower queuing delays for other packets

in the network.

Effective Throughput After the instantiation process is completed, we begin data trans-

mission from the user node (source) to the various sinks shown in Figure 5.2 according to

particular tuple specifications. In Tree TG, instances of A, C and E get one flow each. In

TG1, the instance of E gets 4 data-flows in all, through instances of various relay nodes. In

TG2, instances of D and H get one flow each and the instance of G gets 4 flows. We normal-

ize and then plot AvgEffT for all three TGs for both the 100 and 50 device MANETs in

Figures 6.2 and 6.3 respectively. We generate task data traffic using two different patterns:

periodic constant bit rate (CBR) bursts and bursts with exponentially distributed sizes

after exponentially distributed inter-arrival times (resulting in Poisson distributed bursts).

The mean burst sizes and inter-arrival times are kept constant for both cases. A maximum

aggregate throughput of 300 Kbps can be reached for the TG2 scenario assuming simul-

taneous transmission at all instantiated devices in accordance with the underlying tuple

99

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 15 20

A
ve

ra
ge

 E
ff

ec
tiv

e
T

hr
ou

gh
pu

t

Maximum Speed (m/s)

50 devices in 1500x300 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : Exponential (no cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : Exponential (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)

Figure 6.3: Average Effective Throughput: Variation of vmax, N = 50

architecture.

From Figures 6.2 and 6.3 we observe that at low speeds, AvgEffT is almost perfect

(close to 1.0). We can also observe that in general, AvgEffT drops with increase in

the maximum speed of devices for most situations. This is to be expected since higher

speeds generally result in more re-instantiations and that results in more ADUs not reaching

their intended destinations. However, AvgEffT rarely drops below 70% in the simulated

scenarios even under heavy mobility. This demonstrates that our protocols adapt fairly well

to mobility and are able to recover from disruptions in task data flow. We make two more

observations from these two figures: (1) exponential traffic pattern occasionally results in a

lower throughput than the CBR traffic pattern in scenarios involving non-tree task graphs,

and (2) TG1 usually yields lower throughput than Tree TG.

Exponentially distributed data generation times can occasionally result in large pe-

riods without much network activity, and this causes the on-demand routing protocols to

lose routes to destinations. More route errors cause TCP to back off more often and some-

100

0

2

4

6

8

10

12

14

16

18

20

1 5 10 15 20

A
ve

ra
ge

 N
um

be
r

of
 R

e-
In

st
an

tia
tio

ns

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : Exponential (no cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : Exponential (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)

Figure 6.4: Average Number of Re-instantiations

times results in re-instantiation because of reasons explained earlier. Loss of throughput

is greater in the case of non-tree TGs than Tree TG because recovery from the loss of a

non-BFS child takes more time than that of a BFS child as explained in Chapter 5. On the

contrary, in the case of CBR traffic, periodic generation of packets keeps routes fresh.

Number and Time of Re-instantiations In Figure 6.4, we plot the average number of

re-instantiations underwent during the entire simulation time (400s) for the 100 device case.

Results are quite similar for the 50 device scenario and have been omitted for brevity. The

rate of change in network topology increases with speed causing more network partitions

and route errors. These events in turn prevent HELLO packets from arriving in time, and thus

triggering more re-instantiations. Since packets caught in transit during the re-instantiation

process are dropped (as mentioned earlier, we do not consider application layer buffering in

this work), AvgEffT is directly affected by re-instantiations.

Although Tree TG is a sub-graph of TG1, for the CBR data case, TG1 suffers less

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 5 10 15 20

A
ve

ra
ge

 R
e-

in
st

an
tia

tio
n

tim
e

(s
ec

)

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : Exponential (no cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : Exponential (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)

Figure 6.5: Average Re-instantiation Time

re-instantiations because data flow along the non-BFS edges of TG1 results in the presence

of more valid alternate routes (or parts of them). Hence, when a route error happens along a

BFS edge (the primary cause of re-instantiations) of TG1, often these alternate routes come

to the rescue before the HELLO timer expires, thus reducing the rate of re-instantiations.

TG-2 generally suffers more re-instantiations since it is a larger graph with more depth.

In spite of Tree TG having more re-instantiations than TG1, it experiences better

AvgEffT than TG1. This is because the data-flow tuples of TG1 (as well as TG2) involve

data flows along non-BFS edges in the graph. Also, the set of re-instantiation events is

only a subset of the set of all possible disruptions. When a non-BFS parent loses a child

instance momentarily due to partitions or HELLO timeouts, a re-instantiation will not be

triggered since that is the responsibility of the BFS parent of the child instance. Hence,

the throughput is affected until a new instance is found by a BFS parent and the non-

BFS parent is informed of this event by a 1-logical-hop broadcast (as shown in Figure 5.9),

or a route to the old instance is restored. Also, Tree TG has sinks at all depths unlike

102

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 5 10 15 20

A
ve

ra
ge

 S
ou

rc
e-

to
-S

in
k

A
D

U
 D

el
ay

 (
se

c)

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : Exponential (no cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : Exponential (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)

Figure 6.6: Average Source-to-Sink ADU Delay

TG1 – hence the latter’s effective throughput suffers more from a re-instantiation of an

intermediate relay node. Exponential traffic generally affects re-instantiations more than

CBR traffic especially for the non-tree graphs as explained before. The result of that is

slightly lower throughput in the respective cases.

Figure 6.5 shows the variation of times taken to re-instantiate a TG node, i.e., the

times taken to discover a new replacement for a disconnected device that can participate in

the task. This time is measured from the time when the rediscovery broadcast is sent out

until the time instant when a confirmation is received from the new candidate (this involves

2 round-trip handshaking steps including the broadcast). Our re-instantiation protocol is

able to find a new device nearby within 1 second. In fact, in most cases, these times are only

a few hundred milliseconds. Local network effects are dominant factors in the determination

of this metric at higher speeds, hence there is little correlation between the values in such

cases.

103

0

2

4

6

8

10

12

14

16

18

20

22

2 3 4 5 6 7 8 9 10 11 12 13

So
ur

ce
-t

o-
Si

nk
 D

el
ay

 s
uf

fe
re

d
by

 A
D

U
 (

se
c)

Number of physical MANET hops traversed

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Maximum
Average

Minimum
(Avg #hops,Avg delay)

Figure 6.7: Source-to-Sink ADU Delay vs. Hops (for TG2; vmax = 10 m/s)

Average Source to Sink Delay We now analyze the effect of varying mobility (speed)

on the source to sink delays suffered by application data units. The average delay values

for all TGs are plotted in Figure 6.6. We observe very low delays for Tree TG (less than

0.5s) at all speeds for both CBR and Exponential traffic patterns although delays increase

slightly with MaxSpeed. However, we observe greater delays for the non-tree TGs; TG2 has

higher delays because it is a larger graph and has sinks at greater depths in the task graph

than the other two graphs. TG1 has greater delay than Tree TG because all its sinks are

at the greatest possible depth in the graph unlike the latter.

We also observe that exponential traffic suffers greater delay than CBR traffic in

almost all cases. This is due to several reasons: first, although the mean burst size of

exponential traffic is the same as that of CBR, larger ADUs suffer greater delays in a mobile

network since they are subjected to route changes and hence TCP delays for a longer period

of time. These delays are not compensated adequately by the low delays experienced by

small ADUs. Secondly, occasionally the time between ADU transmissions is much larger

104

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 5 10 15 20

A
ve

ra
ge

 E
ff

ec
tiv

e
T

hr
ou

gh
pu

t

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : CBR (with cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : CBR (with cross traffic)
TG2:(|V|=9,|E|=11) : CBR (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (with cross traffic)

Figure 6.8: Effect of Cross Traffic: Average Effective Throughput

than the mean (1s), and that results in a greater probability of route changes between

successive ADU transmissions. Also, if two large bursts are generated in quick succession

while re-instantiation is happening somewhere in the network or DSR is discovering new

routes, the probability of experiencing greater delays increases.

Only average delay values are shown in Figure 6.6. To illustrate how delay varies

for a particular scenario as a function of MANET hops, we plot a subset of the delay values

for a representative scenario (TG2 ; MaxSpeed = 10m/s ; Pause Time = 0s ; CBR traffic)

in Figure 6.7. We see that the delay expectedly increases with the number of MANET

hops traversed by the ADU. Although the maximum delays are very high (above 20s), the

average delays are reasonable. On the same graph we see that an ADU on average traverses

less than 6 MANET hops and experiences a delay of approximately 1 second. Average

delay increases linearly up to 9 hops (at a rate of about 250ms per hop) but then increases

non-linearly for a greater number of hops. We examine additional interesting properties of

the ADU delay distribution later in this section.

105

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

1 5 10 15 20

A
ve

ra
ge

 S
ou

rc
e-

to
-S

in
k

A
D

U
 D

el
ay

 (
se

c)

Maximum Speed (m/s)

100 devices in 1500x600 area, Pause Time = 0 sec (constant mobility)

Tree:(|V|=6,|E|=5) : CBR (no cross traffic)
Tree:(|V|=6,|E|=5) : CBR (with cross traffic)

TG1:(|V|=6,|E|=7) : CBR (no cross traffic)
TG1:(|V|=6,|E|=7) : CBR (with cross traffic)
TG2:(|V|=9,|E|=11) : CBR (no cross traffic)

TG2:(|V|=9,|E|=11) : CBR (with cross traffic)

Figure 6.9: Effect of Cross Traffic: Average Source-to-sink Delay

Since the spatial device density is the same for both N = 50 and N = 100 device

scenarios, all metrics except instantiation time exhibit similar behavior in both cases.

Effect of Cross Traffic In our analysis so far, we have assumed that there is no additional

traffic in the MANET except task data. In this section we examine the effect of other traffic

in the network on the performance of our protocols. We choose 10 source-destination device

pairs at random from the 100 devices, and each source sends a 512 byte UDP data packet

to the destination every second. We report the effect of such cross traffic on our throughput

and delay metrics in Figures 6.8 and 6.9 respectively. We observe from Figure 6.8 that

introduction of cross traffic actually improves the effective throughput in the simulated

scenarios. This is not surprising because the use of an on-demand underlying routing

protocol like DSR causes routes along all paths which are not currently in use to become

stale. This results in lower throughput at higher speeds when route errors and partitions

cause re-instantiations. Introduction of cross traffic keeps alternative routes and route

caches fresh at various nodes in the network and this results in quick recovery from re-

106

1

1.5

2

2.5

3

0 100 200 300 400 500 600

A
ve

ra
ge

 D
ila

tio
n

(i
n

ho
ps

)

Pause Time (seconds)

100 devices in 1500x600 area, Max Speed = 10m/s

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : CBR (with cross traffic)

TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (with cross traffic)

Figure 6.10: Effect of Varying PT on Dilation at vmax = 10m/s for TG2

instantiations or even lower number of re-instantiations (graph not shown) due to HELLO

message timeouts. We see as much as 15% increase in effective throughput for the TG2

case.

However, one pays a price due to the flow of cross traffic in the network. Figure 6.9

shows the average source-to-sink delays suffered by an ADU for the simulated scenarios. We

observe that introduction of cross traffic has resulted in slightly greater delays especially

for the non-tree task graphs and for Tree TG at high speeds. This is because as mobility

increases, more route errors occur and a significant number of control packets are injected

into the network by DSR. This results in task packets getting delayed in interface queues

since control data packets related to routing get preference over regular application data

packets. The most significant increases in delay are seen for TG1 – from 750ms to above

1.25s at 20 m/s speed, primarily because all its data sinks lie far away from the data source.

107

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500 600

A
ve

ra
ge

 E
ff

ec
tiv

e
T

hr
ou

gh
pu

t

Pause Time (seconds)

100 devices in 1500x600 area, Max Speed = 10m/s

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : CBR (with cross traffic)

TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (with cross traffic)

Figure 6.11: Effect of Varying PT on AvgEffT at vmax = 10m/s for TG2

Effect of Variation in Pause Times Now we investigate the effect of variation in pause

time while keeping MaxSpeed constant at 10 m/s. The pause time parameter PT was varied

from 0s, i.e., constant mobility (already considered earlier) to 600s (completely static) at

steps of 100s. Note that the scenario generator used pauses all nodes for PT seconds before

they start moving. Hence, for accuracy in simulations, we began the experiments and data

collection at time t > k × PT where k > 1 and is sufficiently large such that a steady state

that is characteristic of the movement pattern (in terms of fraction of nodes moving) was

reached. In order to realize this we created mobility scenarios much greater in duration

than 600s for PT = 200, 300, 400, 500. PT = 0 and PT = 600 are special cases and were

handled by scenarios of duration 600s. Task execution protocols were run for 400 seconds

from t = 1100s to t = 1500s for the former cases and from t = 200s to t = 600s for

PT = 0, 100, 600s.

The results are shown in Figures 6.10, 6.11, and 6.12 for TG2 for all possible traffic

patterns. We observe from Figure 6.10 that average dilation is minimum (davg ≈ 1.4) for

108

0

0.5

1

1.5

2

2.5

3

0 100 200 300 400 500 600

A
ve

ra
ge

 S
ou

rc
e-

to
-S

in
k

A
D

U
 D

el
ay

 (
se

c)

Pause Time (seconds)

100 devices in 1500x600 area, Max Speed = 10m/s

TG2:(|V|=9,|E|=11) : CBR (no cross traffic)
TG2:(|V|=9,|E|=11) : CBR (with cross traffic)

TG2:(|V|=9,|E|=11) : Exponential (no cross traffic)
TG2:(|V|=9,|E|=11) : Exponential (with cross traffic)

Figure 6.12: Effect of Varying PT on ADU Delay at vmax = 10m/s for TG2

the static scenario whereas it is more or less unaffected by PT (lies in the 1.6–2.1 range).

This is expected as the spatial uniformity of devices is the dominant factor in determining

this metric at all pause times.

From Figure 6.11 we observe that our protocols manage to yield almost perfect

effective throughput in the static scenario. This is because once the devices are instantiated,

no re-instantiations occur due to mobility, and hence the sink node instances hardly lose

any ADUs. Moreover, AvgEffT does not drop below 0.8 even for the constant mobility

scenario. This value hovers in the 0.8–1.0 range for all the intermediate values of PT .

Monotonically increasing patterns that are observed in the constant mobility and varying

MaxSpeed case (Figures 6.3 and 6.2) are not observed here because the rate of route changes

between any pair of instantiated devices may not decrease monotonically with decrease in

PT if most devices in that part of the network are static.2 However, we believe that if a

much larger number of scenario and random device pattern samples are taken, we are likely
2This could explain the extremely high throughput for PT = 200 and PT = 300; very similar average

delay values in Figure 6.12 point to the same conclusion.

109

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ADU Delay [src → sink] (in seconds)

P
r{

D
el

ay
 >

 x
}

Complementary CDF (params: 100 devices, static scenario)

TG1 − CBR
TG1 − EXPO
TG2 − CBR
TG2 − EXPO

Figure 6.13: Empirical Cumulative Distribution Function of ADU Delay (PT = 600s)

to observe a monotonic behavior.

We also observe that exponential traffic results in lower throughput and higher

average delays (both with and without extra cross traffic) than CBR traffic. Reasoning

for this is similar to the one mentioned in an earlier discussion (on effect of variation of

MaxSpeed), and we do not repeat that here. However, we do observe that cross traffic is

not able to improve the effective throughput in these scenarios. In fact cross traffic begins

to help only at greater MaxSpeed (15 and 20 m/s) for the TG2 case (see Figure 6.8), i.e.,

when route errors increase significantly.

Cumulative ADU Delay Distributions So far we have investigated only the average

delays experienced by ADUs. We now examine the nature of the delay distributions that

occur as a result of sending task data using CBR and Exponential traffic patterns. Figures

6.13 and 6.14 show the empirical cumulative probability distributions (CDF) of ADU delay

110

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ADU Delay [src → sink] (in seconds)

P
r{

D
el

ay
 >

 x
}

Complementary CDF (params: 100 devices, constant mobility scenario)

TG1 − CBR
TG1 − EXPO
TG2 − CBR
TG2 − EXPO

Figure 6.14: Empirical Cumulative Distribution Function of ADU Delay (PT = 0s)

samples. A logarithmic scale is used for the delay samples in order to differentiate between

delays at lower and higher ends more effectively. In Figure 6.13, delays for the static case

are plotted. We observe that CBR delay values span a much smaller range than their

exponential counterparts. The structure of the task graph does not affect that of the CDF

curves. That is primarily because the distribution of sinks in both TG1 and TG2 have a

common aspect which is a dominant factor in the determination of ADU delays; two sinks

each in TG1 are 3 and 4 logical hops away from the source, respectively. Similarly, in TG2,

four sinks are 3 logical hops away and two sinks are 4 logical hops away from the data

source.

CDF curves of delays in the constant mobility scenario are plotted in Figure 6.14.

We can easily see that although the shapes of the curves are similar at lower values of delay,

they become much flatter and somewhat heavy tailed at larger values for both TGs and

traffic patterns. These samples correspond to ADUs which had to experience delays due to

111

route errors and expiry of TCP timers. In this dissertation, we do not attempt to investigate

the exact statistical nature of the distribution, and leave that as a topic of future research.

6.2 Simulation Results for the Homogeneous Case

In this section, we investigate the scenario in which the nodes in the task graph are homo-

geneous, i.e., they do not have distinct attributes. First, we analyze the performance of the

distributed version of the GreedyEmbed algorithm for embedding trees of different sizes

and depths on static random topologies with respect to several metrics proposed in Section

3.4. Secondly, we present the results of performance analysis of the GreedyEmbed algo-

rithm on static random topologies with varying spatial node density and investigate factors

which limit the possibility of instantiation. Finally, we investigate and analyze the behavior

of the distributed protocols proposed in Chapter 5 under varying physical parameters such

as mobility and spatial node density (as we have done in Section 6.1).

Definition 6.1 (k-ary tree) A k-ary tree is one which is rooted and each of its non-root

nodes has exactly one parent and between 0 and k children. A complete k-ary tree with `

levels has N = 1 + k+ k2 + . . .+ k`−1 = k`−1
k−1 nodes. If the number of nodes is less than N ,

the nodes are added to the tree from left to right. In other words, nodes are not added to

a parent if there exists another parent with non-zero but less than k children. A k-ary tree

task graph considered in this analysis consists of nodes with identical attributes.

6.2.1 Effect of Variation in Size and Depth of Task Graphs in Static

Scenarios

We conducted a set of simulations for static ad hoc networks with N = 100 devices dis-

tributed uniformly (randomly) in a A = 1000×1000m2 area. We simulated the instantiation

of task graphs of several shapes and sizes on the above topology. Specifically, we chose k-ary

trees as task graphs with k = 2, 3, 4, and 5.

112

8 13 18 23 28 33 38 43 48 53 58 63

1

1.1

1.2

1.3

1.4

1.5
N=100, A=1000x1000, Static Scenario

#Nodes in Task Graph (k−ary Tree)

A
ve

ra
ge

 D
ila

tio
n

(in
 h

op
s)

k=2
k=3
k=4
k=5

8 13 18 23 28 33 38 43 48 53 58 63
1

1.5

2

2.5

3

3.5
N=100, A=1000x1000, Static Scenario

#Nodes in Task Graph (k−ary Tree)

M
ax

im
um

 D
ila

tio
n

(in
 h

op
s)

k=2
k=3
k=4
k=5

Figure 6.15: Dilation after Instantiation for k-ary Tree TGs (static scenario)

k-ary trees were generated for sizes up to |VT | = 63 nodes for k ∈ {2, 3, 4, 5}. The

metrics studied in this analysis were dilation (both average and maximum), instantiation

time, and control overhead at the TG-layer (broadcast-, unicast-, and byte-overhead). Since

no mobility was simulated in this analysis, there were no disconnections and hence no re-

instantiations. For each set of parameters, 10 simulation runs were conducted with random

seeds.

Dilation Figure 6.15 shows the values (averaged over 10 simulation runs) of both average

and maximum dilation. We observe that the average dilation is close to 1 (optimal) for

smaller trees for all values of k. However, for larger trees, the increase in dilation is greater

for k ∈ {3, 4, 5} than for k = 2, although the dilation itself is quite reasonable (< 1.4) The

maximum dilation on the other hand increases at a greater rate as the tree size increases

for all values of k. This phenomenon can be explained from the greedy nature of the

instantiation protocol: suppose a parent wants to instantiate its k children. It will attempt

to select all of them from among the devices in the nearest vicinity (single hop). For larger

sized TGs, each of these k selected child nodes will attempt to instantiate k more children.

Now, for higher values of k, the probability of overlap between the k sets of candidates

(of intermediate nodes) is higher than for the lower values of k. Hence, there is more

113

8 13 18 23 28 33 38 43 48 53 58 63
0

2

4

6

8

10

12
k=2

#Nodes in TG

In
st

an
tia

tio
n

T
im

e
(s

)

8 13 18 23 28 33 38 43 48 53 58 63
0

2

4

6

8

10

12
k=3

#Nodes in TG

In
st

an
tia

tio
n

T
im

e
(s

)

8 13 18 23 28 33 38 43 48 53 58 63
0

2

4

6

8

10

12
k=4

#Nodes in TG

In
st

an
tia

tio
n

T
im

e
(s

)

8 13 18 23 28 33 38 43 48 53 58 63
0

2

4

6

8

10

12
k=5

#Nodes in TG

In
st

an
tia

tio
n

T
im

e
(s

)

Figure 6.16: Instantiation Time for k-ary tree TGs (static scenario)

competition for resources in the MANET; for high k, a device is often not be able to find

all its child instances within 1 MANET hop and has to increase its TTL scope instead

and rebroadcast an S QRY. Therefore, the average dilation value increases. For lower k, the

above phenomenon does not occur and thus the average dilation increases only slightly as

N increases.

We can observe that the maximum dilation is less than 3.5 hops on average. This

means a TG-edge is mapped onto a path in the network that is less than 4 hops in length

(although if averaged over all edges this value goes up to 1.4 hops only). The maximum

dilation value shows an increasing trend but does not exhibit significantly different behaviors

114

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1

1.5

2

2.5

3

3.5

(SRC, DEST) pair

T
C

P
 D

el
ay

 (
se

c)

Figure 6.17: TCP Delays during Instantiation of a 63 node Binary Tree TG

for different values of k.

Instantiation Time In Figure 6.16, we plot the time taken to instantiate a k-ary tree

for each of the 10 simulation runs. We observe a clear bimodal behavior for lower sizes of

TG for all values of k: for one bunch of simulation runs, the instantiation times are closely

distributed below 1 second, whereas for other runs, the times are above the 3 second mark.

This is because of the TCP timeouts that happen occasionally stalling the instantiation

process.3

The principal reason behind such 3 second TCP timeouts is the loss of SYN packets

during the establishment of connection. Figure 6.17 shows the delays suffered by TCP

packets for a sample simulation run for a 63 node binary tree. These losses happen in a
3For the simulation results reported Section 6.1, we used a default TCP timer value of 6s which was the

default ns-2 value. However, for the simulations in this section we used a default value of 3s which is more

in agreement with the recommendations in RFC 2988.

115

8 13 18 23 28 33 38 43 48 53 58 63
0

10

20

30

40

50

60

#Nodes in TG

#B
ro

ad
ca

st
 P

ac
ke

ts
k = 2

simulation
lower bound
lower bound (adjusted)

8 13 18 23 28 33 38 43 48 53 58 63
0

10

20

30

40

50

60

#Nodes in TG

#B
ro

ad
ca

st
 P

ac
ke

ts

k = 3

simulation
lower bound
lower bound (adjusted)

8 13 18 23 28 33 38 43 48 53 58 63
0

10

20

30

40

50

60

#Nodes in TG

#B
ro

ad
ca

st
 P

ac
ke

ts

k = 4

simulation
lower bound
lower bound (adjusted)

8 13 18 23 28 33 38 43 48 53 58 63
0

10

20

30

40

50

60

#Nodes in TG

#B
ro

ad
ca

st
 P

ac
ke

ts

k = 5

simulation
lower bound
lower bound (adjusted)

Figure 6.18: Broadcast Overhead for Instantiation of k-ary Tree TGs (static)

static ad hoc network due to collisions which are in turn caused by channel contention.

This has been pointed out by other researchers as well [33]. However, for larger sizes of

k-ary trees, the bimodal behavior is not observed any more as there are a larger number

of TCP connections open. This and the presence of more instantiation and routing traffic

in the network increases the probability of TCP timeouts. All of these symptoms point

at the need for a better design of a reliable transport protocol for MANETs. We do not

investigate that in this research further.

116

Protocol Control Overhead Here we analyze the control traffic overhead at the TG-

layer due to our protocol. The overhead comprises of that due to both broadcast and unicast

traffic. First we count the total number of broadcast packets that needed to be sent by the

root and by other instantiated devices during the instantiation phase. Figure 6.18 shows

the plots for each k ∈ {2, 3, 4, 5}. The lower bound on the number of necessary broadcasts

is equal to the number of non-leaf nodes in TG since each non-leaf node must perform a

broadcast for its child nodes. The minimum number of broadcasts that are needed to be

originated is given in terms of the embedding function (ϕ,ψ) : T → G by this expression:

minBCAST =
∑
v∈VT

max
w∈VT :

(v,w)∈ET

{‖ψ(v, w)‖G} (6.1)

For a k-ary tree with n = |VT | nodes, the number of non-leaf nodes is given by bn+k−2
k c

(this is the number of terms in the summation in Equation 6.1), and hence a lower bound

for the minimum number of initial broadcasts necessary for the distributed instantiation

protocol is given by:

minBCAST >

⌊
n+ k − 2

k

⌋
(6.2)

This is a bound linear in n that can be met only when an embedding with perfect

dilation (= 1) can be found in the network. In this situation, no rebroadcasts are necessary.

From Figure 6.18 we observe that the results agree with the dilation curves in Figure 6.15.

For low k, since the dilation is close to 1, the number of broadcasts is only slightly above the

lower bound and that too for larger TGs. For higher k, the two curves diverge at smaller n,

since TTL timers expire more often and broadcasts with greater TTL scope are necessary

for discovery and instantiation of devices. Figure 6.19 which shows curves for forwarded

broadcast packets corroborates this analysis. If the average dilation of an embedding is

davg, the number of broadcasts that were needed to be originated can be approximated by:

nBCAST ≈
⌊
n+ k − 2

k

⌋
× davg. (6.3)

117

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

P
ac

ke
t o

ve
rh

ea
d

k = 2

#bpkt (originated)
#bpkt (forwarded)
#unicast pkt

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

P
ac

ke
t o

ve
rh

ea
d

k = 3

#bpkt (originated)
#bpkt (forwarded)
#unicast pkt

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

P
ac

ke
t o

ve
rh

ea
d

k = 4

#bpkt (originated)
#bpkt (forwarded)
#unicast pkt

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

P
ac

ke
t o

ve
rh

ea
d

k = 5

#bpkt (originated)
#bpkt (forwarded)
#unicast pkt

Figure 6.19: Control Traffic Overhead at TG-layer for k-ary Tree (static)

We plot this quantity for each value of k in Figure 6.18 and observe that it lies

between the lower bound and the actual simulation result. The reason why this does not

exactly coincide with the simulation results is that davg alone is not enough to accurately

account for the number of broadcasts; the entire sequence of lengths of network paths onto

which the TG edges were mapped determines the exact number of broadcasts as shown in

Equation 6.1.

The control overhead due to unicast packets (both UDP C RESP packets and TCP

packets such as ACK, CONFIRM, SUBTREE CONF, PREINST HELLO) are plotted alongside the

broadcast overhead curves in Figure 6.19 and on separate axes in Figure 6.20. We observe

118

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

#U
ni

ca
st

 C
on

tr
ol

 P
ac

ke
ts

k = 2

simulation (total)
estimate (total)
TCP (lower bound)

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

#U
ni

ca
st

 C
on

tr
ol

 P
ac

ke
ts

k = 3

simulation (total)
estimate (total)
TCP (lower bound)

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

#U
ni

ca
st

 C
on

tr
ol

 P
ac

ke
ts

k = 4

simulation (total)
estimate (total)
TCP (lower bound)

8 13 18 23 28 33 38 43 48 53 58 63
0

200

400

600

800

1000

#Nodes in TG

#U
ni

ca
st

 C
on

tr
ol

 P
ac

ke
ts

k = 5

simulation (total)
estimate (total)
TCP (lower bound)

Figure 6.20: Unicast Control Overhead for Instantiation of k-ary Tree TGs (static)

that the control overhead is almost linear in n (size of TG) for all values of k. For the sake of

comparison, we plotted the lower bound for the TCP control overhead and a rough estimate

of the total unicast control overhead. The lower bound for the TCP packet overhead can

be calculated as a function of n and k as follows:

nTCP = nACK + nCONFIRM + nSUBTREE CONF + nPREINST HELLO + nPREINST HELLO ACK

> (n− 1) + (n− 1) + (
⌊
n+ k − 2

k

⌋
− 1) + (n− 1) + (n− 1)

= 4n+
⌊
n+ k − 2

k

⌋
− 5 (6.4)

Note that REJECT packets do not feature in the lower bound calculation as in the best

119

8 13 18 23 28 33 38 43 48 53 58 63
0

5

10

15
x 10

4 Total (for entire TG)

#Nodes in TG

B
yt

e
ov

er
he

ad

k = 2
k = 3
k = 4
k = 5

8 13 18 23 28 33 38 43 48 53 58 63
0

500

1000

1500

2000

2500
Average (per TG node)

#Nodes in TG

B
yt

e
ov

er
he

ad

k = 2
k = 3
k = 4
k = 5

Figure 6.21: Byte Overhead for Instantiation of k-ary Tree TGs (static)

case no REJECT packets would have to be sent. The rest of the unicast control overhead is

contributed by UDP C RESP packets, the number of which can be estimated in the following

manner: if there are N nodes uniformly distributed in area A, then the average number of

neighbors (node degree) is given by ρ = N
AπR

2 − 1, where R is the transmission range of a

device. Since all the devices in the network are assumed to be homogeneous in this analysis

each broadcast query will have ρ responding candidates on average. Since a k-ary tree on

n nodes results in bn+k−2
k c originated broadcasts in the best case, the number of C RESP

packets can be estimated as:

nC RESP ≈ ρ× nBCAST ≈ (
N

A
πR2 − 1)×

⌊
n+ k − 2

k

⌋
× davg (6.5)

Multihop broadcasts can result in more responses from candidate devices but at

the same time the devices that have already been instantiated will not respond to future

broadcasts. Because of these two opposing effects, the exact calculation of nC RESP in a

succinct closed form is difficult. The important point here is that the slope of the curve is

influenced by the spatial area density of devices in the network. We plot the unicast control

packet overhead in Figure 6.20 and observe that it is almost linear in n. The overhead is

slightly lower for higher values of k since the number of broadcasts (and hence the number

120

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0

10

20

30

40

50

60

70

80

90

100

Dimension of Square Area (km)

A
vg

. #
de

vi
ce

s
in

 th
e

C
on

ne
ct

ed
 C

om
po

ne
nt

 o
f U

N = 100; #simruns = 10000 (uniform random topologies)

Figure 6.22: Effect of Spatial Node Density on the Size of the Connected Component of U

of responses) as well as number of SUBTREE CONF packets is lower.

The byte overhead of the instantiation protocol is plotted in Figure 6.21. We can

observe that the per device byte overhead increases linearly with n. This is because the

size of the task graph increases linearly with n and since the TGs are encapsulated into ACK

packets for instantiation, the per device byte overhead increases linearly with n as well. For

this reason the total byte overhead increases quadratically. If a recursive definition of the

tree task graph is possible, the per node byte overhead is likely to be constant.

6.2.2 Effect of Variation in Spatial Node Density

In this research we restrict the definition of instantiation in the sense that only one node

in a given task graph can be mapped to a physical device in the network.4 Under these

assumptions, the size of the network restricts the size of TG that can be instantiated. We
4However, one device is allowed to participate in multiple tasks if possible.

121

1

1.5

2

2.5

3

10
15

20 25
30

35 40
45

50
55

63

0

0.2

0.4

0.6

0.8

1

Dimension of Square Area (km)

N = 100; #simruns = 10000 (uniform random topologies)

Number of nodes in TG

F
re

qu
en

cy
 o

f C
om

pl
et

ed
 In

st
an

tia
tio

n

Figure 6.23: Effect of Spatial Node Density on the Probability of Instantiation

realized that connectivity of resources is the base minimum requirement for task instantia-

tion. In theory a user device is capable of instantiating a TG if it can reach at least as many

resources in the network as there are logical nodes in the TG.5 In graph theoretic terms, if

the connected component of devices in the network containing the user device has at least

as many nodes as the size of TG, then instantiation is possible.

The sizes of connected components is primarily affected by physical parameters such

as spatial density and mobility. In Figure 6.23 we show the effect of variation in spatial

density of nodes on the probability of successful instantiation. Spatial density is varied by

keeping the number of devices in the network constant (N = 10) and varying the dimensions

of the square area (d) in which the devices are uniformly (randomly) distributed between 1

km and 3 km. The transmission range is fixed at 250 meters. We generated 10000 different

topologies with (x,y) coordinates of devices distributed randomly and uniformly between 0
5In practice, reachability does not guarantee instantiation due to imperfection in network and transport

protocols.

122

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Dimension of Square Area (km)

A
ve

ra
ge

 D
ila

tio
n

(in
 h

op
s)

#Devices = 100; #simulation runs = 10000

10 nodes
15 nodes
20 nodes
25 nodes
30 nodes
35 nodes
40 nodes
45 nodes
50 nodes
55 nodes
63 nodes

10 15 20 25 30 35 40 45 50 55 63

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Number of nodes in TG

A
ve

ra
ge

 D
ila

tio
n

(in
 h

op
s)

#Devices = 100; #simulation runs = 10000

1.0 km
1.1 km
1.2 km
1.3 km
1.4 km
1.5 km
1.6 km
1.7 km
1.8 km
1.9 km
2.0 km
2.1 km
2.2 km
2.3 km
2.4 km
2.5 km
2.6 km

Figure 6.24: Dilation of a Binary Tree in Random Static Topologies

and d, and conducted one simulation run on each topology. We instantiated binary trees

of various sizes on these randomly generated static topologies and recorded the number of

times instantiation was possible.

We observe from Figure 6.22 that the size of the connected component of the user

device U starts decreasing at a sharp rate when d is increased past 1.7 km and then starts

to taper off when the dimension is increased past 2.4 km. Essentially, increasing the area

gradually fragments the network into multiple components. For 1.7 6 d 6 2.4, the size

of the connected component containing U drops sharply than for other values of d. This

causes a sharp drop in the probability of successful instantiation of large task graphs as

shown in Figure 6.23. This analysis helps us to estimate the regimes where instantiation is

possible. Note that the drop in probability of successful instantiation is more gradual for

trees of smaller sizes (∼ 10). This is because the probability that the size of the connected

component of U is greater than a low value does not drop drastically.

We also calculate the average dilation of embeddings in this analysis; it is plotted in

two different styles in Figure 6.24. From the plot on the left, we observe that for each size of

the task graph, average dilation first increases with increase in dimension of square area (d)

and then flattens. This phenomenon can be explained by the shape of the curve in Figure

6.22. As d increases, the average size of the connected component containing U reduces, and

123

Table 6.3: Simulation Parameters (Homogeneous Case with Mobility)

Simulation Parameter Value

Number of Devices, N 100

Simulation Area, A 1000×1000, 1414×1414, 2000×2000

Transmission Radius, Tx 250m

Mobility Model Random Waypoint

MANET Routing Protocol Dynamic Source Routing (DSR)

#Classes of Devices, |C| 1 (homogeneous)

Size of TG: (|VT |) {3, 7, 15, 31, 63} (complete binary trees)

Simulation Period 400s

MaxSpeed, vmax 1, 5, 10, 15, 20 m/s

MinSpeed, vmin 0 m/s

Pause Time, PT 0, 100s

Data Traffic Pattern CBR: burst: 250 bytes; period: 1.0s

the richness of connectivity in the connected component reduces too. This results in TG

edges being mapped to paths of greater lengths, and hence the average dilation increases.

For larger task graphs, the curves taper off as d increases further because in most such cases,

instantiation was unsuccessful and hence the average dilation calculation is performed over

much smaller number of samples than in the other cases.

Another observation is that at any value of d the average dilation increases linearly

as the size of the tree increases (see Figure 6.24(b)). This is a result of the greedy nature

of the GreedyEmbed protocol. After nodes at higher levels in the tree TG are greedily

embedded to devices near each other and the user device, the nodes at lower levels in the

tree tend to be embedded at greater distances from their parents since the devices near the

parent may all have been instantiated earlier. Hence, the average dilation increases with

the size of TG at any given density. The linear slope is a result of the uniform distribution

of devices.

124

We conclude from this analysis that low spatial density of nodes beyond a cer-

tain threshold can cause network fragmentation and reduce the probability of instantiation

severely. This threshold can be visualized qualitatively for each size of TG as the lightly

shaded area of the mesh plotted in Figure 6.23. Even if instantiation is possible, the result-

ing embedding is likely to have a high dilation which would drastically affect other critical

metrics such as throughput and delay.

6.2.3 Performance Evaluation under Mobility

To conclude this chapter we describe the simulation results of our protocols under the effect

of simultaneous variation in physical parameters such as mobility as well as spatial node

density. The simulation parameters for this study are outlined in Table 6.3. We investigated

three different spatial node densities in order to corroborate some of the predictions that we

reported about the possibility of instantiation in Section 6.2.2. 100 devices are randomly

distributed in square fields of areas 1, 2 and 4km2. If the devices’ locations obey uniform

probability distribution, each device has approximately 18, 9 and 4 neighbors respectively.

We refer to these three scenarios by dense, moderately sparse and sparse, respectively. We

fix vmin = 0 which means vavg = 1
2vmax. Also, we kept the traffic injection rate low in

these studies since we did not want the networks to be congested because of high aggregate

traffic loads, as that situation can easily happen for tasks involving 63 nodes for greater

application data-rates.

Instantiation Time We first study how long it takes to instantiate task graphs of differ-

ent sizes on each of these MANETs. Figure 6.25 shows scatter-plots of instantiation times

for each TG for both the constantly mobile case (PT = 0s) and the temporarily static case

(PT = 100s). The dashed line joins the median values. The scales are same for each value

of |VT | (for both values of PT). We can see some clear phenomena from the set of plots:

• The bimodal behavior observed in the static case (see Section 6.2.1) is observed again

125

1 5 10 15 20
0

1

2

3

4
In

st
T

im
e

(s
ec

)
#TGNodes=3

pt=0s

1 5 10 15 20
0

1

2

3

4

In
st

T
im

e
(s

ec
)

#TGNodes=3

pt=100s

1 5 10 15 20
0

1

2

3

4

In
st

T
im

e
(s

ec
)

#TGNodes=7

pt=0s

1 5 10 15 20
0

1

2

3

4

In
st

T
im

e
(s

ec
)

#TGNodes=7

pt=100s

1 5 10 15 20
0

5

10

15

In
st

T
im

e
(s

ec
)

#TGNodes=15

pt=0s

1 5 10 15 20
0

5

10

15
In

st
T

im
e

(s
ec

)
#TGNodes=15

pt=100s

1 5 10 15 20
0

5

10

15

20

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=0s

1 5 10 15 20
0

5

10

15

20

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=100s

1 5 10 15 20
0

10

20

30

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=0s

1 5 10 15 20
0

10

20

30

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=100s

Figure 6.25: Instantiation Time (dense networks)

126

1 5 10 15 20
0

5

10

15

20

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=0s

1 5 10 15 20
0

5

10

15

20

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=100s

1 5 10 15 20
0

5

10

15

20

25

30

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=0s

1 5 10 15 20
0

5

10

15

20

25

30

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=100s

N = 100, A = 2 sq. km

Figure 6.26: Instantiation Time (moderately sparse networks)

in this scenario. For |VT | ∈ {3, 7, 15}, we observe that although most instantiation

times are distributed in the sub-second mark, some values are distributed around the

3s mark. This was traced to TCP timeouts in all the cases. As the size of the TG

increases, there are more TCP timeouts, and hence more values occur near the 3s

mark.

• The median value is not heavily affected by device mobility with the exception of the

case with (|VT | = 63, vmax = 20, PT = 0) which is the case of instantiating the largest

TG in a scenario with the greatest mobility. In that scenario, the median instantiation

time is above 10s.

• For |VT | > 15, we observe a few values appearing around the 15s mark. These cor-

respond to the cases where the instantiation protocol was disrupted by mobility and

local patching helped the process complete successfully. Since the HELLO PERIOD was

chosen to be 14s for this set of experiments, several InstTime values are distributed

127

1 5 10 15 20
10

0

10
1

10
2

10
3

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=0s

1 5 10 15 20

10
1

10
2

10
3

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=100s

1 5 10 15 20

10
1

10
2

10
3

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=0s

1 5 10 15 20

10
1

10
2

10
3

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=100s

N = 100, A = 4 sq. km

Figure 6.27: Instantiation Time (sparse networks)

around 15s.

We attempted to instantiate these task graphs using the centralized approach pro-

posed by us elsewhere [50] but observed that the centralized algorithm was simply not able

to instantiate task graphs with 63 nodes. This is because the root node which acts as

a central controller in that algorithm is overwhelmed with traffic and suffers from heavy

packet losses due to heavy congestion. It actually fails to instantiate disconnected nodes

even after trying several times. This in fact illustrates the effectiveness of the distribu-

tion of the control of the instantiation process to children nodes as well as that of failure

recovery techniques proposed in Section 5.3, namely local detection of disconnections and

TG-patching.

Figure 6.26 shows the instantiation time values for moderately sparse networks

(square with side 1.414 km). We only plot the cases of |VT | = 31 and 63. We observe

behavior very similar to that observed for dense networks. Like in the dense case, in the

128

most extreme scenario, i.e., (|VT | = 63, vmax = 20, PT = 0) we observe that the instantia-

tion times are higher. However, from Figure 6.27 it can be observed that instantiation times

are much greater in sparse networks (square with side 2 km). We plot the Y-axis in loga-

rithmic scale to illustrate the range of values and the variations. This analysis shows that

the spatial density of nodes in the MANET is more important in governing the instantiation

process than device mobility itself. From the analysis in Section 6.2.2, we observed that for

a static uniform distribution of nodes, the number of nodes in the connected component of

the user node starts dropping drastically for d > 1.7 km. For this reason, we see different

results for d = 2 km than for d = 1 km or d = 1.414 km even in the mobile case. The

network is partitioned on several occasions for every simulation run with d = 2 km, and

sometimes these events result in failure of instantiation (values equal to 400 seconds in the

figure).

To analyze this situation further we decided to measure the unreachability of de-

vices in a mobile network via the size of the connected component of the user device as a

function of time. Figures 6.28– 6.31 plot this quantity for the 10 simulation runs for a few

representative values of vmax and PT . We plot these curves starting at 200 seconds since

our instantiation process begins at that time. It is easy to find correspondence between

these curves and the corresponding instantiation plots of Figure 6.27. For example, for

(|VT | = 31; vmax = 5;PT = 0), the higher instantiation times (see Figure 6.27) correspond

to the third and the eighth scenarios in Figure 6.28. For (|VT | = 31; vmax = 5;PT = 100),

it is the eighth scenario in Figure 6.29. Although MaxSpeed and PauseTime do not seem

to significantly affect instantiation time, they do have an impact on the throughput; this

phenomenon is described later in the chapter.

Average Effective Throughput As mentioned in Section 6.1 this metric is affected

most by mobility factors in the MANET. Figure 6.32 depicts the behavior of cumulative

effective throughput with progression of time. Each curve corresponds to a random constant

mobility scenario with specific parameters: N = 100;A = 2km2; vmax = 20m/s;PT = 0s.

129

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

Figure 6.28: Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 5 m/s; PT = 0 sec; 10 simulation runs)

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

Figure 6.29: Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 5 m/s; PT = 100 sec; 10 simulation runs)

130

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

Figure 6.30: Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 20 m/s; PT = 0 sec; 10 simulation runs)

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

200 300 400 500
0

20

40

60

80

100

Figure 6.31: Size of the Connected Component Containing the User as a Function of Time

(N = 100, A = 4km2, vmax = 20 m/s; PT = 100 sec; 10 simulation runs)

131

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

A
vg

E
ffT

Simulation Time Index

N=100, A=1414x1414, #Nodes in TG = 31, v
max

=20m/s, PT=0

Figure 6.32: Cumulative Effective Throughput vs. Simulation Time (10 runs)

We observe that the throughput is quite high in the beginning (following instantiation); then

due to constant device mobility, the data-flows get disrupted and the cumulative throughput

drops in most mobility scenarios. However, cumulative throughput then increases and

eventually stabilizes to a value in the 0.6–0.8 range. This is a result of the disconnection

detection, re-instantiation and TG-patching protocols described in Section 5.3.

The 3-dimensional plot in Figure 6.33 illustrates how MaxSpeed and PauseTime

can affect effective throughput even in dense networks for various sizes of TG. We can

clearly observe a linear fall in average throughput with increase in MaxSpeed (vmax) for

any given size of TG. This is observed for both constant mobility scenario (PT = 0) and

the temporarily static scenario (PT = 100), the only difference being that the slopes of the

curves in the former case are slightly steeper.

Although the network is almost always connected in the dense scenario, rapid, fre-

quent motion of devices (at higher values of vmax and low values of PT) causes frequent

132

1
5

10
15

20

3715
31

63

0.5

0.6

0.7

0.8

0.9

1

v
max

 (m/s)

A=1 km2, PT = 0 sec

#TG−Nodes

A
vg

E
ffT

1
5

10
15

20

3715
31

63

0.5

0.6

0.7

0.8

0.9

1

v
max

 (m/s)

A=1 km2, PT = 100 sec

#TG−Nodes

A
vg

E
ffT

Figure 6.33: Effective Throughput vs. Size of TG (dense network)

disruption of routes and triggers route discovery. Sometimes the route changes are so fre-

quent that TCP is unable to deliver the HELLO message to the appropriate logical neighbor

in the HELLO PERIOD time duration. With the route cache option on, DSR would try to

use cached routes which have a high probability of being stale in dense networks especially

for if they are long. This can naturally result in several TCP timeouts. Since TCP treats

the event of failure in delivery as a sign of congestion, it backs its retransmission timer off

exponentially and that reduces the probability of successful delivery of the HELLO message.

In the worst case, this can result in a re-instantiation and hence loss of some throughput.

The fall in average effective throughput is linear with increase in vmax because the average

number of re-instantiations also increases linearly with increase in vmax (See Figure 6.34).

Also, we observe from Figure 6.35 that it usually takes less than 1s time to re-instantiate

a node in TG. The samples corresponding to the 3s mark are caused by TCP dynamics

explained earlier in this section.

Similar symptoms are reported in Section 6.1. As mentioned in that section, the

solution to this problem involves the design of a transport protocol which retains TCP’s

semantics but is friendlier in MANET environments. This is out of the scope of this disser-

tation.

133

1
5

10
15

20

3715
31

63
0

50

100

150

v
max

 (m/s)

N=100, A=1 km2, PT=0 sec

#TG−Nodes

A
vg

 #
re

−
in

st
 (

in
 4

00
s)

1
5

10
15

20

3715
31

63
0

50

100

150

v
max

 (m/s)

N=100, A=1 km2, PT=100 sec

#TG−Nodes

A
vg

 #
re

−
in

st
 (

in
 4

00
s)

Figure 6.34: Average Number of Re-instantiations (dense network)

We also observe that effective throughput drops almost linearly6 as the size of TG

increases. The principal reason behind this is the stringent definition of throughput that we

have imposed. In a tree TG, all the sinks are located at the leaf nodes and a contribution

to throughput is counted only when an ADU originated at the user reaches a currently

instantiated sink node. A 63 node binary tree TG has double the number of sink nodes

than a 31 node binary tree possesses (32 against 16). Hence for a given mobility pattern

(vmax, PT), the former is likely to have proportionally more disruptions than the latter and

therefore the effective throughput drops accordingly.

Effective throughput curves for the moderately sparse network have been plotted

in Figure 6.36. No significant variation can be observed from the results presented for the

dense network case. However we do observe significant differences for the sparse network

scenario. The scatter-plots in Figure 6.37 indicate that the variance in effective throughput

is much greater for a sparse network scenario than its denser counterparts. The variance is

particularly large for the higher PauseTime (PT = 100) for certain speeds such as vmax =

5, 15, and 20 m/s. Figures 6.28–6.31 readily explain why this is so. From Figure 6.29

(corresponding to the vmax = 5 case), we can observe that for 4 scenarios (4th, 6th, 8th and

9th) either the network is fragmented for a long time or the user (root) device does not have
6Slope of the line is dependent on a function of various factors such as N, |VT |, vmax, PT .

134

1 5 10 15 20
0

1

2

3

4
R

e−
In

st
T

im
e

(s
ec

)
#TGNodes=3

pt=0s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

#TGNodes=3

pt=100s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

#TGNodes=7

pt=0s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

#TGNodes=7

pt=100s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

#TGNodes=15

pt=0s

1 5 10 15 20
0

1

2

3

4
R

e−
In

st
T

im
e

(s
ec

)
#TGNodes=15

pt=100s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=0s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

#TGNodes=31

pt=100s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=0s

1 5 10 15 20
0

1

2

3

4

R
e−

In
st

T
im

e
(s

ec
)

Max Speed (m/s)

#TGNodes=63

pt=100s

Figure 6.35: Time Taken to Re-Instantiate a TG Node (dense network)

135

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
vg

E
ffT

#TGNodes=31

pt=0s

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
vg

E
ffT

#TGNodes=31

pt=100s

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Max Speed (m/s)

A
vg

E
ffT

#TGNodes=63

pt=0s

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Max Speed (m/s)

A
vg

E
ffT

#TGNodes=63

pt=100s

N = 100, A = 2 sq. km

Figure 6.36: Effective Throughput in Moderately Sparse Networks

enough reachable devices in its connected component most of the time, thus hampering the

task execution process. Since we compute effective throughput starting from the instant of

completion of the initial instantiation, we only see 3 points in Figure 6.37 that correspond to

low effective throughput.7 Similarly from Figure 6.31 (corresponding to the vmax = 20 case),

we observe several scenarios where there are severe disruptions in the network topology and

hence more re-instantiations and low throughput.

We observe an additional phenomenon from Figure 6.37: contrary to the situation

in denser topologies, constant mobility (PT = 0) in sparse topology yields better effective

throughput than intermittent motion with temporary static phases (PT = 100 here). This

is because in sparse topologies, islands are often formed and constant mobility often brings

islands together forming connected networks with larger sizes. If motion is intermittent,

although route changes occur less frequently, network partitions take more time to heal and
7Although instantiation time is high for the 8th scenario, its effective throughput is not low.

136

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
vg

E
ffT

#TGNodes=31

pt=0s

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

A
vg

E
ffT

#TGNodes=31

pt=100s

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Max Speed (m/s)

A
vg

E
ffT

#TGNodes=63

pt=0s

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Max Speed (m/s)

A
vg

E
ffT

#TGNodes=63

pt=100s

N = 100, A = 4 sq. km

Figure 6.37: Effective Throughput in Sparse Networks

hence result in occasionally very low throughput.

Source-to-Sink Delay Another metric that captures the performance of the task exe-

cution protocol is the ADU delay (as defined in Section 3.4 and mentioned in Section 6.1).

Along with the ADU delay we also plot the average number of hops traversed by an ADU

in its flight from the user device (source) to a sink. Results for the dense network are plot-

ted in Figure 6.38. From the “hops” curves, we can observe two things: (1) vmax and PT

seem to have very little impact, and (2) number of hops traversed increases logarithmically

with size of TG (|VT |). The explanation for the second observation is that the number of

hops traversed by an ADU is proportional to the depth of the TG (distance from source

to sink) and also to the average dilation of the embedding. Actually on average an ADU

needs to traverse davg× (log2 |VT |− 1) hops from the source to a sink. For a static network,

we showed by simulation in Section 6.2.1 that davg was slightly above 1.0 for binary trees.

137

1
5

10
15

20

3715
31

63
0

2

4

6

8

10

v
max

 (m/s)

A=1 km2, PT = 0 sec

#TG−Nodes

A
vg

 #
ho

ps
 (

A
D

U
)

1
5

10
15

20

3715
31

63
0

2

4

6

8

10

v
max

 (m/s)

A=1 km2, PT = 100 sec

#TG−Nodes

A
vg

 #
ho

ps
 (

A
D

U
)

1
5

10
15

20

3715
31

63
0

1

2

3

v
max

 (m/s)

A=1 km2, PT = 0 sec

#TG−Nodes

A
vg

 A
D

U
 D

el
ay

 (
se

c)

1
5

10
15

20

3715
31

63
0

1

2

3

v
max

 (m/s)

A=1 km2, PT = 100 sec

#TG−Nodes

A
vg

 A
D

U
 D

el
ay

 (
se

c)

Figure 6.38: Source→Sink ADU Statistics: Hops Traversed and Delay (dense network)

This closely agrees with the number of hops traversed in the vmax = 1 case (least degree of

mobility). However for higher degrees of mobility, the value of davg increases because the

paths to which TG edges have been mapped at the time of instantiation are stretched due

to motion. Therefore, the number of hops traversed slightly increases while preserving the

logarithmic nature of the curves.

In an ideal situation, ADU delay over a MANET hop should be constant. Therefore

the “delay” curves should also appear similar in shape as the “hops” curves (with a constant

multiplicative factor). Unfortunately, that is not the case in a real MANET in which large

fraction of devices (> 63% for |VT | = 63) are participating in instantiation and subsequent

138

1 5 10 15 20
0

5

10

15

20

v
max

 (m/s)

A
vg

 #
ho

ps
 (

A
D

U
)

#TGNodes=31

pt=0s

1 5 10 15 20
0

5

10

15

20

v
max

 (m/s)

#TGNodes=31

pt=100s

1 5 10 15 20
0

5

10

15

20

v
max

 (m/s)

#TGNodes=63

pt=0s

1 5 10 15 20
0

5

10

15

20

v
max

 (m/s)

#TGNodes=63

pt=100s

1 5 10 15 20
0

1

2

3

4

5

6

7

v
max

 (m/s)

A
D

U
 D

el
ay

 (
se

c)

#TGNodes=31

pt=0s

1 5 10 15 20
0

1

2

3

4

5

6

7

v
max

 (m/s)

#TGNodes=31

pt=100s

1 5 10 15 20
0

1

2

3

4

5

6

7

v
max

 (m/s)

#TGNodes=63

pt=0s

1 5 10 15 20
0

1

2

3

4

5

6

7

v
max

 (m/s)

#TGNodes=63

pt=100s

Figure 6.39: Source→Sink ADU Statistics: Hops Traversed and Delay (sparse network)

task execution. In fact, we observe from Figure 6.38 that the average ADU delay increases

linearly, not logarithmically, as |VT | is increased from 31 to 63. The principal reason be-

hind this is that ADUs are sent as TCP packets and TCP throughput drops drastically

(hence delays increase accordingly) as length of the source–destination route increases in

MANETs [42]. Another important reason is that for large task graphs, a large fraction of

devices in the network participate in the task and that results in significant contention or

even congestion in the network which in turn increase TCP delays.

Increase in vmax also results in more frequent route errors which in turn cause more

TCP delays. This culminates in increased ADU delays. Therefore, delay sensitive tasks

that are large are not ideally suited for highly mobile ad hoc networks, although they can

139

be perfectly executed on MANETs with low mobility (see delay values at low speeds in

Figure 6.38).

From Figure 6.39 we observe that for the sparse network, “hops” values are greater

than in the dense network case. This is because the network is sparser and the average

dilation of the embedding is high. Consequently, the average ADU delays are larger than

the corresponding values in the dense situation.

Protocol Overhead Finally, we study how protocol overhead (in terms of TG-layer

control packets and bytes) is affected by mobility and spatial density. We measure TG-

layer overhead similar to the way it is done in Section 6.2.1. For the dense network, the

overhead curves are presented in Figure 6.40 in four categories. We observe that the number

of originated broadcasts increases linearly up to |VT | 6 31 and increases at a faster rate

beyond that. This is because the average dilation of the embedding found by the protocol

tends to increase as the size of TG increases, thus resulting in more “expanding ring search”

type broadcasts. Each broadcast that has a TTL value larger than 1 implies additional

forwarded broadcasts, a fact that can be readily observed in Figure 6.40. Also the number

of originated broadcasts increases with increase in MaxSpeed due to the occurrence of more

re-instantiations.

We observe from Figure 6.40 that the unicast control traffic tends to dominate the

protocol overhead and it increases linearly with |VT |. The reasons for this are the same

as those given in Section 6.2.1. The values are larger in these plots than in the ones in

Figure 6.19 because we had only simulated the instantiation phase in the plots presented

earlier. We observe a linear increase in unicast control overhead as well as byte overhead, as

MaxSpeed is increased for the case of |VT | = 63. This is simply a result of a linear increase in

the number of re-instantiations (see Figure 6.34). The overhead plots for the sparse network

are similar for the constant mobility scenarios (see Figure 6.41) but the overhead is much

greater and non-uniform for the PT = 100 case. This can be attributed to the frequent

140

1 5
10

15
20

3715
31

63
0

100

200

v
max

 (m/s)

A=1 km2, PT=0

#TG−Nodes

O
rig

. B
ro

ad
ca

st

1 5
10

15
20

3715
31

63
0

500

1000

v
max

 (m/s)#TG−Nodes

F
w

de
d.

 B
ro

ad
ca

st

1 5
10

15
20

3715
31

63
0

5000

10000

v
max

 (m/s)#TG−Nodes

U
ni

ca
st

 P
kt

s

1 5
10

15
20

3715
31

63
0

2

4

6

8

x 10
5

v
max

 (m/s)#TG−Nodes

B
yt

e
O

ve
rh

ea
d

1 5
10

15
20

3715
31

63
0

100

200

v
max

 (m/s)

A=1 km2, PT=100

#TG−Nodes

O
rig

. B
ro

ad
ca

st

1 5
10

15
20

3715
31

63
0

500

1000

v
max

 (m/s)#TG−Nodes

F
w

de
d.

 B
ro

ad
ca

st

1 5
10

15
20

3715
31

63
0

5000

10000

v
max

 (m/s)#TG−Nodes

U
ni

ca
st

 P
kt

s

1 5
10

15
20

3715
31

63
0

2

4

6

8

x 10
5

v
max

 (m/s)#TG−Nodes

B
yt

e
O

ve
rh

ea
d

Figure 6.40: Average Protocol Overhead in Packets and Bytes (dense network)

141

1 5 10 15 20
0

2000

4000

6000

8000

10000

12000

O
ve

rh
ea

d
(#

pk
ts

 in
 4

00
s)

#TGNodes=31; PauseTime=0

bcast (orig)
bcast (fwd)
unicast

1 5 10 15 20
0

2000

4000

6000

8000

10000

12000

O
ve

rh
ea

d
(#

pk
ts

 in
 4

00
s)

#TGNodes=31; PauseTime=100

bcast (orig)
bcast (fwd)
unicast

1 5 10 15 20
0

2000

4000

6000

8000

10000

12000

Max Speed (m/s)

O
ve

rh
ea

d
(#

pk
ts

 in
 4

00
s)

#TGNodes=63; PauseTime=0

bcast (orig)
bcast (fwd)
unicast

1 5 10 15 20
0

2000

4000

6000

8000

10000

12000

Max Speed (m/s)

O
ve

rh
ea

d
(#

pk
ts

 in
 4

00
s)

#TGNodes=63; PauseTime=100

bcast (orig)
bcast (fwd)
unicast

1 5 10 15 20
0

2

4

6

8

x 10
5

Max Speed (m/s)

B
yt

e
O

ve
rh

ea
d

(in
 4

00
s)

Pause Time = 0 sec

31 TG−nodes
63 TG−nodes

1 5 10 15 20
0

2

4

6

8

x 10
5

Max Speed (m/s)

B
yt

e
O

ve
rh

ea
d

(in
 4

00
s)

Pause Time = 100 sec

31 TG−nodes
63 TG−nodes

Figure 6.41: Average Protocol Overhead in Packets and Bytes (sparse network)

142

network partitions that occurred in that case (see Figure 6.31 for the (PT = 100, vmax = 20)

case). Explanations for this phenomenon have been given before.

6.3 Discussion

In this chapter we reported detailed simulation results and analysis of our instantiation

protocols for several different types of task graphs and networks while varying the spatial

density and mobility of devices in the network. The primary motivation behind this analysis

was to identify the factors that have the most impact on our instantiation algorithms.

Thus, the analysis can prove useful for a system designer wishing to deploy certain mobile

networking applications introduced in this dissertation.

We simulated heterogeneous as well as homogeneous task graphs. Heterogeneous

task graphs were chosen to be smaller in size than their homogeneous counterparts. This

was because distributed tasks that require cooperation of computing elements embodying

heterogeneous functionality are likely to be less complex in size than tasks which have

homogeneous components.

The analysis presented in this chapter is by no means exhaustive as one can envision

many additional styles of task graphs in future applications. The networks supporting

those applications may have very different characteristics from the ones studied here. For

example, specific application scenarios may result in more predictable mobility models than

pure random waypoint. We claim that the principal contribution of this chapter is the style

of analysis with respect to the performance metrics proposed in this dissertation. This is

independent of the exact network parameters, and hence can be applied to future systems

with a possibly different set of parameters. In other words, as long as we have a MANET

of devices running a reactive routing protocol, we can analyze our instantiation protocols

with respect to the proposed metrics in much the same way as was done in this chapter.

From the simulations of the heterogeneous TGs we observed that our protocol is able

143

to instantiate and re-instantiate TG nodes quickly with low average dilation, and yield high

effective throughput at low to medium mobility, and not much lower than 70% effective

throughput for high mobility scenarios. In this work, we did not simulate heavy loads

since standard TCP acts as a major bottleneck over multiple hops under heavy loads [42].

Our focus instead was to demonstrate the viability of the proposed dynamic task-based

anycasting approach in MANETs using existing routing and transport protocols. We believe

that much superior task execution throughput can be achieved at more demanding loads

if standard TCP is replaced by feedback based schemes such as the one proposed in [22].

Future efforts should be directed towards such endeavors.

We also note that in some high mobility scenarios, the performance of our protocols

suffered due to the non-aggressive retransmission timeout mechanism of TCP and aggressive

route caching done by the underlying routing protocol, DSR. Introducing cross traffic load

actually helps improve the effective throughput in such situations. Even in mobile scenarios

experiencing no network partitions, disruptions in task execution are observed when periodic

hello messages failed to be exchanged within a reasonably large time window (T = 7s or

T = 14s). This typically occurs when the routes between instantiated neighboring devices

grow very long and a route change occurs. The combined dynamics of MANET routing and

TCP then result in slow recovery from route errors and hence uninstantiation. Although this

process automatically maintains a low average dilation (since the re-instantiation protocol

is likely to discover a device nearby), one has to pay a cost for this: the application suffers

a disruption during the re-instantiation process.

We observe that for large task graphs of 63 nodes (by MANET standards), instanti-

ation times are dominated by TCP timeouts even in both static and mobile scenarios. Most

of these delays were caused not due to congestion but due to drops from interface queues

due to high channel contention. This usually happens when a large fraction of the devices

in the network participates in a task. One possible solution to this is modifications to TCP

to make it resilient to contention based packet drops as suggested in reference [33].

144

We observe little change in performance of our protocols when the spatial density

was reduced from 18 neighbors per device (100 devices in 1 km2 area) to 9 neighbors per

device (100 devices in 2km2 area) but there is drastic change in throughput when the spatial

density was further reduced to 4 neighbors per device (100 devices in 4 km2 area). This

is because in the last case the network occasionally became so sparse that the connected

component of the user did not have enough devices to continue executing the task. This

however does not mean that no task can be performed in sparse networks successfully.

If the tasks do not have long lifetimes, even a sparse network can support them with a

reasonably high probability which can be estimated for given parameters such as MaxSpeed

and PauseTime (say, from Figure 6.28). Also, in sparse scenarios, device mobility helps

in healing network partitions and hence is beneficial to task instantiation. In contrast, in

dense scenarios, it has a detrimental effect on effective throughput as it results in frequent

route changes and re-instantiations.

145

Chapter 7

Design and Implementation of a

Proof of Concept Prototype

The simulations presented in Chapter 6 demonstrate that the distributed task instantiation

protocols proposed in this dissertation operate satisfactorily and yield desirable performance

in a variety of mobile scenarios even when reasonably large task graphs are instantiated on

large mobile ad hoc networks. To further validate the proposed concepts, we also developed

a proof of concept prototype to demonstrate the viability of the solution. The salient

features of the prototype and testbed are described here.

7.1 Overview of the Experimental Testbed

Hardware Our experimental testbed is comprised of the following hardware components:

• 3 desktop computers (HP Vectra and Gateway)

– CPU: x86 architecture with clock speed: 200 MHz – 866 MHz

– RAM: 128 MBytes – 512 MBytes

146

• 7 portable notebook computers (Dell Inspiron 2500 and 4000 Series)

– CPU: x86 architecture with clock speed: 900 MHz – 1 GHz

– RAM: 128 MBytes – 256 MBytes

• 5 handheld computers (Compaq iPAQs)

– CPU: StrongARM architecture with clock speed: 206 MHz

– ROM: 32 MBytes

– RAM: 64 MBytes

Operating Systems All hosts in the experimental testbed execute different versions

of the same Linux operating system. More specifically, the notebooks and the desktop

machines run different versions of the Linux 2.4 kernel, and the handheld computers run a

version of the Linux 2.4 kernel ported for the StrongARM architecture by Compaq Research

Laboratories [31].

Networking Hardware and Software Each of the above 15 units is equipped with

Cisco Systems 350 Series Aironet wireless PCMCIA cards which are connected to the hand-

held machines through expansion sleeves. The radios in the wireless cards operate in the

unlicensed ISM 2.4GHz frequency band using Direct Sequence Spread Spectrum (DSSS) at

a data rate of 11Mbps (with fall-back rates of 5.5, 2, and 1Mbps). The radios are tuned to

the same frequency and their transmit power is programmable (varies from 1 mW to 100

mW). All wireless cards support the IEEE 802.11b standard; they are operated as an IBSS

(Independent Basic Service Set) using the DCF (Distributed Coordination Function) mode

thus forming an ad hoc network. All versions of the Linux kernel used on testbed hosts

have full wireless networking support for the Cisco 350 Series PC cards.

Routing Protocol Support The ad hoc mode in IEEE 802.11b standard only specifies

how hosts should communicate at the medium access (MAC) layer. A MANET routing

147

protocol is necessary to form a multihop wireless network. Hence we utilized public domain

implementations of two different MANET routing protocols for our needs, namely AODV

(from Uppsala University, Sweden) [54], and OLSR (from INRIA, France) [58]. Both the

above implementations reside in the user space of the Linux OS. We were able to port these

to the StrongARM platform (iPAQ) without incident.

Issues with Forming Multihop Networks in a Small Area One issue that we face

during the deployment of our testbed is that of achieving multihop connectivity. Since all

units are hosted inside our laboratory, even with all the cards operating at their lowest

configurable level of transmission power (1 mW), we cannot attain multihop connectivity

naturally without signal attenuation. Since we are primarily interested in demonstrating

a proof-of-concept prototype and in testing the correctness of the protocol, we use the

MobiEmu toolkit from Hughes Research Laboratory [71] to solve the problem.

The MobiEmu Toolkit The MobiEmu toolkit allows one to emulate a multihop MANET

in the absence of multihop paths and real mobility. Each host that wants to participate in

the MANET runs a MobiEmu slave. An additional host runs a MobiEmu master which is

aware of the entire time-varying mobility pattern that we want to emulate using the slave

hosts. The master and all slave hosts communicate with each other via IP multicast over

either the same wireless channel or preferably over a wired network.1

The MobiEmu master S imposes multihop connectivity in an otherwise fully con-

nected network by using certain features of IP packet filtering software (iptables) which

comes bundled with all recent Linux distributions. This process can be illustrated with a

simple example: suppose that at time instant ti, host X is expected to disconnect from hosts

Y and Z, but at tj > ti it is expected to reconnect with host Y. To emulate this sequence of

event, at time ti, S multicasts a message that X and Y should disconnect and that X and

Z should do so too. When X receives the message, it adds the MAC addresses of Y and Z
1This is to mitigate the effect of loss of control traffic information in a shared wireless network.

148

to its block list of addresses. Y and Z receive the same message and both put X in their

block lists. Hence, at time tk : ti < tk < tj , if X sends a packet destined for Y or Z, then

will be blocked by IPtables at the MAC layer and will not be passed up to the IP layer.

Consequently X must look for a multihop route to reach Y or Z. Similarly, at time tj , S

multicasts a message to the entire group that X and Y should drop each other from their

block lists. Shortly afterward, any intelligent MANET routing protocol would be able to

figure out that a cheaper one-hop route is available between X and Y, and both X and Y

should converge to that route.

In this manner, complicated mobility patterns can be emulated while using real

hardware and real routing protocols without physically moving the hosts. However, we

note that the above approach is useful only for establishing the correct operation of any

distributed protocol; it is inappropriate for the measurement of protocol performance in

terms standard metrics such as throughput, delay etc. This is because: (1) MobiEmu does

not accurately capture the effects of physical phenomena that affect wireless communication

such as cumulative effects of channel fading over multiple hops since all hosts are located

in radio range of each other, (2) reliability of communication drops drastically when two

hosts are near the boundaries of each other’s transmission ranges, and (3) excessive packet

collisions can result under situations of heavy load since all hosts form a complete graph

with respect to physical layer connectivity. Nonetheless, MobiEmu serves as an effective

tool for testing the feasibility of our protocols on real hardware under random mobility

patterns.

7.2 Design and Implementation of a Task Based Application

Framework

After the deployment of a testbed of modest size, we designed and implemented an applica-

tion framework for task based resource discovery. The principal objective in this endeavor is

149

Figure 7.1: Screen-shot of MobiEmu Master Screen

to demonstrate that the algorithms and protocols proposed in Section 5.1 can indeed be im-

plemented on a MANET comprised of devices with varying degrees of computing resources.

Each host in the testbed emulates a resource that can be useful in a certain task that the

user wants to accomplish. One host in the MANET emulates a user node that hosts a

tuple representation of the task as outlined in Section 3.2. The tuple representations were

chosen such that the sizes of the corresponding task graphs were smaller than the number

of physical resources available in the network. In fact, multiple hosts are often made to

emulate instances of the same resource. The hosts were deployed in both static and mobile

configurations (real as well as emulated) in which the effectiveness and robustness of the

discovery protocols were tested.

150

Figure 7.1 shows an image of the MobiEmu visualization screen at a particular time

instant before which a four node task graph (same as the one used in Figure 5.4) has been

instantiated and then re-instantiated. Of the five nodes in the MANET, device-0 belongs

to the user, device-1 and device-2 possess identical attributes, and device-3 and device-4

possess distinct attributes. Originally devices 1, 3, and 4 were instantiated (depicted by

[in]); at the time of screen capture, device-1 has moved out of range and hence has been

uninstantiated (depicted by [out]). In its place, the corresponding TG node has been

instantiated with device-2.

We demonstrated the following processes during this effort:

1. Quick instantiation of a task graph in both static and mobile scenarios with occurrence

of changes in underlying MANET topology during the process of instantiation.

2. Timely delivery of task specific data to the currently chosen recipients.

3. Timely detection of disconnections between two participating hosts as a result of

failure or mobility.

4. Rapid re-instantiation of the task graph with mostly local coordination, and resump-

tion of task data delivery.

7.2.1 Design Decisions

We implemented the protocol finite state machine (FSM) outlined in 5.1 in the application

layer of the networking stack of each host in the testbed, thus requiring no change to the

existing Linux kernel. Linux socket APIs were used to facilitate communication between

nodes in the testbed for exchange of both protocol and data messages. We decided to

implement the task graph instantiation protocol module as a daemon process taskd which

runs on each node in the testbed. taskd listens on a well known port 20345 for incoming

protocol messages of type S QRY. taskd is a single threaded daemon and uses select()

151

system call for I/O multiplexing. The advantages of select() based concurrent server

design include (1) simplified design due to one logical control flow, and (2) the absence of

thread or process control overhead [66]. taskd blocks on a select() while listening on a set

of active socket descriptors. Whenever data arrives on any of the active socket descriptors,

select() returns and allows the process to determine the identity of the socket which

received data. Upon determining the above, appropriate action is taken on the incoming

packet as prescribed by the protocol FSM.

The module corresponding to the distributed task initiated by the user which re-

quires services and resources from other nodes in the MANET is referred to as a taskapp.

A taskapp is aware of the corresponding task graph and it instructs its local taskd to in-

stantiate it. The aforementioned inter-process communication (IPC) is achieved by means

of a local UNIX domain socket.

After receiving the task graph from taskapp, taskd initiates the instantiation process

by creating a datagram socket capable of performing IP neighbor broadcast or neighborcast.

The broadcast capability is facilitated by the setsockopt() system call on the socket

descriptor with the SO BROADCAST option enabled at the SOL SOCKET level. Any packet

with the destination address set to 255.255.255.255 is intended to be delivered to all

the reachable neighbors which receive it barring channel errors, collisions in the wireless

medium, or buffer overflow in the interface queue. The broadcast packet is not re-forwarded

at the IP layer by the neighboring nodes because each node in a MANET behaves like a

single node LAN segment and the broadcast is limited to within the LAN only. However,

while performing expanding ring search, a broadcast packet may be required to reach nodes

that are farther than the one hop radius of the originator. This is achieved at the TG-layer

by including a TaskTTL field in the packet which is decremented before neighborcasting

the packet. The structures of both broadcast and unicast packets are illustrated in Figure

7.2.

The taskd daemon of a candidate device responds to the S QRY packet by a UDP

152

T
ot

al
 P

ac
ke

t L
en

gt
h

T
as

k
Pa

ck
et

 T
yp

e

So
ur

ce
 I

P
A

dd
re

ss

D
es

tin
at

io
n

IP
 A

dd
re

ss

Se
rv

ic
e

T
yp

e
(s

ou
rc

e)

T
as

k
G

ra
ph

 I
D

 (
so

ur
ce

)

(i
f

ap
pl

ic
ab

le
)

Se
qu

en
ce

 N
um

be
r

(i
f

ap
pl

ic
ab

le
)

(a) Unicast Task Packet

0 2 3 7 11 12 13 17

O
ri

gi
na

l S
en

de
r

IP
 a

dd
re

ss

T
ot

al
 P

ac
ke

t L
en

gt
h

SE
A

R
C

H
_Q

U
E

R
Y

So
ur

ce
 I

P
A

dd
re

ss

25
5.

25
5.

25
5.

25
5

Se
rv

ic
e

T
yp

e
(b

ro
ad

ca
st

in
g

no
de

)

T
as

k
G

ra
ph

 I
D

(b
ro

ad
ca

st
in

g
no

de
)

T
im

e−
to

−
liv

e
(h

op
s)

Se
qu

en
ce

 N
um

be
r

(b
ro

ad
ca

st
)

(b) Broadcast Task Packet

0 2 3 7 11 15 16 17 18 19 23

Packet Header

Q
ue

ry
 S

er
vi

ce
 T

yp
e

T
A

SK
_D

A
T

A

Figure 7.2: Protocol Packet Formats

C RESP packet which can traverse multiple MANET hops using the underlying routing

protocol. Since UDP is an unreliable protocol, a C RESP packet can be lost in transit because

of route changes due to mobility, or congestion due to buffer overflows in the interface queue

or channel contention. We choose to use UDP for this purpose because our assumption is

that multiple instances of a resource are normally available in the network, thus resulting

in multiple responses to a query. In such a scenario, managing TCP connections to all

candidate nodes is cumbersome and not warranted since the loss of a few UDP C RESP

packets does not significantly hurt protocol operation. However, if instances of a desired

resource are fewer in number, a reliable transport protocol must be used.

After the selection (instantiation) of a TG node according to a certain instantiation

criteria,2 the local taskd daemon sends an ACK packet to the candidate over a reliable trans-

port protocol. Reliable transport is needed in all subsequent steps of the protocol since

packet loss impacts performance in those stages much more adversely than in the earlier

stages. We experimented with two reliable transport protocols during the development of

the proof-of-concept prototype: (1) standard TCP on Linux, and (2) UDP with mecha-

nisms of timeout and retransmissions built into the TG-layer itself. We found that both

approaches function well on our modest sized testbed where there was no network conges-
2In our experiments, this was minimum tardiness in response.

153

tion. However, the latter approach can have unforeseen impacts in large MANETs where

network congestion is likely to be a norm than an exception [25].

An ideal reliable transport protocol for large MANETs preserves the congestion

control semantics of TCP but at the same time is intelligent enough to track the cause of

packet loss to one of the following: (1) route errors due to failures or mobility of devices,

(2) bit errors in the channel, (3) drops from interface queue due to channel contention, or

(4) buffer overflow signifying network congestion. As mentioned in earlier chapters, several

researchers have begun investigating these problems for MANETs [42, 22, 33] but research

on this topic has not yet yielded conclusive results.

An important issue while using TCP is that the connect() system call issued dur-

ing the connection establishment phase can “block” due to lack of active routes to the

destination. This can result in a complete halt of other protocol processing in taskd since

the latter is single threaded. A remedy to this problem is to make the connection oriented

socket non-blocking. In that case, however, connect() may return without the establish-

ment of an actual connection, and the corresponding socket descriptor has to be monitored

for writability by using select(). Data can be sent on the socket as soon as the connection

is established and the socket becomes writable.

On the receiving end, taskd blocks on select() instead of accept(). In fact,

when select() returns and it is determined that the socket descriptor corresponds to a

new incoming TCP connection, accept() is called and it immediately returns with a new

socket descriptor sd. taskd then adds sd to the “to-be-monitored” list of select(). Data

is then read from sd which is then used for all subsequent communication between these

two nodes.

A major point of difference between ns-2 simulations and real prototype develop-

ment is that the protocol processing times and overheads are completely ignored in ns-2. In

reality, these are indeed different on desktop PCs, notebook PCs and handheld computers.

A main difference in the methods of using TCP in the ns-2 simulator and the prototype

154

implementation is in the mechanism of opening and closing connections. In the ns-2 sim-

ulator (version 2.1b7a), TCP connections between any two given endpoints are not closed

after they were opened unless there is a timeout due to inactivity. This is because the

absence of a “port mapper” in ns-2 made the repeated opening and closing process very

cumbersome to handle. However on a real system running Linux, TCP connections must be

dynamically opened and closed whenever necessary. In our implementation, a device closes

its TCP connections in the following circumstances: (1) after it uninstantiates itself and

transits to UNINSTANTIATED state, (2) after it detects disconnections from its instantiated

children nodes, and (3) after the other end has issued a close() and a signal arrives at this

end. After a TCP connection is closed, the corresponding socket descriptor is freed up and

is released from the “to-be-monitored” list of select().

7.2.2 A Skeleton Application taskapp

Although taskd is an application layer daemon, it must be logically separated from a taskapp.

Each taskapp needs a taskd associated with it. While the latter handles instantiation,

failure and disconnection detection, and re-instantiations, the former handles application

level details such as processing the data sent by a remote service, reaction to failures and

delays at the taskd layer, and buffering of Application Data Units (ADUs) for possible

retransmission at a later stage. A taskapp process at the user node executes Algorithm 7.1

whereas that at a participating node executes Algorithm 7.2.

7.2.3 Currently Unsupported Features

Here, we describe two key features that can be important for a successful deployment of

the protocol but are currently unsupported on our testbed.

Code Mobility In Algorithms 7.1 and 7.2, we assume that an application process (taskapp)

exists on the service providing devices even before instantiation is completed by the corre-

155

Algorithm 7.1 UserTaskApp(FILE)
1: /* This taskapp executes on a user device which requests a given

distributed application to be executed on the network. */

2: tup← ReadTuples(FILE); /* FILE contains data-flow tuples */

3: TG← CreateTaskGraph(tup); /* create TG from tuples */

4: Open a UNIX domain socket S for IPC with taskd;

5: Encapsulate TG and send to taskd over S;

6: Block on S for receiving a confirmation that instantiation of TG has been completed

by taskd;

7: Send TASK DATA to taskd on S; /* Note that the physical addresses of

instantiated TG nodes are hidden from the taskapp. */

Algorithm 7.2 OtherTaskApp

1: /* This taskapp executes on a device which provides the desired resource

or service to an interested device. */

2: Open a UNIX domain socket S for IPC with taskd;

3: Block on S for receiving an ADU from the local taskd;

4: Receive ADU (TASK DATA) from taskd that was sent by the instantiated parent taskapp;

5: Process ADU and send results to taskd; /* Note that the physical addresses of

instantiated TG nodes are hidden from the taskapp */

6: Perform ADU buffering and reliability steps described in Section 7.2.3, if necessary.

156

sponding taskd process. However, this is not a realistic assumption in many real systems. If

a service providing host H is unaware of the exact structure of the distributed application,

it is the responsibility of another participating host to inform H about the application logic

that the latter is expected to execute (after being instantiated) towards performing the

task. Although we did not address this issue at the time of writing of this dissertation, the

desired feature can be achieved by the use of mobile code. Executable code encapsulating

the taskapp can be sent to the relevant hosts that have been instantiated to execute the

application. Upon receiving the encapsulated taskapp code, the local taskd can extract the

code from the received buffer to a file which can then be executed as a separate process.

This process then acts as the taskapp.

The scheme described above suffers from the same problems that any system using

mobile code suffers from; the principal one being security. A sandbox environment running

a virtual machine is a usual solution mechanism for mitigating security threats since that

imposes necessary restrictions on the access of local resources by the mobile code. Solution

approaches to this problem exist in the literature [37, 67].

Reliability of Task Execution Another issue that we have not addressed is that of reli-

able execution of a given distributed task after discovery of the desired resources. To under-

stand the problem better, consider the following example of a line task graph U −X − Y − Z.

X needs a service of type Y which in turn needs a service of type Z to complete a higher

level task for the user. The instantiation protocols proposed in Chapter 3 first instantiate at

user node u a device xi that can provide service X, then xi instantiates a device yj that can

provide service Y , and finally yj instantiates a device zk that provides service Z. After the

instantiation is complete, u sends a task data unit (ADU:As) to xi which then transforms

it according to its service specification before sending it to yj and so on. The taskapp at u

may expect a response from that at xi soon to proceed further. Under these circumstances,

suppose that yj gets disconnected from zk before the latter is able to respond to the former.

If the nature of the data flow is such that yj ’s response to xi is contingent upon zk’s response

157

to yj , then the latter will not be able to respond to xi soon. Instead, after the HELLO timer

runs off, yj will detect a loss of child and will attempt rediscovery of a service of type Z.

The AvgEffT metric proposed in Chapter 3 captures the average number of ADUs

that travel from a source of a data-flow to its intended sink (where the data-flow ends).

However, in a situation described above, although the effective throughput is perfect for

the one-way data flow (an ADU from u reaches a sink zk), its semantics are not adequate

from a practical standpoint. From this application’s perspective, the data flow will be useful

only when the user receives the output from the chain of services in the task graph. To solve

this problem, end-to-end reliability semantics must be built into the protocol. To this end,

schemes for buffering and retransmission of ADUs are necessary in the taskapp in addition

to the rediscovery and re-instantiation that happen inside the taskd. Although we have not

implemented the semantics of end-to-end taskapp reliability in our prototype, we believe

that Algorithm 7.3, if executed at all instantiated nodes, is a useful first step.

Algorithm 7.3 ADUTransmit(As)
1: Given: ADU A with sequence number s;

2: Transmit As to relevant instantiated node,

3: Qoutstanding ← Qoutstanding ∪As; /* buffer into window of unacked ADUs */

4: T.sched(); /* schedule application Timer */

5: if (Responses is received before T expires) then

6: Qoutstanding ← Qoutstanding \As; /* remove acked ADU from window */

7: T.cancel(); /* cancel application Timer */

8: else

9: Retransmit As;

10: T.resched(); /* reschedule application Timer */

11: end if

One delicate issue in Algorithm ADUTransmit is the period of the timer settings.

Ideally, an ADU timer should be adaptive to the round trip time estimates similar to the

TCP timers. In the least, it should be proportional to the depth in the Task Graph with

158

respect to the corresponding data flow. For example, if yj sets its timer for a period P ,

then xi should set it to close to 2P , and u to around 3P .

Algorithm ADUTransmit only guarantees delivery of an ADU from the source of

a data-flow to its sink. It does not guarantee ordered delivery of ADUs. Since ordered

delivery of ADUs is a highly application specific issue, we do not address it in this work.

However, the use of TCP guarantees ordered delivery of ADUs from a particular source to

a particular sink in the absence of re-instantiations.

159

Chapter 8

Extensions to the Task Graph

Based Modeling Approach

In the earlier chapters of this dissertation, we have described the basic building blocks for

task based resource discovery in mobile failure-prone environments such as MANETs. In

this chapter, we describe the service composition problem in this context and discuss how

it can be modeled satisfactorily with hierarchical task graphs. This material is excerpted

from [9].

Consider a ubiquitous computing application of image capture, storage and printing.

A user wants to locate a digital camera nearby, get her image captured, preview it, and

then store it (perhaps temporarily) on available storage devices in her surroundings, since

her PDA may not possess sufficient storage capacity to store the image. The user may

also want to print the image on a nearby printer after capture. Figure 8.1 depicts two task

graphs for performing the same task at different levels of abstraction.

Figure 8.1(a) depicts a scenario in which a user requests and discovers a CAMERA

service near her current location, gets her picture taken, previews the picture on her PDA

screen, and then instructs the camera to store it in a distributed peer-to-peer (P2P) storage

160

STORAGE SERVICE

PEER−TO−PEER

FAULT TOLERANT

PRINTING SERVICE

USER

< Key >

printpreview

proximity

CAMERA

root
parity
node

4 storage nodes
store

AFTER COMPOSITION
REQ

REQ store

print

USER

STORAGE SERVICE

PRINTING SERVICE

PHOTO CAPTURE &

PHOTO CAPTURE &

preview

< Key >

REQ

P2P STORAGE
SERVICE

PRINTING
SERVICE

CAMERA

print−server

printer

Figure 8.1: An Example of Service Composition

system in the surroundings. A fault-tolerant distributed P2P storage service is collabo-

ratively provided by a number of devices with available storage space. Fault-tolerance is

achieved by replication or coding as indicated in the figure. After the camera discovers such

a storage service, it stores the image, and the latter returns a Key to the user for accessing

the particular image in future. The printing also proceeds in a similar fashion. However,

in Figure 8.1(b), the user just requests an instance of a Photo Capture & Storage service

which is a service composed of two simpler services, namely, CAMERA and P2P Storage. In

this case, a camera would already have chosen a nearby instance of the P2P Storage service

in the network. Hence, when the user sends a “store” instruction, the image is stored on

the already selected storage nodes with no discovery latency.

Note that the fault tolerant P2P Storage service is a complex service itself as it is

composed of simpler storage services, hence the composition hierarchy is two levels deep.

Each service is represented logically by a “node” in the task graph. Also, a task graph

corresponding to a complex service such as P2P Storage is represented by a node in the

hierarchical task graph corresponding to the higher level service. We develop the necessary

notation in the next section that is used throughout this chapter.

161

1
2

2.2

2.1

1.1.2

1.1.1

1.21.1

DEPTH = 0

DEPTH = 1

DEPTH = 2

DEPTH = 3

1 2

1.1
1.2

2.1 2.2

1.1.1 1.1.2

ROOT

Figure 8.2: A Hierarchical Task Graph and Layered Graphs

8.1 Hierarchical Task Graphs

A hierarchical task graph contains nodes that are simple or complex. Simple nodes are the

leaves of the containment hierarchy (this is intuitively clear but is defined formally in the

next paragraph) and are characterized by their type and attributes. A complex node is at

an intermediate level of the containment hierarchy and contains another hierarchical graph

of smaller size.

Definition 8.1 The containment hierarchy, CH, of a hierarchical task graph is a tree

structure as depicted in Figure 8.2. The containment hierarchy possesses a tree structure

because there are no overlaps between complex nodes at any levels in the hierarchy. In

Figure 8.2, the nodes have been uniquely labeled according to their depths in CH.1 For

example, nodes S1, S2, and S1.1 are complex nodes, whereas S1.1.1, S1.1.2, S1.2, S2.1, and

S2.2 are simple nodes (node SX represents service X in this chapter).

Definition 8.2 A hierarchical task graph GH can be defined by a tuple (V,E, CH),

where V = Vs ∪ Vc is the set of nodes, and E = Es ∪Ec is the set of edges between certain

pairs of nodes. Vs is the set of simple nodes which are leaf nodes of CH, and Vc is the set

of complex nodes which are the intermediate nodes. Es is the set of simple edges between

simple nodes, and Ec is the set of complex edges between complex nodes as well as between

simple and complex nodes.
1The “depth” of the top node in CH is assumed to be 0 and it increases as the tree is traversed downward.

162

The definition of a hierarchical task graph that we have given here is general thus

far. In Section 8.2.2, we establish rules in our instantiation framework that govern the

derivation of complex edges from simple edges.

8.2 Service Composition using Hierarchical Graphs

In this section, we describe a framework for service composition (defined in Section 3.1)

using hierarchical task graphs. We present more terminology necessary for a complete

description of our proposed instantiation algorithms.

8.2.1 Structure of a Complex Node

A complex node in a hierarchical task graph is an abstract representation of a smaller task

graph corresponding to a complex service which can be requested by another device. Con-

sider a complex node Ci ∈ Vc at depth = i in CH. Let V (Ci) = {C(1)
i+1, C

(2)
i+1, . . . , C

|V (Ci)|
i+1 }

be the set of nodes at depth = i+1 which are Ci’s children in CH. Then V (Ci) is the vertex

set for the task graph corresponding to the complex node Ci.

Definition 8.3 A service instance S̃ of a service S is comprised of a set of devices in the

network which can perform S. S̃ is formed after a successful execution of the instantiation

algorithm on the hierarchical TG corresponding to S. If S is simple, then S̃ contains one

device; otherwise, S̃ contains multiple devices that collaboratively perform S. A complex

node is said to be instantiated if all its children nodes in CH have been instantiated.

Definition 8.4 A controller of a service instance S̃ is a device S ∈ S̃ that is responsible

for advertising service S and also for responding to queries for S by other devices. In the

case of a simple service, S = S̃. However, in the case of a complex service, the controller

must be selected or elected from among all the participating devices.

163

The controller device also has a responsibility of carrying out discovery, instan-

tiation, and re-instantiation of other services that S needs. The specific functions of the

controller will become clearer in Section 8.2.2 where we describe the instantiation algorithm

in detail.

Definition 8.5 Interface nodes are nodes in V (Ci) that interact with services outside

Ci at that particular depth in CH. In Figure 8.2, nodes S2.1 and S1.1.2 act as the interface

nodes for services depicted by nodes S2 and S1. If IF (Ci) denotes the set of interface nodes

in Ci, then 1 6 |IF (Ci)| 6 |V (Ci)|.

Interface nodes are necessary during instantiation for continuing the discovery of

services which are located downstream from the current node in the task graph at a par-

ticular depth in the containment hierarchy. They also serve as points of data exchange

between services.

The Type of a Complex Node The “type” of a complex node reflects the set of at-

tributes that all its constituent nodes possess. In our proposed framework, we favor strong

typing of services and hence complex nodes. In other words, in our framework, every service

belongs to a particular type. When a certain device requests a service, it refers to the latter

by its unique type. There are some “atomic types” in any network of devices and some

“composed types” which are constructed from the atomic types. A close analogy is that of

the basic data types in a higher level programming language and the advanced data types

that can be constructed from the former.

8.2.2 Instantiation of Hierarchical Task Graphs

In this subsection, we describe an algorithm proposed for instantiation of hierarchical task

graphs in order to achieve service composition. As in Chapter 5, we assume the presence

of a reactive MANET routing protocol such as AODV [61], DSR [46], OLSR [44] etc. and

164

a reliable transport protocol such as TCP.

When the system is in its initial stages, devices only respond to queries about simple

services, i.e., their core capabilities. However, task graphs can be stored on these devices

either by a user requesting their services or during their initialization. For example, a device

hosting a print server (PS) may possess a task graph during initialization that will instruct

it to discover a printer device (PRT). In case the task graph is not available during system

initialization, it may be supplied by the user making the request for a printing service

(P =Composition(PS, PRT)). There is an issue to be noted here: if PS possesses a task

graph corresponding to P in the beginning, then it will discover a PRT and can answer

user queries about P , since P = PS. On the contrary, if PS does not possess a task graph

corresponding to P , it cannot respond to user queries about P because it is not aware

of that type of service. Hence the user (or the administrator) is expected to supply the

relevant task graph to PS so that it can discover an instance of PRT to be able to offer a

complete instance of the printing service P .

The information known to the user must be up to a certain depth d in the con-

tainment hierarchy of GH such that all services needed at or below d must either already

have available instances in the network, or their instances must be formed in the network

on-demand. These associations can be cached so that in future time instants, users can

query for P and be served with low delay.

We believe that a community of users can continually construct and augment a set

of services from their simpler components and the logical task graphs which represent these

complex services can be shared among the user population. This will result in more users

using services that have been composed earlier. At the same time the protocol framework

allows more innovative users to create complex services and then share them with other

users. The instantiation of a complex node in most cases will however be done at runtime;

we assume that the user device possesses the task graph GH along with the containment

hierarchy CH so that it does not have to depend upon the existence of simpler services in

165

the network. However, if any instance of a required simpler service exists in the network,

our protocol attempts to utilize it.

Derivation of Complex Edges from Simple Edges Let TGflat = (Vs, Es) be the flat

task graph that can be constructed from simple nodes and edges alone. In TGflat, the user

node is the root node and all other nodes are located “downstream” from it. As described

in Chapter 5, the instantiation of TGflat proceeds along the branches of a breadth first

search spanning tree2 (BFST) rooted at the user node. We use the terminology of level L[.]

introduced in Algorithm 4.1. If X and Y are nodes in BFST, Y is said to be downstream of

X if L[X] > L[Y]. Algorithm 8.1 establishes the rules for creation of complex edges in GH

from simple edges given the containment hierarchy of nodes. Application of the concept

of a rooted BFS tree at every “depth” in GH helps the instantiation process. This will be

more apparent in Section 8.2.3.

Algorithm 8.1 DeriveComplexEdgesFromSimpleEdges

1: Given: TGflat = (Vs, Es); CH; V = Vs ∪ Vc; e = (ni, nj) ∈ Es;

2: depth(ni) 6 depth(nj) in CH;

3: BFST ←BFS(TGflat); /* generate BFS tree with levels L[.] */

4: q ← Common Ancestor of ni, nj in CH with lowest value of depth;

5: if (L[ni] > L[nj]) then

6: Find p ∈ V such that p is a child of q and an ancestor of ni in CH.

7: ∀nc : nc = nj or is an ancestor of nj and depth(nc) > depth(p), Ec ← Ec ∪ (p, nc).

8: else

9: Find p ∈ V such that p is a child of q and an ancestor of nj in CH.

10: ∀nc : nc = ni or is an ancestor of ni and depth(nc) > depth(p), Ec ← Ec ∪ (p, nc).

11: end if

The rationale behind Algorithm 8.1 is that an instantiated upstream node can in-
2In a BFS spanning tree, vertices which are equidistant from the root are at the same level. It is unrelated

to GH ’s containment hierarchy CH which is also a tree.

166

stantiate a downstream node on-demand if an instance of the latter does not exist in the

network. Hence, for every simple edge between two nodes, complex edges exist between the

corresponding complex upstream node and simple as well as complex downstream nodes,

assuming all these nodes are in one common subtree in CH. These edges are necessitated by

some aspects of the process of discovery or instantiation of downstream nodes by upstream

nodes as illustrated by an example later in this section. In Figure 8.2, S2 is a complex root

node in the BFST, a simple edge between simple nodes S1.1.2 and S1.2 generates a complex

edge between complex nodes S1.1 and S1.2. Similarly, the simple edge (S2.1, S1.1.2) generates

the following complex edges: (S2.1, S1.1), (S2, S1.1), (S2, S1.1.2), and (S2, S1).

We now illustrate the principal idea behind our instantiation algorithm by means

of a simple example. Detailed steps are explained later in Section 8.2.3. Consider the

hierarchical task graph shown in Figure 8.2. Suppose node S2 has been already instantiated

completely, i.e., S2.1 and S2.2 are both known. Suppose that S2 = S2.2; S2 wants to discover

an instance of node S1 and broadcasts a query packet with the relevant information. There

are two possibilities: (1) an instance of node S1 exists, and (2) there is no reachable instance

of service S1. In case (1), the controller device of S1 (i.e. S1) receives the S QRY and responds

to S2 which is the same as S2.2 in this example. In the C RESP packet, S1 sends information

about interface node instances (S1.1.2 in this case) between nodes S1 and S2, so that data

flow can occur between services 1 and 2 later. When S2.2 receives the response with interface

node information, it informs S2.1 about S1.1.2. Device S2.1 also updates its task graph with

the new instances of devices participating in service 1.

In case (2), no device in the network answers the query for node S1. It can mean

that no instance of service 1 has been composed yet, or that those instances are unreachable

from the instances of node S2. In such a situation, node S1 needs to be instantiated on-

demand. S2.2 then queries for the complex node S1.1. It is indeed possible that S̃1.1 exists

without S̃1 existing. In that case, S1.1 would want to discover S1.2 in order to have the

instance S̃1. But, if S1.1 does not exist, S2 will query for simple node S1.1.2. Note that this

167

is possible because of the rules in Algorithm 8.1. An instance S̃1.1.2 = S1.1.2 that replies to

the query will be instantiated, and then it will continue the search process further. After

all requested services have been instantiated, the application can start data transmission.

After data transmission is over, the associations between participating nodes can be cached

for future use so that a request for a complex service can be fulfilled immediately, thus

achieving low service delays.

8.2.3 Distributed Algorithms for Hierarchical Task Graph Instantiation

Here we describe the steps of the distributed algorithm for achieving service instantiation

and composition. All devices execute a copy of the distributed algorithm except the core

user device which acts as a coordinator for state synchronization. The user wants to execute

an application and is assumed to possess a relevant task graph for it. Earlier in this section,

we presented examples of situations in which high-level knowledge of complex nodes and the

interactions between them is not enough. Hence, in order to facilitate instantiation under

these circumstances, a user’s PDA must contain information about GH at all depths in CH.

After some instances of a complex service have been created in the network, subsequent

users of the system only require high-level (or low depth) information about GH to discover

these services.

Algorithm 8.2 depicts the execution of the instantiation algorithm at a coordinator

device, whereas Algorithm 8.3 is executed on all other devices in a MANET. As in Chapter

5, these algorithms too have been presented in pseudo-code form with descriptive names for

variables and useful routines. All routines have not been explained in complete detail here

but the general idea is easy to grasp. Both algorithms are distributed and are driven by

events such as arrival of packets of certain types or by expiry of certain timers. The steps

within each single execution of the for() loops are assumed to be atomic; in other words,

if a packet arrives during the execution of an “if–then–else” statement, it will be queued

and processed only after the control returns to the WaitForPacket() call.

168

Querying for Services The instantiation process begins at the user device (coordinator,

U) which contains a complete description of the hierarchical task graph, GH corresponding

to the application that the user desires to execute. In the beginning, a task graph TG is

extracted from GH at depth d = 1, i.e., only the top level node descriptions are known to

the algorithm at this stage. Then the nodes in TG which are neighbors of U are queried

(Alg.-8.2::9–13). The S QRY packet contains a query string (Qstr = Sk1 :: Sk2 :: . . . :: Skn)

which constitutes of the aggregate type of the requested service.3 In Qstr, Sk1 is the simplest

service and Skn is the most complex service.

The coordinator device starts a timer after broadcasting a query. If the timer

expires before it gets any response, it queries for a less complex node in GH , an instance of

which may be available in the network (HierTGHandleBroadcastTimeouts() at Alg.-

8.2::23); detailed steps can be found in function 8.12. The complex edges that were included

in GH by Algorithm 8.1 are useful at this stage since the coordinator knows exactly what

node to query for if it does not hear a response from an instance of a complex node.

As in the case of instantiation of flat TGs, we assume that all steps to control

broadcast storms are taken; some of these salient steps include the use of expanding ring

search and the maintenance of broadcast sequence numbers to avoid the rebroadcast of an

old S QRY packet.

State Management in Devices and Response to Broadcast Queries We depict a

generic state in the non-coordinator algorithm by variable S[m] (Alg.-8.3::1) where m is the

current level of complexity of the service. At the time of system initialization, no instances

of complex nodes exist in the network; hence, each device is a member of an atomic service

instance. At that time instance, m = 0 and S[m] = Satom. With progression of time,

devices start taking part in multiple services at various levels of complexity. This is not to

be confused with the value of “depth” of the corresponding node in CH. A “higher-level
3In general, the entire service hierarchy is included in the query string starting from the depth of the

querying device.

169

service” always refers to one at a lower depth in CH.

At any level of complexity i ∈ [0,m], a device’s state is given by state[i] which has

two disjoint components: whether it has been instantiated at that level (denoted by one of

the 3 states, UNINST, WAIT FOR ACK, or INST) or if it is a controller of that service or just a

plain member (denoted by SRV CONTROLLER and SRV MEMBER, respectively).

When a device receives a service query packet (Alg.-8.3::4) with a certain query

string, it tries to find a match with the most complex service that it can offer at that instant

of time.4 If the device is a controller of the service at that level and it is uninstantiated,

then it accepts the request and sends a candidate response to the sender. It also changes

its state from UNINST to WAIT FOR ACK and starts a timer (not shown). If the timer expires

before receiving an ACK from the sender, the state is changed back to UNINST.

Instantiation of Services and Confirmation A coordinator can receive responses from

several candidate service instances out of which only one is sent an ACK (function 8.4).

However, the instantiation of that service is completed only when the controller of that

service replies to the ACK packet with a CONFIRM packet (function 8.5). We explain these

above steps below in greater detail. The coordinator sends the hierarchical task graph GH

encapsulated in the ACK packet so that the chosen candidate can continue the process of

discovery of children nodes and their instantiation. Hence, at any stage, the responsibility

of instantiation of hitherto uninstantiated services is distributed among the controllers of

the nodes in GH that have already been instantiated.

After a candidate controller device receives an ACK, it changes its state to INST.

Imagine a situation when a coordinator queries for a complex service CS, then times out

because there are no instances of CS, and then queries for a simpler constituent of CS,

namely SS. Suppose, a candidate device D responds to the SS query but by the time D
4Function MaxMatch whose detailed listing has been omitted tries to find the most complex entry in

the query string that matches S[m]. It returns −1 if no match is found.

170

Algorithm 8.2 HierTGCoordinatorDeviceInstantiation

1: Given: Hierarchical Task Graph, GH = (V,E, CH).

2: d← 1; /* depth in CH */

3: TG(VT , ET)← ExtractTG(GH , d); /* extract task graph at depth=1 */

4: Vngb ← {v ∈ VT | v is user node U’s neighbor in TG};

5: UninstSrv ← VT ;

6: UninstSrvngb ← Vngb; /* uninstantiated services:(all+neighboring) */

7: InstSrv ← φ;

8: InstSrvngb ← φ; /* instantiated services:(all+neighboring) */

9: for (∀v ∈ UninstSrvngb) do

10: v.acked← FALSE;

11: v.Qstr ← v.service type; /* initialize acked variable + Query string */

12: BroadcastQuery(v.Qstr); /* query for required services */

13: end for

14: for (; ;) do

15: WaitForPacket(pkt); /* wait for packets to arrive */

16: if (pkt.type == C RESP) then

17: HierTGHandleCResp(pkt); /* handle response from a candidate */

18: else if (pkt.type == CONFIRM) then

19: HierTGHandleConfirm(pkt); /* handle confirm from a candidate */

20: else if (pkt.type == SUBTREE CONF ∧ (∃s ∈ InstSrvngb : s == pkt.srcaddr)) then

21: HierTGHandleSubtreeConfirm(pkt, s); /* handle subtree confirm */

22: end if

23: HierTGHandleBroadcastTimeouts(); /* function 8.12 */

24: end for

171

Algorithm 8.3 HierTGNonCoordinatorDeviceInstantiation

1: Given: Own service types and instantiation states at different depths in CH:

S[m] = {i0, i0.i1, i0.i1.i2, · · · , i0.i1.im} /* m = 0⇒ S = {Satom} */

A = {UNINST, WAIT FOR ACK, INST} ;

B = {SRV MEMBER, SRV CONTROLLER} ;

∀i ∈ [0,m] : state[i] ∈ A×B

2: for (; ;) do

3: WaitForPacket(pkt); /* can forward broadcast pkts here */

4: if ((pkt.type == S QRY) ∧ (MaxMatch(pkt.Qstr, S[m]) 6= −1)) then

5: HierTGHandleSearchQuery(pkt);

6: else if ((pkt.type == ACK) ∧

(∃i : S[i] == pkt.service type) ∧ (state[i] & WAIT FOR ACK)) then

7: HierTGHandleAck(pkt);

8: else if (pkt.type == C RESP) then

9: HierTGHandleCResp(pkt);

10: else if (pkt.type == CONFIRM ∧ (s← pkt.service type)) then

11: HierTGHandleConfirm2(pkt);

12: else if (pkt.type == SUBTREE CONF ∧

(∃s ∈ InstSrvngb : s == pkt.srcaddr)) then

13: HierTGHandleSubtreeConfirm2(pkt);

14: else if (pkt.type == CONTINUE SEARCH) then

15: ContinueDownstreamSearch(pkt);

16: end if

17: HierTGHandleBroadcastTimeouts(); /* function 8.12 */

18: end for

172

function 8.4 HierTGHandleCResp(Packet pkt)

1: if ((∃w ∈ UninstSrvngb |w.service type == pkt.service type;) ∧ (w.acked == FALSE))

then

2: SendAck(pkt.srcaddr,GH); /* send ACK along with the task graph */

3: w.acked← TRUE;

4: end if

function 8.5 HierTGHandleConfirm(Packet pkt)

1: /* the controller of a service is confirming an ACK */

2: g ← Extract Subgraph(pkt);

3: w ← pkt.service type; w ← pkt.srcaddr;

4: Instantiate(GH , g); /* instantiate nodes in GH with addresses in g */

5: UninstSrvngb ← UninstSrvngb \ {w};

6: InstSrvngb ← InstSrvngb ∪ {w}; /* update service vars (neighbor) */

7: UninstSrv ← UninstSrv \ {w};

8: InstSrv ← InstSrv ∪ {w}; /* update service vars (all) */

function 8.6 HierTGHandleSubtreeConfirm(Packet pkt; htg node s)

1: g ← Extract Subgraph(pkt);

2: Instantiate(GH , g); /* instantiate nodes in GH with addresses in g */

3: SubtreeSrv ← {s′| s′ is in the subtree at depth d = 1 rooted at s};

4: UninstSrv ← UninstSrv \ SubtreeSrv;

5: InstSrv ← InstSrv ∪ SubtreeSrv; /* update service vars (all) */

6: if (UninstSrv == φ) then

7: Send Interface Node information regarding non-tree edges to service controllers.

8: Instantiation is complete.

9: Start application and begin sending TASK DATA.

10: Start exchanging periodic HELLO messages with controllers of top level services.

11: end if

173

function 8.7 HierTGHandleSearchQuery(Packet pkt)

1: if (state[m] & (SRV CONTROLLER | UNINST)) then

2: SendCResp(pkt.srcaddr, S[m]); /* send response to upstream controller */

3: state[m]← state[m] & ˜UNINST | WAIT FOR ACK; /* change state */

4: end if

function 8.8 HierTGHandleAck(Packet pkt)

1: GH ← Extract hierTG(pkt); /* extract rest of TG */

2: state[i . . .m]← state[i . . .m] & ˜WAIT FOR ACK | INST; /* update to INST */

3: Cout ← ExtractInterfaceNodeInfo(GH , S[m]); /* interface nodes */

4: SendConfirm(pkt.srcaddr, S[m]); /* confirm service instantiation */

5: if ((c← FindChildren(GH , S[m])) 6= φ) then

6: /* send CONTINUE SEARCH pkt to interface nodes */

7: ∀x ∈ Cout : InstructNodeToContinueSearch(x, c(x), GH);

8: else

9: SendSubtreeConfirm(pkt.srcaddr, S[m]); /* send to parent controller */

10: end if

function 8.9 HierTGHandleConfirm2(Packet pkt)

1: if (S[m] 6= MyAddr) then

2: InformController(pkt); continue;

3: end if

4: g ← Extract Subgraph(pkt);

5: w ← pkt.service type; w ← pkt.srcaddr;

6: Instantiate(GH , g); /* instantiate nodes in GH with addresses in g */

7: UninstSrvngb ← UninstSrvngb \ {w};

8: InstSrvngb ← InstSrvngb ∪ {w}; /* update service vars (neighbor) */

9: UninstSrv ← UninstSrv \ {w};

10: InstSrv ← InstSrv ∪ {w}; /* update service vars (all) */

174

function 8.10 HierTGHandleSubtreeConfirm2(Packet pkt)

1: if (S[m] 6= MyAddr) then

2: InformController(pkt); return;

3: end if

4: g ← Extract Subgraph(pkt);

5: Instantiate(GH , g); /* instantiate nodes in GH with addresses in g */

6: SubtreeSrv ← {s′| s′ is in the subtree rooted at s in GH};

7: InstSrv ← InstSrv ∪ SubtreeSrv;

8: UninstSrv ← UninstSrv \ SubtreeSrv; /* update service vars (all) */

9: if (UninstSrv 6= φ) then

10: return; /* all children have not confirmed yet */

11: end if

12: if (S[m] == FindRootNode(GH ,m)) then

13: Send Interface Node information regarding non-tree edges to controllers.

14: S[m+ 1]← ConstructSrvType(InstSrv); /* construct a complex node */

15: state[m+ 1]← SRV CONTROLLER | INST;

16: for all (s ∈ InstSrv;Ci ← s) do

17: InformNode(Ci, SRV MEMBER); /* inform controllers to change state */

18: end for

19: if (I had received a query for S[m+ 1] in the past) then

20: upstream← Controller of the instance of parent node;

21: SendCResp(upstream, S[m]); /* send response to upstream controller */

22: state[m]← SRV CONTROLLER | WAIT FOR ACK;

23: end if

24: m← m+ 1;

25: else

26: SendSubtreeConfirm(S[m].parent, S[m]); /* send to parent controller */

27: end if

175

function 8.11 ContinueDownstreamSearch(Packet pkt)

1: GH ← Extract hierTG(pkt);

2: TG(VT , ET)← ExtractTG(GH , S[m]); /* extract TG with me at root*/

3: Vngb ← {v ∈ VT | v is my neighbor in TG};

4: UninstSrv ← VT ;

5: UninstSrvngb ← Vngb;

6: for all v ∈ UninstSrvngb do

7: v.acked← FALSE;

8: v.Qstr ← v.service type;

9: BroadcastQuery(v.Qstr); /* continue search */

10: end for

function 8.12 HierTGHandleBroadcastTimeouts()
1: S[m] = {i0, i0.i1, i0.i1.i2, · · · , i0.i1.im} /* m = 0⇒ S = {Satom} */

2: /* check for all active, uninstantiated services */

3: for all (u ∈ UninstSrvngb : u.active == TRUE) do

4: if (TimeOut(u.service type) == TRUE) then

5: V ′ ← {v′ ∈ V | v′ is u’s child in CH and (S[m], v′) ∈ E}; /* if no instance

found for u in a specified timeout period, find instances of simpler

nodes in GH */

6: UninstSrvngb ← UninstSrvngb ∪ V ′; /* update service vars (neighbor) */

7: u.active← FALSE;

8: for all (x ∈ V ′) do

9: x.Qstr ← u.Qstr :: x.service type;

10: BroadcastQuery(x.Qstr); /* broadcast queries for simpler nodes */

11: end for

12: end if

13: end for

176

gets an ACK from the coordinator, it has independently formed an instance of CS which is

available for use. In such a scenario, when the ACK for SS (S[i] in line Alg.-8.3::6) arrives

at D, it replies with a confirmation message for CS (S[m],m > i in function 8.8::4) since

the requester had originally requested an instance of CS instead. Also, D extracts the

interface node information from GH as well as information about its children nodes in

the embedded BFS tree of GH rooted at node S[m]. This information is important since

interface nodes interact with the controllers of downstream nodes in order to continue the

discovery (function 8.8::5–10).

When a CONFIRM packet arrives at the coordinator, the latter concludes that the

sender of the packet, S is acting as a controller on behalf of the devices that are together

offering a desired service. The arrival of this packet also means that S assumes the respon-

sibility of discovering downstream services. The coordinator meanwhile instantiates S in it

own copy of the task graph.

Subtree Confirmations Data transmission can begin only when all required services

have been instantiated. Since the instantiation process is distributed and local, the coor-

dinator needs to be informed when instantiation is complete. We achieve this by means of

SUBTREE CONF packets as in the flat TG case (see Chapter 5. When all downstream nodes

rooted at a particular node, R in the task graph have been instantiated, R propagates a

SUBTREE CONF packet upstream all the way up to the coordinator. The coordinator extracts

the task graph from the packet and instantiates the downstream nodes indicated in the

task graph in its own copy. If all services in its list have been instantiated then the flow of

application data can begin (function 8.6::8–9). Also, periodic exchange of HELLO messages

begins between the coordinator and the controllers of services in GH at the top level. This

is for monitoring failures and disconnections between service instances. We explain this in

further detail in Section 8.3.

The process that we described above occurs at all levels of the containment hier-

177

archy and inside every complex node for the completion of instantiation inside them. The

controller of the root node of TG at a certain depth in CH also acts as the controller of

the corresponding complex service, e.g., the user node acts as the controller for the entire

application.

Composition and Instantiation of Complex Downstream Nodes As we have men-

tioned earlier in this section, the coordinator device is deemed responsible for instantiating

the devices that are its neighbors at the top level of GH . Instantiation of downstream ser-

vices needs to be performed by instances of nodes interfacing with the downstream services.

Addresses of such devices within an instantiated service S[m] can be extracted by the ser-

vice controller from the task graph (function 8.8::3), and those devices can be instructed by

the controller to continue the search downstream. When an instance of an interface node

receives a CONTINUE SEARCH packet, it executes steps shown in function 8.11.

There are some subtle differences between the steps for instantiating downstream

nodes at coordinators and at other nodes. We illustrate these differences with an example.

Suppose that a service S with a corresponding task graph TGS (this can itself be hierar-

chical) has been instantiated; in other words, S̃ and S exist. Suppose S can form a more

complex service if it uses another service Z which is complex as well. If Z was instantiated

earlier independently, Z̃ and Z exist too. Now, from a higher level task graph description

GH (involving smaller nodes TGS and TGZ), S knows its outgoing interface between S̃ and

Z̃.5 Let us denote this interface device by Sif . S instructs Sif to search for Z. When Sif

broadcasts a query, Z responds, and then upon getting an ACK, sends a CONFIRM to Sif .

The latter then relays the CONFIRM to S (function 8.10::1-3). The broadcast timeout rules

apply to Sif as they apply to the coordinator device.

If a controller C of a service at level m finds that it is at the BFS-root of a complex

node in GH (at depth d in CH) and that it has received SUBTREE CONF messages from all
5This information is extracted from GH by ExtractInterfaceNodeInfo() shown in function 8.8.

178

controllers Ci at level m, it concludes that a new service S[m + 1] can be composed and

instantiated at depth d− 1 from all these existing service instances.6 This is illustrated in

function 8.10::12–27. Function ConstructSrvType() constructs a name for the complex

service using a standardized convention known to all devices in the network. After this new

service instance is created, C assumes the role of the controller of this service. In other

words, S[m+ 1] = C. C also informs all controllers Ci (available from the variable InstSrv)

that they should change their state to SRV MEMBER with respect to S[m+1]. Also, since the

instantiation occurred only along the edges of the BFS tree of the appropriate subgraph

of GH , if the latter has non-tree edges, the affected interface node instances are informed

about each other’s addresses so that they can communicate. Now, if C had been queried

and all the above steps happened on-demand, then after S[m+ 1] is formed, C responds to

the upstream interface node which had initiated broadcast for S[m+ 1] (function 8.10::19–

23). Otherwise, C does nothing and waits to be queried and utilized by other users in the

network.

We note that although the descriptions of the algorithms proposed in this section

are slightly complicated due to the specific details in the representation of task graphs and

services, the basic idea behind hierarchical service composition and instantiation is simple

and very useful.

8.3 Recovering from Disconnections caused by Mobility

In this section, we present in detail how the algorithms presented in Section 8.2 react to

the mobility of devices after the required services have been instantiated. In a MANET, if

relative mobility of devices is very low and if the existing network topology does not change

due to mobility, the application may not be disrupted at all. However, on most occasions,
6Note that in this context depth is an absolute value in CH which increases with decrease in complexity

of services; on the contrary, level is a relative value which increases with increase in the complexity of a

composed service.

179

existing routes can fail due to device mobility that results in a change in network topology,

and that can cause a temporary disruption in the application. The underlying MANET

routing protocol then attempts to rediscover alternate routes to the same destination. If

the rediscovery happens with low delay, the application does not perceive the disruption

and continues to progress smoothly. However, if the route discovery latency is large or if a

network partition occurs because of device movement or failure, the application is disrupted

for a longer time period.

Because of these reasons, in MANETs, it is not sufficient to discover specific in-

stances of services and appoint them permanently to execute the application; accessibility

of those devices needs to be continually monitored in order to detect disconnections, and

replacement services must be discovered, if possible, for resuming the application. Since

this can be a regularly occurring phenomenon in real MANETs, it is extremely important

to augment the algorithms proposed in Section 8.2 such that the applications can recover

from such disruptions as rapidly as possible. In this section, we present steps for performing

recovery from such situations.

8.3.1 Detection of Disruptions in Service

Mobility of devices may cause network partitions or disconnections, and instantiated devices

executing a service may no longer be able to communicate if all paths between them are

broken. The first essential step for recovery from a disruption of service is its detection. We

extend the HELLO messaging protocol proposed in Section 5.3 for detecting disconnections

in a flat instantiated task graph to handle the hierarchical case. The protocol requires

the controller of a service to send periodic HELLO messages to all other controllers that are

cooperatively offering the service at the same depth in the containment hierarchy. These

controllers reply with a HELLO ACK message within a pre-determined period of time T . This

is illustrated in Figure 8.3.

A “hierarchically clustered” disconnection detection scheme is favorable in this con-

180

Service

2.1 2.32.2 3.1

3.4.2

3.4
DEPTH = 2

DEPTH = 33.4.3
3.4.1

3.2 3.3

DEPTH = 1

DEPTH = 0

2 3
1

HELLO/HELLO−ACK PKT EXCHANGE
Containment Hierarchy Depth

1

2

3

1

2.2

3.2

3.3

3.4.2
3.4.3

2.3
3.4.1

3.1

2.1

Controller Device

S 2

SS 1

S 3.4

S 3

Containment Hierarchy

Figure 8.3: Disruption Detection in a Hierarchical Service Instance

text instead of a purely distributed one since most of the state of a particular service at

a certain depth in CH lies with the controller of that service. The HELLO packet exchange

is limited to between the controllers of nodes that belong to a larger complex node. In

Figure 8.3, device S1 exchanges HELLO and HELLO ACK packets only with devices S2.1 and

S3.1, since they are the controllers of service instances S̃1, S̃2 and S̃3, respectively, and they

are represented by nodes that belong to the same depth in the containment hierarchy of

the task graph. Note that device S2.1, as the controller device of S̃2, also needs to exchange

HELLO and HELLO ACK packets with the other controllers, namely, S2.2 and S2.3 that form

S̃2 together.

The HELLO ACK packet is sent by the controller of a complex service only when all

the constituents of the service have replied with their HELLO ACK packets within a proper

time-out period. Thus, in Figure 8.3, S2.1, as the controller of S̃2, would only send a

HELLO ACK back to S1 when it has received HELLO ACK from S2.2 and S2.3 within proper

time-out periods.

The above HELLO messaging approach is similar to the one proposed by us else-

where [50]. This reduces the number of devices that must be tracked simultaneously by

any single device but increases the time required to obtain all the HELLO ACK packets from

181

devices that are further down in the containment hierarchy. To deal with this problem,

we propose a time-out value that is proportional to the number of levels left to reach the

highest depth in the CH of an instantiated task graph. Therefore, if d is the current depth

and N is the highest value of depth in CH and T is the time-out value at the highest depth,

then the time-out at depth d is given by: T (d) = (N − d)T . This approach results in a

more frequent packet exchange rate between devices offering simple services than the packet

exchange rate between controllers of complex services.

If a device requesting a particular service knows the maximum depth in CH (e.g.,

it is aware of the hierarchical TG representation of the service composed by simple nodes),

a suitable initial timeout value can be determined during instantiation. However, if the

maximum containment hierarchy level is unknown, design criteria or user input should

determine how long to wait before concluding that there are no service instances available

in the network.

8.3.2 The Recovery Process

The recovery process is always initiated by a controller after it detects a disconnection. If

the controller of a complex node X does not receive a HELLO ACK from the controller of

one of its constituent nodes Z, the former deems the latter to be unreachable. In such a

situation, X also attempts to re-instantiate Z.

In Figure 8.3, if device S3.4.2 does not send a HELLO ACK to S3.4.1 within a proper

timeout period, the latter will not send a HELLO ACK back to S3.1, which in its turn will

not send back a HELLO ACK to S1. Because the timeout period involving S3.4.1 and S3.4.2

is smaller, the former is likely to re-instantiate S3.4.2 before S3.1 times out for S3.4.1. If

a replacement instance of S3.4.2 is successfully found before a timeout, S3.1 will receive a

HELLO ACK within its timeout period, and will not be even aware that a recovery occurred

at a downstream controller. An exception to this is when a lost service acts as an interface

node in the task graph; in that case, the address of the new instance must be notified to an

182

upstream controller.

The common fate-sharing characteristic of the components of a complex service in

the detection and recovery processes may arguably not yield the optimal performance in

terms of latency. However, allowing a partially instantiated complex service to respond as

if it were fully instantiated means that application data can be delivered to that instance.

This introduces problems of where to buffer the data intended for the missing component.

Since devices in a MANET are prone to experience unreachability, the best device to buffer

application data is their originator. This, in conjunction with the fact that the internal

details of a complex service should be hidden from the device requesting that service prompt

us to treat an instance of a complex service as a whole.

We emphasized data delivery in our design. Of course, if greater importance is

attached to the timely arrival of any available data, a desirable outcome can be achieved

by changing the HELLO ACK response policy; for example, a device could respond with a

HELLO ACK as long as there are at least k instantiated components in the complex service

available.

8.4 Discussion

In this chapter, we investigated a related dimension of the service discovery problem, namely,

service composition. In general terms, service composition refers to the process of combina-

tion of multiple simple services in order to form a larger, more complex distributed service.

This offers users a great degree of transparency in discovery and selection of required ser-

vices, instead of having to be cognizant of all the details about the simpler services that

constitute the complex ones. Also, this can reduce discovery latency at the time of executing

distributed applications. Owing to the hierarchical nature of the service composition frame-

work, we represented a distributed application and its components using logical hierarchical

task graphs. At every level of hierarchy in the graph, nodes representing logical services and

183

edges between nodes representing required data-flows between the corresponding services

form a task graph with a specific degree of detail.

The distributed framework proposed in this chapter attempts to construct com-

plex service instances from those of simpler services on-demand from a logical hierarchical

description of the application. After a service is composed on-demand and used, its com-

ponents retain their associations for a certain interval of time. If another user requests the

service after the first one has finished using it but before it is scheduled to disintegrate, she

does not have to compose it again on-demand. This approach can lead to better resource

utilization, lower resource and service discovery latency, and can offer users a powerful ab-

straction of being able to query and use complex services even if they are not aware of their

individual components.

The topic of scalable reuse of composed instances of distributed services in not ad-

dressed in this dissertation. In the current architecture, a user queries the network with a

hierarchical task graph and the controller of a complex instantiated service responds if it

matches the requirements of the query. One can envision mechanisms of propagating infor-

mation about such controllers (or service access points) of instantiated services throughout

the network for achieving greater scalability. Proposals such as INS [1] can be leveraged in

such endeavors.

184

Chapter 9

Conclusions and Future Work

9.1 Conclusions

The recent proliferation of computing devices (both tethered and untethered) that are ca-

pable of wireless communication enables a new class of distributed mobile applications. To

fully exploit the diversity of services and the ubiquity of devices, approaches are required

that map applications to mobile nodes. A first step toward the execution of such a collabora-

tive application is the discovery of resources that are needed by it at runtime. In this disser-

tation, we propose a framework that specifies the needs of a distributed task/application in

terms of a resource dependency graph or task graph. Nodes in this graph logically represent

services or resources that the application requires and the edges represent the data-flows

that must exist between the resource nodes to facilitate appropriate task execution. We

propose algorithms and protocols for the discovery of suitable devices in the network for

performing the task cooperatively while obeying the constraints imposed by the logical task

graph structure. Our task execution framework includes mechanisms that adapt to mobil-

ity of devices in the MANET and the link dropouts that this creates. These mechanisms

endeavor to detect partitions critical to the ongoing task and then attempt recovery.

185

A task graph is a key vehicle for the abstract representation of the needs of a dis-

tributed application. Specifically, it captures the various logical data-flow relationships

between different components of the application that can be executed on a suitable set

of resources in the network which in turn match the criteria specified in the task graph

specification. In essence this allows a decoupling of the binding between the types of re-

sources required by the application and the physical addresses of the devices offering the

resources. This proves to be especially useful in mobile environments like MANETs. When

a participating device fails or moves out of range during the execution of a task, another

device that is aware of the corresponding logical task graph structure is able to rediscover

a replacement device that offers the same type of service as the failed device. Hence, only

the node to physical device binding changes in the process and the application can continue

execution after the temporary glitch.

We formulate the problem of embedding a task graph onto any network (static

snapshot of a MANET) as a combinatorial optimization problem. We propose several

metrics that can be optimized in this framework, the most important one being average

dilation: the average stretch that a task graph edge suffers when embedded on the network.

Average dilation directly affects other metrics such as average throughput and ADU delay.

We show that the optimization problem with respect to the average dilation metric is NP-

complete even when the nodes in the task graph possess distinct attributes. However, we

also prove that for tree TGs with nodes of distinct types, exact optimal polynomial time

algorithms indeed exist - we proposed one such dynamic programming based algorithm,

namely, TreeEmbed. TreeEmbed can be used for non-tree TGs as part of a heuristic

solution.

Because TreeEmbed searches the entire network for optimal devices, we propose

a greedy algorithm GreedyEmbed which is faster (as it searches only in the local neigh-

borhood), albeit yielding suboptimal results. One major advantage of GreedyEmbed is

that it is easily amenable to distributed implementations. Hence the distributed version

186

of GreedyEmbed became the algorithm of our choice. We propose a distributed protocol

that implements the above on a MANET. In addition, we propose distributed bookkeeping

algorithms including TG-patching for recovery from disconnections. The proposed algo-

rithms can recover reasonably quickly from single persistent disconnects as well as certain

classes of burst disconnects. In the worst case of affecting burst disconnects, the recovery

process is much slower.

Via large scale simulations we demonstrate the feasibility of task embedding on

reasonably large MANETs involving up to 100 devices that are moving in rectangular grids

of several sizes according to the random waypoint mobility model. We found that our

algorithms were able to yield embeddings with efficient average dilation most of the time

and were able to yield high effective throughput at low mobilities. Effective throughput

drops gracefully as maximum speed is increased. This is mainly because of the success of

our TG-patching techniques. We also found that spatial node density played an important

role in the execution of a task since it is the most significant factor affecting the connectivity

of the network. Constant mobility in sparse networks yielded better performance than

intermittent mobility as it often healed network partitions that were created due to low

spatial node density.

Finally, we demonstrate the viability of our approach by the implementation of a

real proof-of-concept prototype using off-the-shelf hardware and public domain software.

Large scale mobility was emulated using packet filtering at the kernel level. The distributed

protocol code can execute on machines with computing power ranging from powerful work-

stations to handheld devices.

9.2 Future Work

Since this was the first initiative towards modeling distributed applications on MANETs

using logical task graphs, much work remains to be done. In this section we enumerate a

187

few directions for future research in this area.

9.2.1 Effect of Proactive Routing Protocols

Proactive MANET routing protocols usually outperform reactive protocols in handling mo-

bility under heavy traffic loads [45]. We conducted simulations for 63-node task graphs by

replacing DSR with OLSR as the underlying routing protocol and performance degradation

was observed in general. This is due to congestion caused by frequent broadcasts performed

by OLSR as well as our instantiation protocol. One idea that can be explored further is the

coupling of resource discovery with the proactive routing protocol. Essentially the proposal

is to make the routing layer task-aware. When a device floods the link state (LS) updates

to the network, it can tag the values of its service attributes along with the LS packets.

Then other devices upon receiving LS updates will become aware of the service attributes

of remote devices in the MANET. This can save the S QRY step in the current protocol and

a device wishing to instantiate its children nodes in TG can directly send ACK packets to

certain devices according to desired optimization criteria.

The trade-off is between the bandwidth savings due to S QRY broadcasts and the

increased flooding traffic introduced by proactive routing. In the presence of other cross traf-

fic, this scheme may yield better delay and effective throughput. However it may consume

more energy because of the periodic LS broadcasts. Applications in battlefields can benefit

from the this approach whereas other less demanding applications are likely to benefit from

the current reactive approach.

9.2.2 Scalability Issues

In Chapter 8 we discussed how service composition can improve the scalability of the system

by allowing the reuse of already instantiated distributed services. The current proposal

advocates the use of broadcast queries for discovering such service instances. For the system

188

to scale more effectively, concepts akin to name resolution in INS [1] can be applied. The

access node of the distributed service needs to advertise the composite service to certain

name resolvers present in the network. This information will propagate throughout the

network via the overlay that the name resolvers form among themselves (much like mirrored

servers). Then a user’s query about a composite service can be answered promptly by one

or more name resolvers that reside near the user. The trade-offs between the updates of

composite service information and broadcasts by users (current model) have to be studied

more carefully.

9.2.3 Optimizations in the Embedding Process

Our instantiation algorithms map each node in a TG to a distinct device in the network.

Although this may be realistic for a class of devices such as display screens (peripherals in

general) sometimes multiple nodes in a TG can be mapped to a single device, (e.g., a general

computing device). Our algorithms need to be slightly adapted to suit these requirements.

The concept of maximum number of TG nodes mapped onto the same physical device can be

utilized for load sharing and fairness. This can be useful in sparse networks where network

partitions are very common. Even if the connected component of the user device contains

a smaller number of devices than |VT |, multiple nodes can be mapped onto single devices

so that the entire TG is instantiated successfully.

We have introduced metrics in Appendix B that can be useful for optimization pur-

poses in certain application scenarios. Examples of such metrics include load and node/edge

congestion of the mapping. These metrics will have a direct impact on the energy usage

of the MANET as a whole. Hence, instantiation protocols that attempt to optimize these

metrics must be developed in future.

189

9.2.4 Better Handling of Burst Disconnects

Although the concepts of distributed TG-patching are simple and powerful in case of single

and certain types of burst disconnects, they are inadequate for handling “affecting” burst

disconnects. A centralized protocol (as proposed in [50]) is better suited for detecting such

disconnects as a central controller monitors all the instances in the network periodically.

Hence the main challenge here is to combine the merits of the centralized and distributed

protocols in order to design better failure recovery schemes.

9.2.5 Implementation Challenges

In the proof-of-concept prototype described in Chapter 7, we barely touched upon the

concepts of reliable execution of tasks. ADU buffering and end-to-end ACKs for ADUs

must be implemented to offer reliability at the TaskApp layer. Recovery from the failure of

certain distributed components is application-dependent and needs further investigation.

We used a mobility emulator to test large scale device mobility. This does not allow

accurate performance analysis of metrics such as delay, and effective throughput – only

real device mobility does. Systematic studies involving real mobility of devices need to be

conducted and real tasks need to be evaluated on such networks.

Finally, a component currently missing from the architecture is security. Because we

allow mobile TaskApp code to be injected into sandboxed environments, it exposes many

security related issues that have been plaguing mobile code/agent based systems in the

past few years. While this is easier to handle in controlled environments such as battlefield

applications (all devices issued by a common agency), it is a more difficult problem in

heterogeneous systems (such as a network of PDAs used for polling).

190

Appendix A

Approximation Factors for the

TreeEmbed Algorithm

Since exact optimal polynomial time solutions are not known for NP-complete optimization

problems, it is worthwhile to look for approximation algorithms which can yield suboptimal

solutions in polynomial time, but with bounded suboptimality. An approximation factor

characterizes the upper bound on the degree of suboptimality that a certain approximation

algorithm can yield on a general instance of the input. We derive the approximation factors

that the optimal tree-based graph embedding algorithm TreeEmbed (described in Chapter

4, Algorithm 4.1) can achieve when used for embedding non-tree task graphs.

Let TG = (V,E) be a task graph that needs to be embedded onto a network G.

Denote the tree induced by breadth first search on TG by TGBFS . If TG is a tree, then

as shown in Section 4.2.3, TreeEmbed yields the optimal average dilation. Let d∗ be the

optimal average dilation when TG = TGBFS is embedded onto G.

When TG 6= TGBFS , the number of non-tree edges possessed by TG is e − n + 1,

since there are n − 1 tree edges for n = |V | and e = |E|. The n − 1 BFS edges in TG

contribute (n−1)d∗ hops to the total length of mapped paths. Consider the non-BFS edges

191

U

A

B

C

U

Ck

BjAi

X

Y

Z

X1 Y2

Z3

TASK GRAPH, TG

NETWORK GRAPH, G

D = diameter (BFS(TG)) = 4

AB −−> (Ai, Bj): length = 8 = Dd*

optimal dilation for tree, d* = 2

AC −−> (Ai, Ck): length = 8 = Dd*

BC −−> (Bj, Ck): length = 8 = Dd*

Figure A.1: The Worst Case Scenario for a Non-Tree Task Graph

in TG: in the worst case, each such edge can be mapped through a path in TG that is a

subset of the edges in TGBFS , and upper bounded by D = diameter(TGBFS) in length.

Hence, the contribution due to these edges to the total length of mapped paths is 6 Dd∗.

In the worst case, the upper bound of the dilation yielded by TreeEmbed algorithm

is represented by dTEMB(G) which can be computed as follows:

dTEMB(G) 6
1
e
[(n− 1)d∗ + (e− n+ 1)Dd∗]

6 Dd∗ − 1
e
[(D − 1)(n− 1)d∗]

= [D − (D − 1)(n− 1)
e

]d∗ (A.1)

Note that when TG is a tree, e = n− 1, and hence Equation A.1 reduces to davg =

d∗. The upper bound given by Equation A.1 is achieved only in some cases as shown

in Figure A.1. In this example, the average dilation due to our heuristic algorithm is

davg = (4− (4−1)×(7−1)
9)d∗ = 2d∗.

Let ϕOPT : VTG → VG be the optimal embedding that yields optimal average dilation

dOPT (G). Denote dBFST (G) as the dilation obtained by embedding the BFS spanning tree

of TG (the same as the one considered in Equation A.1) onto G using ϕOPT . By definition,

192

dBFST (G) > d∗. The lower bound of the optimal dilation in terms of the dilation of this

corresponding BFS subtree is achieved when all e−n+1 non-tree edges in TG are mapped

to single hop paths in G. This is indicated by:

dOPT (G) >
1
e
[(n− 1)dBFST (G) + (e− n+ 1)]

>
1
e
[(n− 1)d∗ + (e− n+ 1)] (A.2)

A.1 Calculation of the Approximation Factor

Definition A.1 An α-approximation algorithm for an optimization problem π is a poly-

nomial time algorithm that outputs a solution whose cost is within the multiplicative factor

α > 1 of the optimal cost for any instance of the problem. In other words, if COPT (x) is the

cost yielded by an optimal algorithm for an input x, the cost yielded by an α-approximation

algorithm on that same input is CAPPX(x) 6 α COPT (x).

From Equations A.1 and A.2, the approximation factor α of the TreeEmbed algo-

rithm is calculated as follows:

α = max
{dTEMB(G)
dOPT (G)

}
6

max dTEMB(G)
min dOPT (G)

=
(n− 1)d∗ +Dd∗(e− n+ 1)

(n− 1)d∗ + (e− n+ 1)

=
1 +D(e

n−1 − 1)

1 + 1
d∗ (

e
n−1 − 1)

(A.3)

The above upper bound on α is heavily dependent upon the structure of the TG.

More specifically, the number of edges e and diameter D of TGBFS (both are correlated)

play a major role, as does the value of dilation (d∗) of embedding TGBFS . We observe from

Equation A.3 the trivial upper bound of α 6 Dd∗ which is not tight.

In the remaining portion of this appendix, we derive tighter approximation factors

of the TreeEmbed algorithm for various special cases of task graph embeddings onto

193

a general network, namely, the cycle graph Cn, the square mesh graph Mm×m, and the

complete graph Kn.

Theorem A.1 (Cycle graph) TreeEmbed yields α = 2 for a cycle graph Cn.

Proof. Let Cn = U, v1, v2, . . . , vn−1, U . The BFS spanning tree of Cn is the line graph

Ln = U, v1, v2, . . . , vn−1. Suppose d∗ is the optimal average dilation obtained by embedding

Ln onto a graph G using TreeEmbed. dT (G) denotes the dilation obtained by embedding

Cn onto G by using TreeEmbed algorithm. Its lower bound is given by:

dT (G) >
d∗(n− 1) + 1

n
= d∗(1− 1

n
) +

1
n

(A.4)

The above lower bound is achieved when the only non-tree edge of Cn, i.e., (vn−1, U)

is mapped onto a single hop path in G. The upper bound is achieved when the edge

(vn−1, U) is mapped onto a longer path constructed by concatenation of paths in G which

are embeddings of the edges in Ln. It is given by:

dT (G) 6
d∗(n− 1) + d∗(n− 1)

n
= 2d∗(1− 1

n
) (A.5)

Let ϕOPT : Cn → VG be the optimal embedding which yields optimal average

dilation dOPT (G). Denote by dLn(G) the dilation obtained by embedding Ln onto G using

ϕOPT . By definition, dLn(G) > d∗. The lower bound of the optimal dilation in terms of the

dilation of this corresponding BFS subtree Ln is given by:

dOPT (G) > dLn(G)(1− 1
n

) +
1
n

> d∗(1− 1
n

) +
1
n

(A.6)

From Equations A.5 and A.6, the approximation factor α is calculated as follows:

α = max
{ dT (G)
dOPT (G)

}
6

max dT (G)
min dOPT (G)

=
2d∗(1− 1

n)
d∗(1− 1

n) + 1
n

= 2− 2
d∗(n− 1) + 1

6 2 (A.7)
�

194

Theorem A.2 (Square mesh) TreeEmbed yields α =
√
n for a Mm×m mesh where

n = m2.

Proof. Suppose the user node is at a corner of Mm×m. A BFS tree TM of Mm×m consists

of a set of lines L11,1m, L21,2m, . . . , Lm1,mm and one additional line L11,m1 that connects all

these lines together to yield a tree structure. Let d∗ be the optimal dilation obtained by

TreeEmbed algorithm. Since there are n− 1 edges in TM , the contribution due to TM to

the total length of mapped paths is d∗(n − 1). There are 2m(m − 1) edges in Mm×m out

of which 2m(m− 1)− (n− 1) = (m− 1)2 are non-tree edges that have not been explicitly

mapped by TreeEmbed. dT (G) denotes the dilation obtained by embedding M onto G by

using TreeEmbed algorithm. The upper bound of dT (G) is achieved when all the non-tree

edges of M are mapped to long paths in G obtained by concatenating shorter paths which

are embeddings of TM . Therefore, dT (G) is given by:

dT (G) 6
d∗(n− 1) + (m− 1)(3 + 5 + . . .+ 2m− 1)d∗

2m(m− 1)
=

m+ 1
2

d∗ (A.8)

Let ϕOPT : M → VG be the optimal embedding which yields optimal average dilation

dOPT (G). Let us denote by dTM
(G) the dilation obtained by embedding TM onto G using

ϕOPT . By definition, dTM
(G) > d∗. In the best case, all the non-tree edges in M will be

mapped to single hop paths in G. Thus the lower bound of the optimal dilation in terms

of the dilation of this corresponding BFS subtree TM is given by:

dOPT (G) >
dTM

(G)(m2 − 1) + (m− 1)2

2m(m− 1)

=
1
2

{
dTM

(G)(1 +
1
m

) + (1− 1
m

)
}

>
1
2

{
d∗(1 +

1
m

) + (1− 1
m

)
}

(A.9)

From Equations A.8 and A.9, the approximation factor α can be calculated as

195

follows:

α = max
{ dT (G)
dOPT (G)

}
6

max dT (G)
min dOPT (G)

=
m+ 1

2
d∗

/ 1
2

{
d∗(1 +

1
m

) + (1− 1
m

)
}

= m
{

1− m− 1
(m+ 1)d∗ + (m− 1)

}
6 m =

√
n (A.10)

�

Theorem A.3 (Complete Graph) TreeEmbed yields α = n − 1 for a complete graph

Kn.

Proof. The BFS tree of Kn is a star graph Sn on n vertices with n − 1 leaf nodes. The

number of edges e =
(
n
2

)
= 1

2n(n − 1). Hence the number of non-tree edges is e− n + 1 =(
n−1

2

)
= 1

2(n− 1)(n− 2). Using notation described earlier in this section, we calculate the

upper bound for dT (G) and the lower bound for dOPT (G) as follows:

dT (G) 6
d∗(n− 1) +

(
n−1

2

)
2d∗(

n
2

) = 2d∗(1− 1
n

) (A.11)

dOPT (G) >
dSn(G)(n− 1) +

(
n−1

2

)(
n
2

) >
2d∗ + n− 2

n
(A.12)

From Equations A.11 and A.12, the approximation factor α can be calculated as

follows:

α = max
{ dT (G)
dOPT (G)

}
6

max dT (G)
min dOPT (G)

=
2d∗(n− 1)
2d∗ + n− 2

=
n− 1

1 + n−2
2d∗

(A.13)

Unlike in the previous special cases, the value of d∗ impacts α significantly. If G is large

and d∗ is high, then α tends to increase and is upper bounded by n − 1. In other words,

α 6 n− 1. �

196

Appendix B

Metrics for Performance

Evaluation of Distributed

Anycastable Applications

As proposed throughout this dissertation, several devices, specialized or multipurpose, can

participate in the execution of a given distributed task. Also, there are likely to be multiple

occurrences of devices that offer similar services, hence a user need not be bothered about

the choice of particular devices that participate in the task, as long as it is completed

successfully. Therefore, the quality of the overall choice of devices that participate in a task

must be quantified in such a framework.

This material is excerpted from [6]. As mentioned in Chapter 3, a user specifies the

structure of an application by means of a task graph or resource dependency graph consist-

ing of nodes representing “logical” computing resources and edges representing data flow

dependencies or other requirements such as physical proximity between nodes, to facilitate

the application. At runtime, particular instances of devices/resources need to be selected

from among multiple available instances for efficient execution of the given application. We

197

refer to this process as Application Mapping or Instantiation. Note that the issues here are

different from those in simple service discovery since we are concerned with the discovery

of all resources needed for the execution of the entire application while obeying the con-

straints specified in the task graph. We also need to measure the performance of the actual

execution process as a function of several system parameters.

In earlier chapters of this dissertation, we proposed and utilized system level metrics

to quantify success or failure of performing a particular distributed “anycastable” task. In

this appendix, we propose a taxonomy for various types of metrics which can measure the

performance of applications during their entire lifetimes. For completeness we enumerate

additional metrics which we believe help in the process of performance evaluation of such

applications:

1. Application mapping time: Time taken to map or instantiate an application char-

acterized by a resource graph onto a set of suitable devices which will actually execute

the application.

2. Application mapping efficiency: The following metrics can evaluate different as-

pects of the mapping efficiency.

(a) Average/Maximum Dilation: Each edge of the task graph can get mapped

onto a multi-hop shortest path in the network. This metric measures the av-

erage/maximum length of a shortest path between two instantiated devices in

the network after the mapping is complete. Its value is always > 1. A low di-

lation mapping is good because if most required devices are located nearby, the

probability of achieving high overall throughput are greater.

(b) Node Congestion: A mapping with low dilation can suffer from bottleneck

paths passing through a single device or a few devices. Minimization of this met-

ric encourages mappings with lesser number of paths passing through bottleneck

devices. Hence, this automatically helps in load balancing.

198

(c) Messaging Overhead: This metric is characterized by the number of control

messages exchanged between devices during the establishment of a mapping.

Broadcast based solutions tend to have a high message overhead although they

are usually better suited for highly mobile networks.

3. Resilience of Application Mapping to Device Mobility: Mobility of devices

can cause network partitions and therefore, application outages. The following set of

metrics measure the impact of device mobility on an application mapping.

(a) Frequency of Application Disruption: The rate at which an application is

disrupted due to network partitions and device failures.

(b) Application Recovery Time: Time taken to discover replacement devices for

re-mapping the affected parts of the resource graph plus the time to perform

state migration to these new devices.

(c) Average Connected time: Time for which an application runs without any

disruptions.

4. Application Performance after Mapping: This set of metrics attempts to mea-

sure how well an application executes after all the required resources have been dis-

covered and instantiated.

(a) Average Effective Throughput: The cumulative ratio of the number of ADUs

received by their intended recipients to those were intended to be received under

perfect network conditions. This metric is normalized with respect to the number

of data sinks in a task graph and attains values between 0 and 1. Mobility of

devices can cause network partitions which can result in task disruptions, hence

lowering this. This metric is usually an indicator of the loss of application data.

(b) Average number of Re-transmissions: Since application data can be lost

because of disruptions, buffering and re-transmissions may be required at data

sources. This metric measures the number of times a data unit is needed to be

re-transmitted before successful reception by an intended instantiated recipient.

199

(c) Average ADU Delay: The amount of time that elapsed between the trans-

mission of an application data unit and its successful reception at an intended

recipient. This may include the recovery time following a disruption.

We note that different distributed applications on a MANET can have different

levels of tolerance with respect to the metrics proposed above (e.g., some applications can

tolerate large delays due to re-mappings but not data loss.) Hence a designer of a particular

application must consider the relative importance of the metrics for the application. We

have not attempted to optimize our protocols with respect to all of these metrics in this

dissertation. This remains a topic of future research.

200

Bibliography

[1] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. “The Design and

Implementation of an Intentional Naming System”. In Proceedings of the 17th ACM

Symposium on Operating Systems Principles (SOSP), Kiawah Island, SC, December

1999.

[2] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. “Resilient Overlay Net-

works”. In Proceedings of the 17th ACM Symposium on Operating Systems Principles

(SOSP), Banff, Canada, October 2001.

[3] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy,

J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan,

Y. Xu, H. Yu, and D. Zappala. “Improving Simulation for Network Research”. Tech-

nical Report 99-702, University of Southern California, Los Angeles, CA, March 1999.

URL: http://www.isi.edu/nsnam/ns.

[4] G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski. “Chal-

lenges: An Application Model for Pervasive Computing”. In Proceedings of the 6th

ACM MobiCom Conference, Boston, MA, August 2000.

[5] S. Basagni. “Distributed Clustering for ad hoc Networks”. In A. Y. Zomaya, D. F.

Hsu, O. Ibarra, S. Origuchi, D. Nassimi, and M. Palis, editors, Proceedings of the

1999 International Symposium on Parallel Architectures, Algorithms, and Networks

201

(I-SPAN’99), pages 310–315, Perth/Fremantle, Australia, June 1999. IEEE Computer

Society.

[6] P. Basu, W. Ke, and T. D. C. Little. “Metrics for Performance Evaluation of Dis-

tributed Application Execution in Ubiquitous Computing Environments”. In Position

paper at the ACM UbiComp 2001 Workshop on Evaluation Methodologies for Ubiqui-

tous Computing, Atlanta, GA, September 2001.

[7] P. Basu, W. Ke, and T. D. C. Little. “A New Task-Based Approach for Supporting

Distributed Applications on Mobile Ad Hoc Networks”. Computer Communication

Review, 32(1):63–63, January 2002. Published as a summary of a poster that appeared

in the ACM SIGCOMM Conference, San Diego, CA, 2001.

[8] P. Basu, W. Ke, and T. D. C. Little. “A Novel Approach for Execution of Distributed

Tasks on Mobile Ad Hoc Networks”. In Proceedings of the IEEE Wireless Computing

and Networking Conference (WCNC), Orlando, FL, March 2002.

[9] P. Basu, W. Ke, and T. D. C. Little. “Scalable Service Composition in Mobile Ad hoc

Networks using Hierarchical Task Graphs”. In Proceedings of the 1st Annual Mediter-

ranean Ad Hoc Networking Workshop (Med-Hoc-Net), Sardegna, Italy, September 2002.

IFIP.

[10] P. Basu, W. Ke, and T. D. C. Little. “Dynamic Task Based Anycasting in Mo-

bile Ad Hoc Networks”. ACM/Kluwer Journal for Mobile Networks and Applications

(MONET), 2003. In Press.

[11] P. Basu and T. D. C. Little. “Networked Parking Spaces: Architecture and Appli-

cations”. In Proceedings of the 56th IEEE Vehicular Technology Conference - Fall,

Vancouver, Canada, September 2002.

[12] P. Basu, N.Khan, and T. D. C. Little. “A Mobility Based Metric for Clustering in

Mobile Ad Hoc Networks”. In Proceedings of the IEEE ICDCS Workshop on Wireless

Networks and Mobile Computing, Phoenix/Mesa, AZ, April 2001.

202

[13] J. Beck, A. Gefflaut, and N. Islam. “MOCA: A Service Framework for Mobile Com-

puting Devices”. In Proceedings of the International Workshop on Data Engineering

for Wireless and Mobile Access (MobiDE), Seattle, WA, August 1999.

[14] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena

Scientific, Belmont, MA, 1995.

[15] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. “MACAW: A Media Access

Protocol for Wireless LANs”. In Proceedings of the ACM SIGCOMM Conference, pages

212–225, London, UK, September 1994.

[16] S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah, and Z. Fei. “Application Layer

Anycasting”. In Proceedings of the IEEE INFOCOM Conference, Kobe, Japan, April

1997.

[17] Bluetooth Consortium. URL. http://www.bluetooth.com.

[18] D. Boggs. Internet Broadcasting. PhD thesis, Xerox PARC, October 1983. Available

as Technical Report CSL-83-3.

[19] S. Bokhari. “On the Mapping Problem”. IEEE Transactions on Computers, 30(3),

1981.

[20] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu, and J. Jetcheva. “A Performance

Comparison of Multi-Hop Ad Hoc Network Routing Protocols”. In Proceedings of the

4th ACM MobiCom Conference, Dallas, TX, 1998.

[21] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. “A Reactive Service

Composition Architecture for Pervasive Computing Environments”. Technical Report

TR-CS-02-02, University of Maryland at Baltimore County, Department of Computer

Science, March 2002.

203

[22] K. Chandran, S. Raghunathan, S. Venkatesan, and R. Prakash. “A Feedback-Based

Scheme for Improving TCP Performance in Ad Hoc Wireless Networks”. IEEE Per-

sonal Communications Magazine, February 2001.

[23] Y. Chu, S. G. Rao, and H. Zhang. “A Case For End System Multicast”. In Proceedings

of the ACM SIGMETRICS Conference, pages 1–12, Santa Clara, CA, June 2000.

[24] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT

Press and McGraw-Hill, 1990.

[25] S. Corson and J. Macker. Mobile Ad hoc Networking (MANET): Routing Protocol

Performance Issues and Evaluation Considerations. RFC 2501 (Informational), January

1999. URL: http://www.ietf.org/rfc/rfc2501.txt.

[26] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai. “IEEE 802.11 Wireless Local Area

Networks”. IEEE Communications Magazine, 35(9):116–126, September 1997.

[27] S. Deering. “Scalable Multicast Routing Protocol”. PhD thesis, Stanford University,

1989.

[28] A. Ephremides, J. E. Wieselthier, and D. J. Baker. “A Design Concept for Reliable

Mobile Radio Networks with Frequency Hopping Signaling”. Proceedings of the IEEE,

75(1):56–73, January 1987.

[29] H. Eriksson. “Mbone: The Multicast Backbone”. Communications of the ACM,

37(8):54–60, 1994.

[30] M. Esler, J. Hightower, T. Anderson, and G. Borriello. “Next Century Challenges:

Data-Centric Networking for Invisible Computing The Portolano Project at the Uni-

versity of Washington”. In Proceedings of the 5th ACM MobiCom Conference, Seattle,

WA, August 1999.

[31] The “Familiar” Project: Linux Distribution for Compaq iPAQ. URL. http:

//familiar.handhelds.org/.

204

[32] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and Practice.

Addison Wesley, Reading, MA, November 1999.

[33] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. “The Impact of Multi-

hop Wireless Channel on TCP Throughput and Loss”. In Proceedings of the IEEE

INFOCOM Conference, San Francisco, CA, March-April 2003.

[34] M.R. Garey and D.S. Johnson. Computers and Intractability. W.H. Freeman and

Company, San Francisco, CA, 1979.

[35] M. Gerla and J. T.-C. Tsai. “Multicluster, Mobile Multimedia Radio Network”. Wire-

less Networks 1, pages 255–265, 1995.

[36] J. D. Gibson, editor. The Mobile Communications Handbook. CRC Press Inc., 1996.

[37] R. S. Gray. “Agent Tcl: A Flexible and Secure Mobile-agent System”. In M. Diekhans

and M. Roseman, editors, Proceeding of Fourth Annual USENIX Tcl/Tk Workshop,

pages 9–23, Monterey, CA, 1996.

[38] E. Guttman. “Service Location Protocol: Automatic Discovery of IP Network Ser-

vices”. IEEE Internet Computing, July 1999.

[39] J. Guyton and M. Schwartz. “Locating Nearby Copies of Replicated Internet Servers”.

In Proceedings of the ACM SIGCOMM Conference, Cambridge, MA, August 1995.

[40] Z. J. Haas. “A New Routing Protocol for the Reconfigurable Wireless Networks”. In

Proceedings of the IEEE International Conference on Universal Personal Communica-

tion (ICUPC), San Diego, CA, October 1997.

[41] T. Hodes, R. Katz, E. Servan-Screiber, and L. Rowe. “Composable Ad-Hoc Mobile Ser-

vices for Universal Interaction”. In Proceedings of the 3rd ACM MobiCom Conference,

Budapest, Hungary, September 1997.

205

[42] G. Holland and N. Vaidya. “Analysis of TCP Performance over Mobile Ad Hoc Net-

works”. In Proceedings of the 5th ACM MobiCom Conference, pages 219–230, Seattle,

WA, August 1999.

[43] C. C. Hui and S. T. Chanson. “Allocating Task Interaction Graphs to Processors in

Heterogeneous Networks”. IEEE Transactions On Parallel And Distributed Systems,

8(9):908–925, September 1997.

[44] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot.

“Optimized Link State Routing Protocol for Ad Hoc Networks”. In Proceedings of

IEEE INMIC, Lahore, Pakistan, 2001.

[45] P. Jacquet, L. Viennot, and T. H. Clausen. “Analyzing control Traffic Overhead in

Mobile Ad-hoc Network Protocols versus Mobility and Data Traffic Activity”. In

Proceedings of the 1st Annual Mediterranean Ad Hoc Networking Workshop (Med-

Hoc-Net), Sardegna, Italy, September 2002. IFIP.

[46] D. B. Johnson and D. A. Maltz. “Dynamic Source Routing in Ad Hoc Wireless Net-

works”. In T. Imielinski and H. Korth, editors, Mobile Computing, chapter 5, pages

153–181. Kluwer Academic Publishers, 1996.

[47] J. Jubin and J. D. Tornow. “DARPA Packet Radio Network Protocols”. Proceedings

of the IEEE, 75(1):21–32, January 1987.

[48] P. Karn. “MACA – A New Channel Access Method for Packet Radio”. In Proceedings

of the 9th ARRL/CRRL Amateur Radio Computer Networking Conference, pages 134–

140, London, Ontario, Canada, September 1990.

[49] B. Karp and H. T. Kung. “Greedy Perimeter Stateless Routing for Wireless Networks”.

In Proceedings of the 6th ACM MobiCom Conference, pages 243–254, Boston, MA,

August 2000.

206

[50] W. Ke, P. Basu, and T. D. C. Little. “A Task Graph Based Application Framework

for Mobile Ad Hoc Networks”. In Proceedings of the IEEE International Conference

on Communications (ICC), New York, NY, April-May 2002.

[51] Y. Ko and N. H. Vaidya. “Location Aided Routing in Ad Hoc Networks”. In Proceedings

of the 4th ACM MobiCom Conference, Dallas, TX, October 1998.

[52] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan. “A Cluster Based Ap-

proach for Routing in Ad Hoc Networks”. ACM SIGCOMM Computer Communication

Review, 1997.

[53] S. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. “A Performance Comparison

Study of ad hoc Wireless Multicast Protocols”. In Proceedings of the IEEE INFOCOM

Conference, pages 565–574, Tel-Aviv, Israel, March 2000.

[54] H. Lundgren, E. Nordström, and C. Tschudin. “Coping with Communication Gray

Zones in IEEE 802.11b based Ad hoc Networks”. In Proceedings of the WoWMoM

Workshop.

[55] K. Mills. “AirJava: Networking for Smart Spaces”. In Proceedings of the USENIX

Embedded Systems Workshop, Cambridge, MA, March 1999.

[56] R. Monien and H. Sudborough. “Embedding one Interconnection Network in Another”.

Computing Suppl., 7:257–282, 1990.

[57] S. Oaks and H. Wong. JINI in a Nutshell. O’Reilly, first edition, March 2000.

[58] OLSR Implementation for Linux: INRIA, France. URL. http://hipercom.inria.

fr/olsr/.

[59] V. D. Park and J. Macker. “Anycast Routing for Mobile Services”. In Proceedings of

the 33rd Annual Conference on Information Sciences and Systems (CISS), Baltimore,

MD, March 1999.

207

[60] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. RFC 1546

(Informational), November 1993. URL: http://www.ietf.org/rfc/rfc1546.txt.

[61] C. E. Perkins and E. M. Royer. “Ad hoc On-Demand Distance Vector Routing”. In

Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications

(WMCSA), pages 90–100, New Orleans, LA, February 1999.

[62] R. Ramanathan and M. Steenstrup. “Hierarchically-Organized Multihop Mobile Net-

works for Quality-of-service Support”. ACM/Baltzer Journal on Mobile Networks and

Applications, 3(2), August 1998.

[63] Project: Rapid Task-based Self-Organization in Distributed Ad-hoc Spaces, Mul-

timedia Communication Laboratory, Boston University. URL, 2000–2003. http:

//hulk.bu.edu.

[64] P. Sass and J. Freebersyser. “FCS Communications Technology for the Objective

Force”. Technical report, MITRE Corporation, 2002.

[65] M. Steenstrup. “Cluster-based Networks”. In C. Perkins, editor, Ad hoc Networking,

pages 75–138. Addison-Wesley Longman Publishing Co., Inc., 2001.

[66] W. R. Stevens. UNIX Network Programming, volume 1. Prentice Hall PTR, Upper

Saddle River, New Jersey, second edition.

[67] J. Tardo and L. Valente. “Mobile Agent Security and Telescript”. In Proceedings of

IEEE CompCon, pages 58–63, 1996.

[68] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu. “The Broadcast Storm Problem

in a Mobile ad hoc Network”. In Proceedings of the 5th ACM MobiCom Conference,

pages 151–162, Seattle, WA, August 1999.

[69] D. Wall. “Mechanisms for Broadcast and Selective Broadcast”. PhD thesis, Stanford

University, 1980.

208

[70] M. Weiser. “Some Computer Science Issues in Ubiquitous Computing”. Communica-

tions of the ACM, 36(7):75–85, July 1993.

[71] Y. Zhang and W. Li. “An Integrated Environment for Testing Mobile Ad-Hoc Net-

works”. In Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc

Networking and Computing (MobiHoc), Lausanne, Switzerland, June 2002.

[72] ZigBee Alliance. URL. http://www.zigbee.org.

209

Biography

Prithwish Basu is a Ph.D. candidate in the Department of Electrical and Computer Engi-

neering at Boston University (BU). He received the B.Tech. degree in Computer Science and

Engineering from Indian Institute of Technology (IIT), New Delhi, India in 1996, and the

M.S. degree in Computer Systems Engineering from Boston University in January 1999. He

is currently a research assistant in the Multimedia Communications Laboratory at Boston

University. His research interests include resource discovery, routing, and clustering in

mobile ad hoc networks; algorithmic issues in mobile and pervasive computing; scalable

network video delivery; and performance analysis and modeling. Prithwish has co-authored

over ten conference and journal articles, and two invited book chapters during his stay at

Boston University. He received the Student Travel Award at MobiCom 2002.

Prithwish is a student member of the IEEE and the ACM. He was a member of the

organizing committee for MobiCom 2000 held in Boston in the capacity of the coordinator

of student volunteers. He has also served as a reviewer for a number of conferences and

journals over the past six years.

210

