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Abstract– Mobile ad hoc networks (MANETs) have received significant attention from the

research community recently owing to the growth in popularity of portable computing and

wireless networking. While researchers have primarily focused on developing lower layer

mechanisms such as channel access and routing for making MANETs operational, higher

layer issues such as application modeling have largely remained ignored. In this chapter, we

present a novel distributed application framework based on attributed task graphs that enables

a large class of resource discovery based applications on mobile, failure-prone environments

such as MANETs. A distributed application is represented as a task comprised of smaller

sub-tasks that need to be performed on different classes of computing devices with specialized

roles. Execution of a particular task on a MANET requires several logical patterns of data-

flow between nodes representing such device classes. As a result, dependencies are induced

between the different classes of devices that need to cooperate to execute the application.

Such dependencies yield a task graph representation of the distributed application.

We consider the problem of executing distributed tasks on a MANET by means of

dynamic selection of specific devices that are needed to execute the sub-tasks. We present

simple and efficient algorithms for dynamic discovery and selection of suitable devices in a

MANET from among a number of them providing the same functionality. This is carried

out with respect to the proposed task graph representation of the application, and we call

this process task embedding or anycasting. Since MANETs are prone to disconnections,

we advocate periodic monitoring of the selected devices by one another. In the event of

an application disruption owing to node mobility or failures, our algorithms adapt to the

1In The Handbook of Mobile Computing, Eds. Imad Mahgoub and Mohammad Ilyas, CRC Press, 2004.
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views of the National Science Foundation.



situation and dynamically rediscover the affected parts of the task graph, if possible. We

propose metrics for evaluating the performance of these algorithms and report simulation

results for a variety of application scenarios differing in complexity, traffic, and device

mobility patterns. We demonstrate by simulation that our protocol can instantiate and re-

instantiate TG nodes effectively in mobile scenarios; also the delivered effective throughput

is near perfect at low to medium degrees of mobility and moderately high for high mobility

scenarios.

Keywords: mobile ad hoc networks, distributed application execution, anycasting, device/service

discovery, task graphs
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1 Introduction

The shrinking size of tetherless computing devices and increasing diversity of their capabilities

has dramatically increased the value of pervasive computing. Exploiting the full potential

of a large network of such devices while not frustrating the end-user with interminable

configuration tasks poses several interesting challenges for a developer of distributed applications.

Wireless networking technologies such as IEEE 802.11b (or WiFi) [12], Bluetooth [9], and

Zigbee [18] have begun to enable several distributed applications on truly tetherless computing

environments for end-users. These technologies are capable of enabling connectivity between

possibly mobile users through infrastructureless networking, also known as mobile ad hoc

networking. Formally, a mobile ad hoc network (MANET) is a rapidly deployable, autonomous

system of mobile devices which are connected by wireless links to form an arbitrary graph

at any instant of time.

With the ubiquity of portable devices and wireless network connectivity, MANETs are

likely to gain popularity in the near future, especially in settings where a networking infrastructure

is impossible, cumbersome, or expensive to establish. We can conceive scenarios in which the

environment surrounding us consists of a large number of specialized as well as multipurpose

devices, many of them portable, and linked through wireless connections, albeit with fluctuating

link availability. When a large number of computing devices become equipped with wireless

connectivity, and they form an ad hoc network, they can offer services to other devices

for performing several tasks. Ideally, such pervasive networks can enable a broad range of

distributed applications that need exchange of information between multiple devices. In

such scenarios, since the service providing devices may themselves be mobile, a user cannot

rely on one particular device for a certain service since its reachability or availability is not

guaranteed. Instead, a user must be prepared to access the required service from any of

several devices in the MANET providing similar services. Besides, the user may not have a

preference for a specific device as long as her task is accomplished in a seamless manner.

In order to realize the above features we advocate the decoupling of the logical structure

of a distributed application or task (consisting of sub-tasks) from the actual physical devices

than execute the application. We propose the use of the Task Graph (TG) abstraction

for representing the structure of the user applications in terms of smaller sub-tasks. It is a

graph composed of nodes and edges, where the nodes represent the classes2 of devices/services

needed for processing data related to the task while the edges represent necessary associations

2Printer, Photocopier, Digital Picture Frame etc. are examples of classes
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between different nodes for performing the task.

Thus when a task is to be executed, specific devices are selected (in other words, instantiated)

at runtime, and are made to communicate with one another according to the specifications

of the TG. More specifically, for each class of device in TG, one suitable instance needs to be

chosen to take part in task execution. We call this process Dynamic Task-based Anycasting

or Embedding [6].

When a participating device becomes unavailable, a new substitute device with similar

capabilities is selected to continue the task. Therefore, a basic proposition in our model is

that as long as there is one accessible device in the entire network capable of performing

a particular sub-task as requested by the user-level application, the latter can proceed.

Obviously, the application should be elastic enough to adapt to the changing conditions of

the mobile multi-hop network.

The TG abstraction of a distributed task is advantageous in many ways. It is inherently

distributed, as most pervasive applications and services of the future are likely to be, since

more and more specialized devices will need to communicate with one another to offer more

and more powerful services. It also offers hierarchical composability, as collections of devices

can be logically grouped together to constitute a single node in a TG [5].

The rest of the chapter is organized as follows: Section 2 introduces the basic modeling

framework with the necessary terminology; Section 3 presents task graph instantiation
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algorithms for mapping applications onto MANETs; Section 4 presents simulations results

under various degrees of mobility; Section 5 presents related work on the topic; Section 6

concludes the chapter.

2 Modeling Distributed Tasks with Task Graphs

In the past few decades, a variety of distributed applications have been enabled by many

advances in computer networking. A distributed networked application or task is composed

of several components or sub-tasks. These components often execute on different hardware

devices and communicate among each other in order to yield a desired result. Traditional

parallel and distributed computing platforms are comprised of high performance nodes

internetworked with static high capacity links. However, as mentioned in Section 1, the

computation and communication substrate offered by a MANET is potentially mobile and

hence, prone to link failures. Therefore, it is necessary to develop a model for a distributed

application which decouples the bindings between its logical components and the actual

hardware devices that they are executed on until application runtime. Additionally, the

model should utilize the component-level structure of an application in order to dynamically

discover and select appropriate devices in the network with desired capabilities for hosting

and executing the aforementioned application components.

2.1 A Modeling Framework for Task Execution

In this section we propose the modeling framework which advocates the decoupling of the

needs and structure of a distributed task from the physical network. We begin with an

introduction of the necessary terminology.

2.1.1 Preliminaries

A device in our context is a physical entity that performs at least one particular function

such as interaction with its physical surroundings, computation, and communication with

other devices. It may be equipped with an embedded processing element, sensors and

actuators for interacting with the physical environment, a wireless communication port,

and/or a user interface.

If a device primarily performs one specific function, it is called a “specialized device,”
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otherwise, it is referred to as a “multipurpose device.” Examples of the former type include

digital cameras, speakers, printers, keyboards, display devices etc., while examples of the

latter include Personal Digital Assistants (PDA) and portable notebook computers.

The capabilities of each device can be summarized in their attributes. Attributes can be

static (i.e., time-invariant) or dynamic (i.e., time-variant). For example, a network digital

camera can have a static attribute “resolution” which can take values like 320x240, 640x480

etc. Examples of dynamic attributes include location (absolute or relative, depending on the

availability of GPS), available computational power, and current load. In this dissertation,

we only consider devices with their principal attribute, (i.e., their primary function). Multi-

attribute extensions are possible and are considered elsewhere [1].

A service is a functionality provided by a device or a collection of cooperating devices.

A service provided by a single device is referred to as a simple service whereas one provided

cooperatively by a collection of devices is referred to as a composite service.

Multiple devices can exist in the MANET for providing the same service. For example,

there can be multiple wireless cameras in the network which a user can choose from for taking

a picture. We refer to this situation as “multiple instances of wireless camera services.”

Service composition is the process of construction of an instance of a composite

distributed service from other simple or composite service instances available in the current

networked physical space. In this chapter we concentrate on the composition of composite

services from simple services only. However, service composition can be carried out in a

hierarchical manner – complex services can be constructed from composite services using

hierarchical task graphs [5].

A node is an abstract representation of a device or a collection of devices characterized

by a minimal set of attributes that can offer a particular service.

A node is simple when it represents a single physical device. It is complex when it

represents multiple simple nodes. We refer to the principal attribute of a node or a device

as its class or category or type. Examples of classes include printer, speaker, joystick etc.

An edge is a necessary association between two “nodes” with attributes that must be

satisfied for the completion of a task. Examples of edge attributes include causal ordering,

relative importance in the overall task, required data rate between nodes, allowable bit error

rate, and physical proximity.
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2.1.2 Tasks and Task Graphs

A task can be described as work executed by a node with a certain expected outcome. The

work done by a component of a complex node is considered a sub-task of the larger task. An

atomic task is an indivisible unit of work that is executed by a simple node. Atomicity is

related to the core capability of a device, described through its attributes, and is partially

constrained by subjective design choices.

A task graph is a graph TG = (VT , ET ) where VT is the set of nodes that need to

participate in the task T , and ET is the set of edges denoting data-flow between participating

nodes.

Instantiation or Embedding of a task graph TG on a MANET represented by a graph

G is the process of mapping all nodes of TG to nodes in G such that their attributes match.

The process also maps edges in TG to paths (single-hop or multi-hop) in G.

We explain the abstractions developed so far by means of a simple example. Consider a

scenario in which there is a PostScript (PS) printer connected to a computer (print server)

running conversion software that can convert Portable Document Format (PDF) files to

printable PS format. The printer node and the computer node each represent devices that

offer particular services. The printer is considered a specialized device offering the service of

converting PS files into printed pages, while the computer is a multipurpose device which has

among its many offered services the one service of converting PDF files into PS format. This

example is illustrated in Figure 2 where the task of printing a PDF document to a single or

multiple printers has been logically represented as a task graph.

The printer is a physical device representation of a simple node with certain attributes
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(such as print resolution, color capabilities) and it offers the service of converting PS files

into printed pages. Analogously, the print server computer plus its conversion software can

be viewed as a representation of a PDF → PS converter node. By taking these two nodes

together we can form a complex node that offers a “PDF printing service.” Let a task be the

printing of one PDF document. In this specific case, based on subjective criteria, we define

an atomic task to be the printing of one page of the document.3 The entire document can

be then printed on a set of available printers as shown in Figure 2. The mechanisms of how

appropriate physical devices are discovered and selected to perform a sub-task are discussed

later in this section.

Note that in the above scenario, we formed a new composite service, PDF printing, by

composing simpler existing service instances. Although this example is simplistic, we believe

that research that enables such capability in today’s MANETs for arbitrary device types and

quantities is essential for exploiting the network’s full potential.

2.1.3 A Taxonomy of Tasks

We broadly classify tasks into the following distinct categories:

Preassigned Tasks In this category of tasks, specific devices need to participate – nodes

in the task graph already have devices mapped to them and hence discovery is not required.

These nodes are referred to as bound nodes. Therefore, the problem of embedding a task is

equivalent to finding suitable (not necessarily the shortest) routes between pairs of devices

that are directly connected by an edge in the task graph. If the optimization variable is

“load” on intermediate forwarding devices instead of delay, algorithms for load balancing

should be executed instead of a shortest path algorithm.

Non-preassigned Tasks This category of tasks entails a number of homogeneous or

heterogeneous computing devices in the network providing specific services. Unlike the

preassigned case, nodes in the task graph are logical entities and do not signify devices with

specified physical addresses. In fact, any device that can satisfy the requirements specified

in a TG node’s attribute set is a candidate for participating in the task. We, therefore, refer

to such tasks as “anycastable.” Communication between selected devices need to satisfy the

edge attributes as well. Since all nodes in a task graph corresponding to such a task are free

3We assume that the printer API does not work at the granularity of printing a dot.
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to be chosen, we refer to them as free nodes, as opposed to those in a preassigned task which

are referred to as bound nodes. Optimization of certain performance measures is desirable

during the process of instantiation of task graphs. This is described in more detail in Section

2.3.

Partially preassigned tasks have a subset of TG nodes that are bound. These bound

devices have to be selected in the physical network whereas the remaining free nodes can

be chosen smartly. As in anycastable tasks, the choice of free nodes is governed by certain

optimization criteria.

Most existing networked distributed applications fall into the preassigned category as

there is no freedom in the choice of devices and the user decides beforehand which devices

participate in the application. We believe that with the advent of pervasive computing, a

whole class of anycastable tasks will emerge by exploiting the philosophy of loose coupling

between services and the devices offering them.

In the context of the smart presentation application, a pocket PDA containing the

presentation slides and a particular overhead display can be bound devices but the keyboard,

the mouse and the smart storage are free devices, instances of which can be smartly chosen

from the available network.

2.1.4 A Data-flow Tuple Representation Model for Distributed Tasks

In this section, we propose a simple data-flow tuple based model for the high level representation

of the logical relationships between different components of a distributed application. The

entire application is modeled by a set of tuples each corresponding to a particular data-

flow in the application. In other words, each tuple corresponds to a logical unit of data

processing that is needed between the distributed components of an application. Every

application component is characterized by a tuple node with the same semantics as that of

a node described in Section 2.1. Each unit of data-flow is originated at a certain tuple node

and is consumed at one or more terminal tuple nodes (called sinks) after being processed and

relayed by a set of intermediate tuple nodes. Consider the smart presentation application

described in Section 1. The following data-flows can characterize a sample presentation:

1. Presenter’s PDA (U) sends presentation data (e.g., a Powerpoint slide) to Smart

Storage (SS) which hosts appropriate presentation software.

2. Keystrokes are originated at a wireless keyboard (K) by the presenter.
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Table 1: Data-Flow Tuples for the Smart Presentation Task
ID Node Data-flow Tuples

1 U [−;SS]ppt [SS;−]notes

2 SS [U ;LS,D]ppt [K;LS,D]keys [M ;LS,D]clicks [U ; {ppt→ notes};U ]notes

3 K [−;SS]keys

4 M [−;SS]clicks

5 LS [SS;−]ppt,keys,clicks

6 D [SS;−]ppt,keys,clicks

3. Mouse commands are originated at a wireless mouse (M) by the presenter.

4. SS receives presentation data, keystrokes and mouse clicks, processes the data and

displays them on a projected display (D) and a local screen (LS). SS also extracts

and sends the ASCII part of the presentation and some corresponding notes to the

user on her PDA screen (U).

To represent such application data-flow between nodes we employ a generalized tuple

architecture. If a node of type X receives data from nodes of types A, B and C, and

sends the processed data to nodes of types D and E for a certain application flow (e.g.,

mouse commands or keystrokes or something more application specific), we can represent

this data-flow schematically using the following tuple:

X : [A,B,C; {processing};D,E]tag

Each data-flow can be uniquely identified at any node by its tag attribute. We denote by

{processing} the transformation of the incoming data units from source nodes before they

are transmitted to the destination nodes.

Generating Task Graphs from Tuples: The user node is expected to specify the data-

flows in the distributed application as a set of tuples using a standardized language. A

Task Graph (TG) representation can be easily generated from a tuple representation – each

TG node is derived directly from the corresponding tuple node since it bears one-to-one

correspondence with the latter. A TG edge is created between TG nodes Xi and Xj if a

data-flow exists between the tuple nodes corresponding to Xi and Xj respectively.

The application data-flows for the smart presentation application can be depicted as

tuples as shown in Table 1 and they translate to the task graph shown in Figure 1(a).
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Advantages of the Tuple Representation: Having a data-flow tuple representation for

a task serves two purposes: (1) It is a natural and structured specification of the data-flows

in a task from which a task graph can be derived easily, and (2) after the logical resources

specified in the task graph are mapped to physical devices in the MANET, tuples govern the

flow of actual application data at each participating device.

Examples of data-flow tuples presented in this section contain only the essential information

for data exchange, namely the data source and the data destination, and whether the

incoming data needs any processing before it is relayed to another device. In general, the

edges in a TG can have attributes such as upper bounds on channel error rates, bandwidth,

etc. which reflect the quality-of-service (QoS) needs of a distributed application. These, and

requirements such as proximity (since devices like keyboard, mouse etc. should be located

as near the user as possible) can also be integrated in the TG via the tuple architecture.

A direct way of incorporating such requirements and task constraints is by specification of

edge attributes in the tuple. For example, consider a scenario where a node of type X needs

to communicate with another node of type D such that the separation between them is no

more than 3 MANET hops and that the average delay over that path does not exceed 10

milliseconds. These two requirements are specified as attributes of the edge e = (X,D)

in the corresponding task graph: e.separation ≤ 3 and e.delay ≤ 0.01s. Implementation

details of most of these edge attributes are beyond the scope of this research, and are not

considered further.

Now we give another example of an application, location based wireless polling, that

can be enabled by the proposed attributed task graph framework. Imagine a full capacity
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Fenway Park (approximately 34,000) hosting a Red Sox game. As Nomar Garciaparra hits a

home run, the stadium authorities decide to poll the people in the stadium with a question:

“Was Ted Williams a better hitter than Nomar?” Polling can be achieved over the wireless

ad hoc network in the stadium formed by the PDAs owned by the fans.

Suppose that one wants to conduct a poll in a scientific or controlled fashion. Instead of

broadcasting the query to all PDAs in the stadium and processing all responses, one wants

only a fraction of people in the audience to reply as long as people from most profiles are

represented proportionally in the poll results. The advantages of doing this are twofold: (i)

Less wireless bandwidth will be consumed in the polling process, and (ii) The poll results are

likely to represent samples from different sections of the population in a fair and controlled

fashion. The extent of fairness and control in the polling process can be defined by the poller

quantitatively by means of a task graph.

A sample task graph depicting a structured poll is shown in Figure 3. The POLLER

wants a specified proportion of votes (specified by parameters k, l,m, . . .) from spectators in

particular age groups sitting in specific sections of Fenway Park as shown in the figure. The

simplest way to perform the poll would be as mentioned before: flood the query throughout

the MANET and collect the responses. In addition, only k, l,m, . . . responses need to be

processed by the POLLER. Since this wastes wireless bandwidth, expanding ring search

(also known as TTL scoping) can be used until the requisite amount of responses have been

gathered. However, even this suffers from one problem that virtually all pollees will respond

to the single POLLER node which will be swamped with incoming traffic. In fact the nodes

within a few wireless hops of the POLLER will be busy forwarding/routing the incoming

packets towards it.

A task graph based solution can mitigate the above problems by delegating the task of

polling to an intermediate layer of nodes which have enough computing resources and are

less power constrained in their operation. We call these nodes Poll Managers. They conduct

the polls based on the set of profiles that they are responsible for and act as aggregators

of poll results which are processed and then returned back to the POLLER. If the Poll

Managers are spatially spread out uniformly across the network (they are selected based on

their location attributes), it will result in less channel contention and hence reduce hot spots

in the network. Another advantage of using intermediate poll managers is that they can

localize the detection of mobility of a device in the middle of a poll transaction.
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2.2 Embedding Task Graphs onto Networks

The first step in executing a distributed application on a set of specialized devices is to

discover appropriate devices in the network and to select from the ones who responded, the

devices that are suitable for the execution of the more complex application. Mathematically

speaking, embedding a task graph TG = (VT , ET ) onto a MANET graph G = (VG, EG)

involves finding a pair of mappings (ϕ, ψ) such that ϕ : VT → VG and ψ : ET → PG, where

the type or class of v ∈ VT is the same as that of ϕ(v) and PG is the set of all source-

destination paths in G. Figure 4(a) depicts a hypothetical task graph. Figures 4(b-c) show

a sample network topology with two possible embeddings of TG on it.

The complete process of device discovery, selection of a device from multiple instances

of devices in the same category, and the assignment of a physical device to a logical node

in the task graph is referred to as instantiation. We also refer to the collective process of

instantiating all TG nodes as task embedding or task-based anycasting [6].

2.3 Metrics for Performance Evaluation

The embedding function (ϕ, ψ) maps nodes and edges in TG = (VT , ET ) to devices and paths

in G. Average (Maximum) Dilation of an embedding is the average (maximum) length

of such paths taken over all edges in TG. Mathematically, if ‖a, b‖G denotes the length of a

shortest path between nodes a and b in G, average and maximum dilation are respectively
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given by:

Davg =
1

|ET |
∑
e∈ET

‖ψ(e)‖G =
1

|ET |
∑

(x,y)∈ET

‖ϕ(x), ϕ(y)‖G (2.1)

Dmax = max
e∈ET

‖ψ(e)‖G = max
(x,y)∈ET

‖ϕ(x), ϕ(y)‖G (2.2)

Average dilation is a significant metric since it impacts the throughput between instantiated

devices. An embedding with large dilation signifies long paths between directly communicating

devices, which is undesirable in MANETs since TCP throughput drops significantly with

increase in hop distance [15]. In contrast, an embedding with low dilation results in better

task throughput. We consider the weighted version of the metric in Section 3.1 where we

formally describe the optimal embedding problem.

Instantiation time is a metric which measures the time taken to embed or instantiate all

nodes in TG onto G. Re-instantiation time measures the time taken to find a replacement

device after an embedding is disrupted owing to node, link, or route failures.

Average Effective Throughput, (AvgEffT ), is the average number of application

data units (ADUs) actually received at instantiated data sinks divided by the number of

ADUs that were supposed to be received at the intended targets in an ideal situation.4

Therefore, 0 ≤ AvgEffT ≤ 1. It is a useful metric for measuring the resilience of the

protocols to failures.

Source-to-sink delay is the latency suffered by an ADU as it funnels itself through

various intermediate relay nodes in the instantiated task graph. This metric is useful for

measuring application performance during transmission of task data.

The above metrics are useful in the performance evaluation of our embedding algorithms

(see Section 4). Additional metrics that have not been investigated in this research have

been listed in [4].

3 Algorithms and Protocols for Task Graph Instantiation

In this section we describe how task graphs can be mapped onto MANETs with respect to

certain optimization criteria. First, we formulate an optimization problem and show how

4If a relaying node in the path from source to sink becomes uninstantiated, effective throughput will be
affected because some data-flows will be discarded and will not reach the data sinks.
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it can be efficiently solved exactly for tree TGs. We then give a greedy heuristic than is

amenable to a simple distributed implementation.

3.1 Optimization Problem Formulation

We formulated the constrained task graph embedding problem as the following optimization

problem:

If C be a set of principal attributes (or classes) of specialized devices; G =

(VG, EG) represents the MANET topology, with the class of each device in VG

belonging to C; TG = (VT , ET ) is a task graph such that the class of each node in

VT belongs to some S ⊆ C; and function w : ET → R+ defines edge weights which

could signify application data-flow requirements, find mappings ϕ : VT → VG and

ψ : ET → PG, where the class of v ∈ VT is same as that of ϕ(v) and PG is the set

of all paths in the network G, such that the weighted average dilation given by:

D(wt)
avg =

1∑
e∈ET

w(e)

∑
e=(x,y)∈ET

w(e) ‖ϕ(x), ϕ(y)‖G (3.3)

is minimized, where ‖a, b‖G denotes the shortest path between devices a and b

in G.

The computational complexity of the general version of the problem where a task graph

can have multiple nodes belonging to the same class, and then that of a more specialized

version of the problem where all nodes in a task graph belong to distinct classes has been

investigated in [4]. The above problem has been shown to be NP-complete in both these

situations. However, the problem becomes tractable when the task graph is a tree with nodes

belonging to distinct classes; we give an exact polynomial time algorithm for this scenario

in Section 3.2. The solution approach in Section 3.2 assumes that the user node possesses

the knowledge of the entire network topology as well as that about the capabilities of the

devices in the network. In section 3.4, we propose distributed algorithms for embedding,

which albeit suboptimal, operate locally and are efficient.
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3.2 An Optimal Polynomial-time Embedding Algorithm for Tree
Task graphs with Distinct Labels

Although the CC-EMBED problem is NP-complete with respect to the average dilation metric

for the general graphs, there is an interesting special case of a tree which lends itself to an

optimal polynomial time solution.

We present below TreeEmbed, an optimal algorithm (with respect toDavg) for embedding

a tree task graph TG onto a host network G. The running time is polynomial in |G| as well

as |TG|. The algorithm minimizes searching in the solution space by exploiting the tree

structure of TG, and is based on the principle of optimality.5 The algorithm requires that

the node executing the algorithm have complete knowledge of the snapshot of the network

topology at the given instant of time.

For each node X in TG, algorithm 1 seeks to discover the best embedding for each child

node Z at every instance (x) of X in G. After the best child candidates are known for all

instances, the optimal cost embedding ϕ∗ is selected starting at root node U .

The algorithm proceeds by the propagation of a certain value function v(.) from the leaf

nodes of TG towards the root node U . The crux of the idea is that the principle of optimality

holds because of the tree structure of TG: if a device instance x of node X is selected by its

parent and is optimal, then the choice of instance z (of X’s child Z) is optimal too. This

greatly reduces the search space for an exact optimal embedding. Moreover, embedding

of children nodes can proceed independently of each other because they possess distinct

attributes. After carrying out this step for all children of X for each instance x, assign the

5The Principle of Optimality holds for problems whose structure is such that their optimal solutions
contain the same for the smaller sub-problems [8].
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sum of the calculated minimum values to v(x). Figure 5 illustrates the procedure for a task

graph of 6 nodes. ΓB = child(B) is the set of children of B in TG. kj is an instance in G of

child k of B in TG.

Algorithm 1 TreeEmbed(TG,G,w, c1, c2)

1: Given: Tree Task Graph, TG = (VT , ET ); w : ET → R+; c1 : VT → C),
Host Network Graph G = (V,E); c2 : V → C);
/* C: attribute universe; c1, c2: attribute fns.; c1 is injective; */

2: ∀X ∈ VT : X is a leaf in TG, L[X]← 0; /* assign levels to each leaf node */

3: ∀X ∈ VT : X is not a leaf in TG, L[X]← 1 + max
Z∈child(X)

L[Z]; /* and the rest */

4: for all (X : L[X] == 0) do
5: ∀x : (c2(x) == c1(X)), v(x)← 0; /* assign value to matching instances */

6: end for
7: for (`← 1; ` ≤ Lmax; `← `+ 1) do
8: for all (X ∈ VT : L[X] == `) do
9: for all (x ∈ V : (c2(x) == c1(X)) do

10: for all (Z : Z ∈ child(X)) do
11: z∗ ← arg min

z∈V ∧c2(z)==c1(Z)
{v(z) + w(X,Z)‖x, z‖G};

12: ϕx(Z)← z∗; /* best instance of child node Z for x */

13: v(x)← v(x) + {v(z∗) + w(X,Z)‖x, z∗‖G}; /* update value of x */

14: end for
15: end for
16: end for
17: end for
18: for (`← Lmax; ` ≥ 0; `← `− 1) do
19: S ← {X |X ∈ VT ∧ L[X] == `};
20: while (X ∈ S ∧ child(X) 6= φ) do
21: x← ϕ∗(X); /* note that ϕ∗(U) = U */

22: for all (Z : Z ∈ child(X)) do
23: ϕ∗(Z)← ϕx(Z); ψ∗(X,Z)← ‖ϕ(X), ϕ(Z)‖G; /* optimal embedding */

24: end for
25: end while
26: end for

The running time of the TreeEmbed algorithm can be calculated as follows: assigning

“levels” to TG nodes takes O(|VT |) time. In the worst case, the maximum level of a TG,

Lmax = |VT | = O(|VT |); although in more balanced trees, Lmax = O(log |VT |). Suppose there

are |C| classes of devices in G with |V |
|C| instances of each class, on average. For every parent

instance x ∈ V , each child instance z ∈ V is considered by the embedding algorithm: the

shortest path between x and z is computed (in O(|V |2) time); the minimization step in line

11 of Alg.-1 is performed (in O( |V |
|C|) time). Since this process is performed for all edges in TG
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the time complexity of Alg.-1 (lines 7–17) is O(|ET | × |V |
|C|(

|V |
|C| × |V |

2 + |V |
|C|)) = O(|ET | |V |4

|C|2 ) =

O(|VT | |V |4
|C|2 ). Note that the “for loops” in Alg.-1 (lines 7–8) are subsumed in this calculation

and since |V | is the dominant term, the time complexity is given by the above expression

itself.

If Warshall-Floyd’s all-pairs shortest path algorithm is used (running time is O(|V |3) and

extraction of shortest path cost is O(1) assuming random access storage), then the running

time of TreeEmbed is O(|ET | |V |2
|C|2 + |V |3) = O(|V |3).

3.3 A Greedy Algorithm for Task Graph Embedding

If TG is a general graph (and not a tree), then the task embedding problem is much harder

since the principle of optimality may not hold in that case. This is because the optimal

embedding of every pair of nodes and the edge connecting them in TG cannot be done

independently of other edges and nodes in TG, as can be done if TG were a tree. In the case

of a tree TG, as we propagate the values from the leaves to the root, the optimal embeddings

of each subtree are retained and used later while embedding a node closer to the root. This

is not possible for any general task graph with greater connectivity than a tree.

Algorithm 1 suffers from large time complexity even though it is polynomial, the main

reason for this being that all devices in the network G are considered as candidates for

embedding and the dynamic programming algorithm chooses the best subset among them

systematically. Moreover, the algorithm may often fail to run in polynomial time if a few

nodes of the same class occurs more than once in TG. Due to these reasons, we developed a

simple greedy algorithm GreedyEmbed which is suboptimal (even for trees) but has lower

time complexity and works for the case where all node types in TG are not distinct. We

briefly describe it below.

The greedy algorithm begins the search for candidate devices from the user node U

itself and conducts it in a breadth-first manner. At every step of the Breadth First Search

(BFS) process, an unvisited TG node is instantiated greedily by the nearest candidate device

in G which matches the requested attributes. Ties are broken arbitrarily and there is no

lookahead. Since only nearby devices in G (from the current location) are considered as

candidates, searching for the nearest suitable instance of a TG node may not require a

complete traversal of G. Hence the algorithm trades off optimality for time efficiency.

GreedyEmbed also possesses a few clear advantages over TreeEmbed in its functionality
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and implementation. Unlike the latter, GreedyEmbed can handle the case in which

multiple nodes in TG possess the same attributes. Moreover, distributed implementations of

GreedyEmbed are facilitated easily due to the nature of breadth first search. We describe

a distributed approach based on these principles in the next section.

3.4 A Distributed Algorithm for Task Graph Instantiation

In this section, we present a distributed approach for solving the task graph embedding

problem in a MANET with an objective of minimizing Davg. We assume here that each

heterogeneous device can provide a single type of service, and that all nodes in the network

are simple. The additional nuances of the homogeneous case have been elaborated upon in

[4]. We assume the presence of a MANET routing protocol (DSR) and a reliable transport

protocol (TCP) for control and application data packet transmission.

All devices in the network execute copies of the same algorithm except the user node, U ,

which executes a different algorithm since it acts as a state synchronizer or coordinator in

the initial phases of the embedding process. In our opinion, the user devices are best suited

for acting as coordinators since they usually originate the application data flows, and even

under mobility, always remain near the user.

The embedding process begins at U with a distributed search which proceeds through the

MANET G hand-in-hand with a breadth-first search (BFS) through TG. Figure 10 depicts a

task graph with its BFS and non-BFS edges. We call the spanning tree on TG induced by

BFS and rooted at U , a BFS tree (BFSTTG) of TG. We propose a greedy solution much like

the GreedyEmbed Algorithm described in section 3.3 to keep the dilation of the embedding

low: the algorithm begins from U by progressively mapping the nodes of BFSTTG to nearest

devices and the edges to shortest paths in G. Instantiation of any pair of nodes x, y ∈ VT

cannot affect each other if x is not a parent of y in BFSTTG, or vice-versa. Hence, the search

can proceed in a distributed manner along the branches of BFSTTG.

A sample path of the instantiation protocol helps illustrate the salient steps of the

algorithm. These have been shown in Figure 6 as a message exchange diagram, and are

also summarized below. Details of the protocol including finite state machine descriptions

can be found in [6, 4].

1. U broadcasts search queries for each neighbor category in TG6 (A and B).

6The broadcast is controlled by sending the query packet to all one-hop neighbors which examine its
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Figure 6: Task Graph Instantiation Protocol

2. Available instances of each queried node reply to U . Candidate devices that reply first

(Ai, Bj) become the chosen instances at U .

3. U sends an ACK to these selected devices which send back confirmations.

4. If there are any uninstantiated nodes rooted at any instance in TG (such as C below

Bj), then it broadcasts search query packets for all those node categories and the

instantiation proceeds further7.

5. When confirmations from all nodes reach U , the data transmission can begin8.

The task graph itself is sent as control data during the instantiation process. After the

selection of a device, control packets and application data are transmitted using TCP since

packet losses due to route errors are very common in MANETs.

3.4.1 Handling Device Mobility

When mobility causes network partitions or disconnections, the instantiated devices may

no longer be able to communicate if the partition breaks all paths between them. In such

situations, new instances need to be selected. The necessary first step in this direction

contents and decide whether to rebroadcast it. A time-to-live (TTL) field in the packet also prevents it from
causing a storm.

7Bj here acts as the local coordinator responsible for instantiation of nodes rooted below it.
8In an ideal situation, all data originating at the source should reach the instances of the sink nodes in

TG (Ai and Ck in the example in Figure 6) after having been massaged and relayed by the intermediate
devices (Bj).
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Figure 9: Handling Task Disruptions by Re-instantiation of Devices

is the detection of disconnections. We propose a lightweight, soft-state exchange protocol

for detecting disconnections in an instantiated TG. The protocol requires each instantiated

device to send periodic HELLO messages (with period T ) to its logical neighbor instances in

TG, which reply with a HELLO-ACK. This has been demonstrated in Figure 9.

Specifically, each instantiated device keeps track of its BFS parent and BFS children

and some additional information. Figure 8 shows the information that each instantiated

device stores for detecting disconnections and performing recovery – we refer to this as the

2-hop logical neighborhood information [4]. The instance of node C (denoted by ’c’) keeps

track of the instance of node A (its BFS parent) as well as of the instances of nodes F and

G (BFS children). If a BFS parent device stops hearing from one of its BFS children9, it

uninstantiates its child and starts looking for a replacement of the same type. The child

meanwhile would stop hearing HELLO-ACKs from the parent (assuming bidirectional links),

and will uninstantiate itself. This has been illustrated in Figure 9. On average, if the HELLO

timer at every instantiated device is set to time period T , disconnections will be detected

after time 3
2
T .

Although 1-hop logical neighborhood information is sufficient for detecting disconnections

in the instantiated TG, 2-hop logical neighborhood information as illustrated in Figure

8 is necessary and sufficient to recover from single persistent disconnections without any

extra unnecessary re-instantiations of downstream nodes in TG [4]. The process of re-

instantiation involves (1) discovery of a suitable replacement; (2) transfer of instantiated

9The parent concludes this if it does not get a HELLO-ACK from that child before the expiry of its HELLO
timer
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logical neighborhood information from parents and children; and (3) resumption of application

data transfer. We do not discuss these schemes in detail in this chapter and direct the reader

to references [6, 4].

Impact of Disconnections on Application Layer The application layer of every participating

device keeps up-to-date (in-out) tuple information for parent and children devices. If disconnection

of some participating devices disrupts a running task, then it is the responsibility of the

BFS-parent node to transfer the application state to the newly instantiated replacement

device, and then resume the application data-flow. Meanwhile data packets reaching old

node instances are dropped by those devices. The average effective throughput (AvgEffT )

metric tries to capture the effectiveness of our disruption handling algorithm by measuring

the fraction of the data that actually reached the “current” data sinks from the source. An

application layer buffer management scheme at the BFS-parent node instance can increase

the reliability of task completion. We plan to investigate these issues in future.

Mobility of devices may also result in lengthening or shortening of routes between device

instances, and ideally, if there is no disconnection/partition, the application should proceed

without disruption. But such ideal conditions may not hold in reality where route failures can

trigger route discovery which along with TCP re-transmissions after timeouts may sometimes

take several seconds to complete. Hence, this can result in HELLO-ACKs not coming back in

T seconds which results in the conclusion that a disconnection has happened, even when the

nodes are reachable from one another.

Researchers have proposed solutions to the above problem based on explicit notification

of route errors to TCP [11]. However, in this work, we do not attempt to alter TCP or

DSR (including their default timer settings); we simply develop our protocol on top of these

protocols. Hence, if a device does not receive a HELLO-ACK from its neighbor in T seconds,

we deem the neighbor to be disconnected. A reasonable value of T is one which is not low

enough to cause significant control overhead10, and not high enough such that disconnections

are not detected fast enough. For our simulations, we chose T = 7seconds (> 6s, the default

TCP re-transmission timer).

10Although exchanging HELLO messages with higher frequency could result in the DSR caches having
fresher routes
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4 Performance Evaluation

We simulated the greedy instantiation/re-instantiation algorithms proposed in Section 3.4

using the network simulator ns-2[2]. 100 mobile devices with specialized roles (represented by

their principal attributes) were simulated in a 1500× 600 areas. Node motion was governed

by the random waypoint mobility model; the velocity was randomly chosen from [0, vmax]

where vmax = {1, 5, 10, 15, 20} m/s. We assume that the devices are constantly moving

between waypoints. The simulated transmission range for each node was 250m. We show

simulation results for task-graphs in Figure 10 – we refer to them as Tree TG, Non-Tree

TG-1 and Non-Tree TG-2 respectively. The principal attribute of each device belonged to

one of 12 different classes. The attributes were uniformly distributed across the MANET.

Specialized Node

Data Sink

Data Source

BFS tree edge

non−BFS edge

Root

Root
Root

A B

C D

E

A B

C D

E

A B

C

D

F

G

H

E

Figure 10: Task Graphs used in Simulation Studies

The total simulation time was 400s – the instantiation process began at 200s, and at

600s, the user/root node started sending data to the data sinks. The data flow consisted

of a CBR source, with a burst of S bytes of data every T seconds. We report results

for (S, T ) = (2500, 1). Devices which are not part of the instantiated TG do not forward

packets, and such packets are not buffered; in other words, if a device which was part of an

instantiated TG becomes disconnected while there is a packet in transit, the packet is lost.

Dilation First we analyze the constant mobility scenarios for different simulation parameters.

We first evaluate the quality of embedding using the average dilation metric. For every

mobility scenario, dilation is measured initially after completion of instantiation and subsequently

after every re-instantiation event. These values are then averaged over the simulation time

period to yield one number. We observe from Figure 11 that average dilation for the

embedding scheme does not vary greatly with speed; in fact davg lies between 1.25 and 2 for

all three task graphs at all different values of MaxSpeed. This means that the average number

of physical hops between two instantiated nodes in TG is low and remains approximately
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constant under mobility. This is because of the approximately uniform spatial distribution

of device categories and the reasonable abundance of devices of each category in the network

(5 to 13 of each type).

However, we do observe that davg increases when the maximum speed is increased above 1

m/s. The principal reason for this is the following: at 1 m/s speeds, re-instantiations are rare

and the davg does not deviate too much from its value after initial instantiation. However,

at greater speeds, re-instantiation events occur more frequently because of logical neighbor

instances either having moved far away from each other or having been disconnected by

a network partition. Either of these events disrupts the usual smooth exchange of HELLO

message resulting in re-instantiations. Owing to the uniform distribution of device categories

in space, the re-instantiation process will find another device with similar attributes within

its vicinity. Although that keeps the contribution of the new path length towards davg

low, the hop distances between existing instances along other TG edges are likely to have

increased over time (although not high enough to cause re-instantiations along those edges).

This causes davg to increase at higher speeds on the whole.

Another observation from Figure 11 is that at lower speeds, davg is lower for TG1 (a

tree) than TG2. This is obvious because, our heuristic algorithm attempts to minimize the

hop count only along the BFS-tree edges of a task graph both during instantiation as well

as re-instantiation; since TG2 has extra edges, the minimization does not occur along those

edges, thus yielding a higher dilation, in general. The above reasoning does not hold at high

rates of mobility as all instantiated paths break more often and device category distribution

is spatio-temporally more uniform in the neighborhood of a device. Hence, non-BFS-tree

edges are likely to be mapped onto paths with similar lengths as BFS-tree edges quite often,

and that causes davg to be similar for both TG1 and TG2.

Embedding Time Table 2 compares the times taken for embedding each task graph

on the network. We depict the minimum, maximum, and median times for each TG for

three different maximum speeds. We show the median instantiation time instead of the

average instantiation time since the time samples are skewed. Generally, the times for

TG2 exceed those for TG1 and Tree since the former is a larger task graph and it needs

exchange of packets between a larger number of devices during instantiation. Some samples

are much greater than the rest owing to the role of TCP (over DSR routing protocol) in

the instantiation process. After the candidate’s response reaches a coordinator node, it

sends ACKs encapsulated in TCP packets since they can be lost if sent using an unreliable
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TG/Scenario Minimum (s) Maximum (s) Median (s)

Tree (1m/s) 0.795719 6.561610 1.435320
TG1 (1m/s) 0.810867 6.819640 1.399530
TG2 (1m/s) 2.170060 7.957830 6.674960
Tree (5m/s) 0.670853 6.111210 1.728970
TG1 (5m/s) 0.536686 7.708620 6.278840
TG2 (5m/s) 1.742180 9.537000 7.827160
Tree (10m/s) 0.643709 1.438240 1.216280
TG1 (10m/s) 0.842213 6.694860 1.530080
TG2 (10m/s) 3.337190 9.168950 7.275040
Tree (15m/s) 0.749414 4.039460 1.062140
TG1 (15m/s) 0.446600 6.511620 0.909011
TG2 (15m/s) 1.520370 4.090240 3.241610
Tree (20m/s) 0.651414 2.062220 1.088190
TG1 (20m/s) 0.717359 4.022630 1.484370
TG2 (20m/s) 1.361380 7.674460 5.262870

Table 2: Task Embedding Time

transport protocol. TCP is also used in all subsequent communication (except broadcast

and candidate response packets).

Now, if for some reason a route error occurs while a TCP transmission has not completed,

TCP attempts redelivery only after waiting for a period of time even if a new route is

rediscovered immediately by DSR. This period can be as large as 6 seconds (default retransmission

timer of TCP) if no prior communication has happened between the two communicating

devices. If a route error occurs shortly after two devices have communicated using TCP

but before another TCP transmission is completed, the retransmission timer is set based on

the round trip time estimate between those two devices and hence it can be lower than 6

seconds. Hence we see instantiation time samples greater than 6 seconds on several occasions.

If mechanisms such as explicit feedback [11] are added to TCP, then these times can be

reduced significantly. Also, no monotonic pattern is observed as a result of the increasing

mobility of devices. This can be attributed to the uniform spatial distribution of device

classes in all random mobility patterns as well as the large variability in TCP timers during

the multiple steps of the instantiation process.

Effective Throughput After the completion of the instantiation process, we begin data

transmission from the user node (source) to the various sinks shown in Figure 10 according

to particular tuple specifications. In Tree TG, instances of A, C and E receive one flow
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each. In TG1, the instance of E receives 4 flows through instances of various relay nodes. In

TG2, instances of D and H receive one flow each and the instance of G receives 4 flows.

We plot normalized AvgEffT for all three TGs in Figure 12. We generate task data

traffic using two different patterns: periodic constant bit rate (CBR) bursts and bursts with

exponentially distributed sizes after exponentially distributed inter-arrival times (resulting in

Poisson distributed bursts). The mean burst sizes and inter-arrival times are kept constant

for both cases. A maximum aggregate throughput of 300kbps can be reached for the TG2

scenario assuming simultaneous transmission at all instantiated devices in accordance with

the underlying tuple architecture.

In Figure 12 we can see that at low mobility, AvgEffT is almost perfect (close to 1.0).

We can also observe that in general, AvgEffT drops with increase in the maximum speed of

devices for most situations. This is to be expected since higher speeds generally result in more

re-instantiations and that results in more ADUs not reaching their intended destinations.

However, AvgEffT rarely drops below 70% in the simulated scenarios even under heavy

mobility. This demonstrates that our protocols adapt fairly well to mobility and are able to

recover from disruptions in task data flow. We can make some more observations from the

two figures: (1) Exponential traffic pattern occasionally results in a lower throughput than

the CBR traffic pattern in scenarios involving non-tree task graphs, and (2) TG1 usually

yields lower throughput than Tree TG.

Exponentially distributed data generation times can occasionally result in large periods

without much network activity, and this causes the on-demand routing protocols to lose

routes to destinations. More route errors cause more frequent TCP back-offs and sometimes

result in re-instantiation even if the devices are graph-theoretically reachable from one

another. Loss of throughput is greater in the case of non-tree TGs than Tree TG because

recovery from the loss of a non-BFS child usually takes more time than a BFS child. On the

contrary, in the CBR case, periodic generation of packets keeps routes fresh and hence the

TG suffers less re-instantiation.

Number and Time of Re-instantiation Figure 13(a) shows the average number of re-

instantiations underwent during the entire simulation time (400s). The rate of change in

network topology increases with mobility causing more network partitions or route errors.

These events in turn prevent HELLO packets from arriving in time, and thus triggering more

re-instantiations. Since packets caught in transit during the re-instantiation process are

dropped (as mentioned earlier, we do not consider application layer buffering in this work),
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Figure 13: (a) Number of Re-instantiations, (b) Average Re-instantiation Time
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AvgEffT is directly affected by re-instantiations.

Although Tree TG is a sub-graph of TG1, for the CBR data case, TG1 suffers less re-

instantiations because data flow along the non-BFS edges of TG1 results in the presence of

more valid alternate routes (or parts of them). Hence, when a route error happens along a

BFS edge (the primary cause of re-instantiations) of TG1, often these alternate routes come

to the rescue before the HELLO timer expires, thus reducing the rate of re-instantiations.

TG-2 generally suffers more re-instantiations since it is a larger graph with more depth.

In spite of Tree TG having more re-instantiations than TG1, it experiences betterAvgEffT

than TG1. This is because the data tuples of TG1 (as well as TG-2) involve flows along non-

BFS edges in the graph. Also, the set of re-instantiation events is only a subset of the set of

all disruptions. When a non-BFS parent loses a child instance momentarily due to partitions

or HELLO timeouts, a re-instantiation will not be triggered since that is the responsibility of

the BFS parent of the child instance; Hence, the throughput is affected until a new instance

is found by a BFS parent and the non-BFS parent is informed of this event by a 1-logical-hop

broadcast, or a route to the old instance is restored. Also, Tree TG has sinks at all depths

unlike TG1 – hence the latter’s effective throughput suffers more from a re-instantiation of

an intermediate relay node. Exponential traffic generally affects re-instantiations more than

CBR traffic especially for the non-tree graphs as explained before. The result of that is

slightly lower throughput in the respective cases.

Figure 13(b) shows the variation of times taken to re-instantiate a TG node, i.e. the

times taken to discover a new replacement for a disconnected device which can participate

in the task. This time is measured from the time when the rediscovery broadcast is sent out

until the time instant when a confirmation is received from the new candidate (this involves

2 round-trip handshaking steps including the broadcast). Our re-instantiation protocol is

able to find a new device nearby within 1 second. In fact, in most cases, these times are only

a few hundred milliseconds. Local network effects are dominant factors in the determination

of this metric at higher speeds, hence there is not much correlation between the values in

such cases.

Cumulative ADU Delay Distributions We now examine the nature of the delay distributions

that occur as a result of sending task data using CBR and Exponential traffic patterns.

Figure 14 shows the empirical cumulative probability distributions (cdf) of ADU delay

samples. A logarithmic scale is used for the delay samples in order to differentiate between

delays at lower and higher ends more effectively. In Figure 14(a), delays for the static case are
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Figure 14: Cumulative Probability Distribution for ADU Delay: (a) Static, (b) Constantly
Mobile

plotted. We observe that CBR delay values span a much smaller range than their exponential

counterparts. The shape of the task graph does not seem to affect that of the CDF curves.

That is primarily because the distribution of sinks in both TG1 and TG2 have a common

aspect which is a dominant factor in the determination of ADU delays – two sinks each in

TG1 are 3 and 4 logical hops away from the source, respectively, while in TG2, four sinks

are 3 logical hops away and two sinks are 4 logical hops away from the data source.

CDF curves of delays in the constant mobility scenario have been plotted in Figure 14(b).

We can easily see that although the shapes of the curves are similar at lower values of delay,

they become much flatter and somewhat heavy tailed at larger values for both TGs and

traffic patterns. These samples correspond to ADUs which had to experience delays due to

route errors and expiry of TCP timers. In this work, we do not attempt to investigate the

exact statistical nature of the distribution, and leave that as a topic of future research.

5 Related Work

Service discovery in networks has been a popular topic of research in the industry as exemplified

by SLP [13] and Sun’s Jini [17]. In both these schemes, a service providing computer registers

itself with its attributes at a centralized directory server which the clients can lookup on

demand. MOCA is a variation of Jini without any centralized registry [7]. It is specifically

designed for mobile computing devices – every device has a service registry component which

only the applications running on the local and surrounding devices can benefit from. Our
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approach is different from these as it operates at a logical layer above service discovery and

it can co-exist with any of these schemes. Also, it does not depend upon any centralized

directory service.

INS proposes to capture user-intent for discovering appropriate devices suitable to them.

The user intent is abstracted into collections of attribute-value pairs that describe the needs

of the user. The specific devices that will perform the desired service will be selected by

special entities called Intentional Name Resolvers. INS has a feature called Intentional

Anycast and late binding which is somewhat similar to what we call instantiation of TG

nodes. However, INS does not to attempt to systematically utilize the logical structure of a

distributed task for resilient application execution.

Hodes et al. [14] have investigated means of composing services for heterogeneous mobile

clients. Their work primarily focuses on controlling office equipment from mobile devices

and design of client-device interfaces. They too have not addressed the issues involved in

composing complex services from simple devices with specific interaction patterns between

them. In general, none of the aforementioned approaches consider scenarios in which multiple

specialized devices need to offer their services in a cooperative manner for the provision of a

more complex service, a case which we believe will be increasingly common in a ubiquitously

networked world.

IBM’s PIMA [3] has a vision somewhat similar to ours. Although they argue briefly for

the design of applications in terms of sub-tasks instead of specific devices, they have not

mentioned any approach for realizing this vision so far. Our task-graph concept on the other

hand is a systematic and concrete approach which can help realize this vision.

The concept of a task graph was originally proposed in the parallel computing and

scheduling literature for representing tasks that can be split temporally into sub-tasks and

then allocated to different homogeneous processors connected by a fixed high-performance

interconnect for reducing the total completion time [10, 16]. Our notion of a task graph

is different from this classical one. We are not necessarily concerned with tasks that are

distributable among multiple homogeneous processors for speed-up. Rather, most tasks that

we are concerned with in this work involve several specialized heterogeneous devices that

communicate with each other and are possibly mobile, and there is no notion of minimizing

the total completion time. However, if we are interested in solving a large scale distributed

computing task on a network of homogeneous mobile devices, then our notion of a task graph

will be similar to the classical one. Therefore, our task graph formulation is more general

than the one used in the parallel computing context.
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6 Conclusion

In this chapter, we presented a framework for embedding and executing a distributed application

on a network of specialized, potentially mobile devices. We developed a task graph abstraction

for applications by taking into account the dependencies induced by the data flows existing

between the components of an application. We described the task embedding problem and

presented an optimal polynomial time algorithm with respect to an average hop-count

measure called dilation, for the special case where the task graph is a tree. We also

described how it can be heuristically extended for general graphs. Owing to the unreasonable

requirements and time complexity of the aforementioned algorithm, we presented a more

practical distributed heuristic algorithm (and protocol) for embedding a given task graph

onto a MANET. We also presented a scalable, local disconnection detection and repair

mechanism for recovering from task disruptions caused by node mobility and failures.

We showed by simulations that our protocols are able to instantiate and re-instantiate

task graphs satisfactorily in constantly mobile scenarios although the use of a better reliable

transport protocol than TCP can yield better performance. As a part of future work, we

plan to investigate mechanisms of developing user level applications on top of the TG layer

described in this chapter. These applications will be completely oblivious of the TG node–

physical address mappings during their execution and this can be a major benefit in failure

prone mobile networked environments.
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