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Abstract

We consider the problem of classifying among a set ofM hypothesis withN distributed noisy sensors.

TheN sensors can collaborate over a finite link-capacity network. The task is to arrive at a consensus about

the event after exchanging such messages. In contrast to the conventional decentralized detection approach,

wherein the bit rates for each link is explicitly constrained, our approach is based on a high-rate limit perspec-

tive. We apply a variant of belief propagation—to account for finite link-capacity—as a strategy for collabora-

tion to arrive at a solution to the distributed classification problem. We show that the message evolution can be

re-formulated as the evolution of a linear dynamical system, which is primarily characterized by network con-

nectivity. We show that a consensus to the centralized MAP estimate can almost always reached by the sensors

for any arbitrary network. We then extend these results in several directions. First, we demonstrate that these

results continue to hold with quantization of the messages, which is appealing from the point of view finite bit

rates supportable between links. We then demonstrate robustness against packet losses, which implies that op-

timal decisions can achieved with asynchronous transmissions as well. Next, we present energy scaling laws

for distributed detection and demonstrate significant improvement over conventional decentralized detection.

Finally, extensions to distributed estimation are described.

1 Introduction

Recent advances in sensor and computing technologies provide impetus for deploying wireless sensor networks—

a network of massively distributed tiny devices capable of sensing, processing and exchanging data over a wire-

less medium.
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In this paper we focus on the scenario ofN distributed noisy sensors observing a single phenomena. The

sensors can only collaborate through a network defined by a connectivity graph. The task is to arrive at a consen-

sus about the event after exchanging such messages. Fundamental problems arise when data is distributed and

centralized solutions are no longer feasible due to time/rate/energy constraints.

The general question of dealing with distributed data in the context of detection has been an active topic of

research(see [1–3, 6, 7, 10–13, 16, 19, 23–26] and references therein). Much of this research focuses on a fusion

centric approach withN sensors having communication links to a data fusion center as shown in Fig. 1(a).

Here, the research is focused on capacity constrained networks. Research has addressed quantization of sensor

(a) Decentralized Detection (b) Distributed Detection

Figure 1: Various schemes for detection in sensor networks.

data [11] and exploiting source correlation [15] to reduce sensor bit rate. In particular cases, it has been shown

that for a N-sensor network with a capacity constraint of N bits per unit time, having each sensor send one bit

is optimal [3]. In general, the data from each sensor is compressed on to a message taking values over a finite

alphabet. The objective is to find optimal fusion rule and the associated decision rules at each of the individual

sensors to minimize the error probability. The principle drawbacks of the approach are well-known and has been

documented in [23, 24]. We point out some of these here for the sake of exposition: (A) It can be shown that (if the

hypothesis were conditionally independent) the decision rules at each sensor reduce to a likelihood ratio threshold

test. Nevertheless, the decision rules are coupled in that thresholds have to be solved jointly for all the sensors.

This not only has computational implications but also assumes centralized knowledge of the sensor models. (B)

The network topologies for which these results hold are restrictive. (C) Considering all energy costs in an energy

budget as in [18] shows that sending one bit of data consumes only marginally less energy than sending many

bits. It has been argued [2, 10, 13, 19] that in energy-limited wireless sensor networks a more appropriate goal is
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to minimize the probability that sensors must transmit. Nevertheless, a hierarchical structure with a single fusion

center is still used. (D) Moreover, energy for communicating over large distances is significantly more than that

required to communicate over small distances. Finally, a fusion centric approach has the disadvantage of a single

point of failure.

To overcome these issues we develop a data-centric as opposed to decision-centric communication strategy.

Related work for distributed optimization in sensor networks have been proposed recently in [8, 17] for specific

types of network topologies. In this paper we pursue a more general objective of developing a truly ad-hoc, asyn-

chronous, energy efficient detection theory for arbitrary network topologies. Our problem focuses on deriving

conditions for arriving at a consensus at all the sensors and situations where the consensus is the centralized MAP

estimate. A natural idea for collaboration is to exchange a vector of individual sensor beliefs (probabilities) for

different hypothesis between linked sensors at any instant of time. This idea is formalized in the “so called” belief

propagation (BP) algorithm [14] and preliminary results on their application to the detection problem is described

in a number of our papers [1, 25, 26]. A description is shown in Figure 1(b) where sensor nodes send a vector

of likelihoods for each hypothesis at any instant of time. These likelihoods can be dynamically updated based

on information received by the sensor in the past. Evidently, the algorithm overcomes the centralization issue

alluded to earlier. In this setup, we neither have a fusion center nor does each sensor need to know models for

adjacent sensors. Nevertheless, BP is known to work generally for non-loopy network topologies, a situation that

is quite restrictive and difficult to impose in a sensor network. Furthermore, on account of finite link capacity, it

is unclear as to how to deal with attendant effects of quantization. We deal with the first issue in Section 4 by first

classifying loopy graph topologies for which the standard BP does converge to the MAP consensus. However,

these turn out to be limited and motivates us to consider variants of BP algorithm and we show in Section 4.2

that for the class of problems where all sensors are engaged in the same classification task, consensus can indeed

be attained through such modifications. We further prove that this consensus is not only the MAP estimate but

also that the exact posterior distribution can be realized. We next deal with the finite link capacity in Section 5 by

employing a novel robustness perspective. By showing that our algorithm is robust to perturbations of messages

we are able to quantify explicitly the size of quantization before performance degrades. Next we show that our

algorithms are robust to random packet losses in Section 5.2. In Section 6 energy scaling laws in wireless envi-

ronments for uniform grid as well as random networks are derived. The results show exponential improvement

in energy scaling over the conventional fusion center approach. Finally, in Section 7 extensions to distributed

estimation are described. In summary the main advantages of the proposed scheme are as follows:(A) The

sensor network can operate in a completely asynchronous fashion, i.e., the algorithm as well as the outcomes
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do not depend on when a message is transmitted.(B) Second, each sensor node in the networks does not have

knowledge of sensing models for other sensors. This implies that the algorithm works irrespective of knowing

“who is sending what.”(C) The algorithm always converges to the optimal MAP estimate.(D) There is no single

point of failure as is the case for the fusion center approach.

2 Setup

We consider MAP estimation in M-ary hypothesis testing with hypothesesH = {H1,H2, · · · ,HM} and prior

distributionπo(·). Estimation is based on a random vectorY = (Yv : v ∈ V ) of observations that belong to

an arbitrary abstract space. Throughout the paperV is interpreted as a set of sensors, andyv is interpreted as

realization of the measurement taken by sensorv ∈ V . Let fm be the conditional probability density function of

Y under hypothesisHm for m = 1, 2, · · · ,M . We shall assume that observations are conditionally independent

given the true hypothesis; namely,

fm(y) =
∏

v∈V

fv
m(yv), y = (yv : v ∈ V ) ∈ RV (1)

for marginal densitiesfv
m. Let π denote the posterior distribution of the true hypothesis given thatYv = yv for

v ∈ V, which is identified uniquely by the relation

π(Hm) ∝ πo(Hm)
∏

v∈V

fv
m(yv), m = 1, 2, · · · ,M. (2)

In particularHm∗ is a MAP estimate if

m∗ ∈ arg max
m

{
πo(Hm)

∏

v∈V

fv
m(yv)

}
.

We concentrate on distributed applications in which a single decision maker having access to all observations

(Yv : v ∈ V ) is not available. Instead, each sensor can collaborate with other sensors and form an estimate of

the posterior distribution. The collaboration is limited by a communication network structure represented by a

weighted, strongly connected digraphG = (V, E). The verticesV of this graph correspond to sensors, and an

ordered pair(v′, v) of vertices belongs to the edge setE if there exists a communication link from sensorv′ to

sensorv. Sensorv′ is referred to as aneighborof sensorv if (v′, v) ∈ E. Let N(v) denote the set of neighbors

of sensorv so that

N(v) = {v′ ∈ V : (v′, v) ∈ E}, v ∈ V.
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Relationship to Markov Random Fields In motivating the collaborative framework of the paper, it will prove

useful to interpret the posterior distributionπ in terms of Markov random fields (MRFs). A random vector

X = (Xv : v ∈ V ) is a MRF with respect to an undirected graphG̃ = (V, Ẽ) if its marginals admit certain con-

sistency conditions defined relative to the neighborhood relations ofG̃ [14, 28]. In particular, if all combinations

of possible marginals have positive probability, then by the Hammersley-Clifford theorem there exists positive

mappingsφv : v ∈ V, andψe : e ∈ Ẽ such that

Prob(Xv = xv, v ∈ V ) ∝
∏

v∈V

φv(xv)
∏

e=(v,v′)∈Ẽ

ψe(xv, xv′), (3)

for each realization(xv : v ∈ V ) of X. In broad terms, node potentialsφv account for likeliness of marginal

values whereas edge potentialsψe account for pairwise correlations inX. Let G̃ be an arbitrary connected graph

spanning the nodesV , and consider the distribution (3) ofX with

φv(Hm) = (πo(Hm))1/V fv
m(yv), v ∈ V, (4)

ψe(Hj ,Hm) = δ(Hj ,Hm), e ∈ E, (5)

whereδ(·, ·) is the standard Kronecker delta function. It is easy to verify that due to connectivity ofG̃ marginal

distributions ofX are identical, and furthermore they equal toπ. Although most combinations of marginal

values ofX have zero probability, this issue will not lead to complications in applying efficient algorithms that

compute marginal distributions of MRFs (such as belief propagation [14, 28]) in order to arrive at estimates of the

underlying hypothesis based onπ here. Furthermore, in the context of the detection problem we have enormous

flexibility in choosing the edges. Specifically, any arbitrary graph, i.e., arbitrary choice of edges associated with

edge potentials as in Equation 5 accounts for the informational aspects of the problem.This implies that the

MRF model,G̃ = (V, Ẽ), can be chosen to coincide with the communication network graph,G = (V, E). This

justifies the use of BP as a message passing algorithm

3 Collaborative Framework

The so called BP algorithm [14, 28] provides a framework for collaboration between nodes of a graph to compute

marginal distributions of a MRF. The main idea from a detection perspective is that each sensor node,v, transmits

a vector whosemth component is related to a local estimate for hypothesisHm at nodev. This overcomes the

centralization issue underlying conventional decentralized detection, where decisions are transmitted. In the

mechanics of the algorithm, at time stepk each sensor nodev′ ∈ V forwards a message,m
(v′,v)
k (h), h ∈ H, to

sensor nodev via the communication infrastructure represented by the digraphG. More specifically, sensor node
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v′ computes the product of most recently received messages pertaining to each hypothesish′ (excluding message

from v), and averages this product across all hypothesis with adequate weighing to reflect correlations between

the hypothesish andh′. On account of the specific potentials (4)–(5) these messages are given by

m
(v′,v)
0 (h) = 1 (6)

m
(v′,v)
k (h) = φv′(h)

∏

v̂∈N(v′)−{v}
m

(v̂,v′)
k−1 (h); k ≥ 1, (7)

along any edge(v, v′) ∈ E, for each hypothesish ∈ H, and roundk ≥ 0. Messages are used by recipient nodes

to compile theirbeliefs, which are estimates for the posterior distributionπ defined as follows:

Definition 3.1 (Belief) The belief(π̂v
k(h) : h ∈ H) of nodev ∈ V at roundk is a probability vector uniquely

identified by the relation

π̂v
k(h) ∝ πo(h)φv(h)

∏

v′∈N(v)

m
(v′,v)
k (h). (8)

¿From the viewpoint of distributed system operation, it is worthwhile to note that: (i) Each message is deter-

mined locally by the observation at the sensor and the prior messages received from neighboring sensors, (ii)

Ccomposition of the messages does not require global knowledge of sensor models, and (iii) the algorithm also

entails a relaxed synchronization among sensors, as it can be implemented by programming each sensor to send

out initial messages immediately and to send out itskth messages only after receiving(k − 1)th messages from

all of its neighbors.

If G is a singly-connected graph then well-known results [28] on Pearl’s sum-product algorithm guarantee that

each belief̂πv
k, v ∈ V, converges to the true posterior distributionπ within a finite number of rounds. For general

graphs and general potentials the sum-product algorithm is not expected to converge. Our focus is whether the

scheme does indeed converge for the special structures endowed by the classification problem. To explore this

strategy we first transform the original problem into a linear dynamical system.

We identify each edgee ∈ E by its source vertexs(e) and its destination vertexd(e) so thate = (s(e), d(e)).

Therefore, each edge,e, can be associated with neighboring edges,Ie, incident on it and the set of edges,Oe,

that it is incident on, i.e.,

Ie = {e′ ∈ E | d(e′) = s(e)} (9)

Oe = {e′ ∈ E | s(e′) = d(e)}
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For each pair of edgese, e′ ∈ E let

ae,e′ = δ(s(e), d(e′))(1− δ(s(e′), d(e))). (10)

Note thatae,e′ = 1 if and only if edgee′ ∈ Ie and the ordered pair(e′, e) is not a directed cycle. For each

hypothesish ∈ H let

uh(v) = log(φv(h)), v ∈ V

xh
k(e) = log(me

k(h)), e ∈ E.

Taking the logarithm of both sides in equalities (7) leads to the linear system

xh
k(e) = uh(s(e)) +

∑

e′∈E

ae,e′x
h
k−1(e

′), xh
0(e) = 0. (11)

Define the vectoruh = (uh(s(e)) : e ∈ E) and define the binary matrixA = [ae,e′ ]E×E , so that equality (11)

takes the vector form

xh
k = uh + Axh

k−1, xh
0 = 0. (12)

We note that the dynamical evolution in Equation 12 depends only on the graphical structure and not on the

individual observations. This key insight as we will see in the next section results in consensus among different

sensors based primarily on the network topology. Finally, we will show how to achieve the correct MAP estimates

for arbitrary connected graphs.

4 Consensus and Convergence

In this section we derive results for reaching a consensus based on our analysis in the previous section. We lift

the restriction on link capacity limits and discuss decentralized determination of MAP estimates. In a subsequent

section we will discuss methods for achieving a MAP consensus with finite-link capacities and lossy links. We

start with a formal definition of consensus in the present context.

Definition 4.1 (MAP Consensus) Sensor nodev ∈ V eventually succeeds in MAP estimation if

lim sup
k→∞

π̂v
k(h) = 0 (13)

for all h ∈ H such thath 6∈ arg maxh′ π(h′). The sensor network is said to asymptotically achieve a MAP-

consensus if each sensor eventually succeeds in MAP estimation. Sensor network is said to achieve a consensus

if Equation 13 holds for the same subset of hypothesesh ∈ H, which are not necessarily MAP estimates, at all

nodesv ∈ V .

7



We point out that the notion of consensus is substantially weaker than the conventional objective of estimating

the distribution. In Section 4.2 we define a stronger notion of convergence while discussing modifications to the

BP algorithm. The weaker notion is useful when we are only interested in achieving the MAP decision rule and

as it turns out the message passing algorithm can guarantee a MAP consensus for particular graph topologies. In

the following we will state results for different graphical structures and provide main outlines for the proof for

these results. First, note that the solution to the linear system satisfies:

xh
k =

k−1∑

j=0

Ajuh; k ≥ 1 (14)

The results rely on the following straightforward observation, which is given here without proof:

Lemma 4.1 The matrixAj = [aj
e,e′ ]E×E whereaj

e,e′ is the number of directed paths of lengthj edges that

start with edgee′, end with edgee, and that do not have any 2-hop cycles.

Based on the above discussions we have the following results. The first theorem concerns the case when the

graphG is a tree and the subsequent result deals with ring graphs. It is well-known that in this case BP leads to

the true posterior distributions even for general Markov fields. However, the proof in our context makes use of

the special structure of the transition matrixA defined in Equation 10.

Theorem 4.1 (Trees) IfG is a tree then the network asymptotically achieves MAP-consensus with BP algo-

rithm.

Proof. If G is a tree, thenA defined as in Equation 10 is nilpotent sinceAj = 0 for all integersj larger than

the diameter of the tree. Equality (14) therefore indicates that the messages are guaranteed to converge within a

number of steps no larger than the diameter. Note that fore, e′ ∈ E

∞∑

j=0

aj
e,e′ =





1 if there exists a simple directed path

in G with source edgee′ and destination edgee

0 else,

hence equality (14) leads to

lim
k→∞

xh
k(e) =

∑

v∈V

1{dist(v, s(e)) < dist(v, d(e))}uh(v)

for e ∈ E, where dist(v, v′) represents the length of the unique path between verticesv, v′ ∈ V . It now follows

by equality (8) that the limit of the estimatêπv
k(h) at each sensorv ∈ V is equal to the posterior distribution (2).

¤
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Theorem 4.2 (Rings) IfG is a ring then the network asymptotically achieves MAP-consensus with BP algo-

rithm.

Proof. If G is a simple cycle then fore, e′ ∈ E the sequence(aj
e,e′ : j = 0, 1, 2 · · · ) has period|V |. In particular

Aj = Aj+|V | and thusA is idempotent. Equality (14) then leads to

lim
k→∞

xh
k(e)
k

=
1
|V |

|V |−1∑

j=0

Ajuh.

It is not difficult to see that
∑|V |−1

j=0 aj
e,e′ = 1 for all edgese, e′ ∈ E that have a common orientation (that is,

clockwise or counter-clockwise) and that
∑|V |−1

j=0 aj
e,e′ = 0 otherwise; in turn

lim
k→∞

xh
k(e)
k

=
1
|V |

∑

v∈V

uh(v), e ∈ E. (15)

Since

π̂v
k(h) ∝ φv(h) exp


 ∑

v′∈N(v)

xh
k(v′, v)


 ,

it follows via (15) that for any two hypothesesh, h′ ∈ H

lim
k→∞

1
k

log
π̂v

k(h)
π̂v

k(h′)
=

2
|V |

( ∑

v′∈V

uh(v′)−
∑

v′∈v

uh′(v′).

)

The conclusion of the theorem now follows since

∑

v′∈V

uh(v′) = log

( ∏

v′∈V

φv′(h)

)
= log(π(h)), h ∈ H,

by definitions (2) and (4). ¤

Although consensus is achieved in the sense of Definition 4.1, convergence of beliefs may not emerge. This

happens only when a unique MAP estimate does not exist, and in this case mode of the belief at each sensor may

oscillate among maximizers of the posterior distributionπ (see [25] for an example).

4.1 Regular Graphs

For general graphs with arbitrary cycles it turns out that the dynamical evolution does not converge to the correct

likelihood ratios. Nevertheless, it turns out that for d-regular graphs and random graphs MAP consensus can be

guaranteed. First, we need the notion of a primitive matrix.

Definition 4.2 A matrix A is said to be primitive ifAm > 0 for some positive integerm.
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We now have the following theorem:

Theorem 4.3 Let G = (V,E) be a finite connected d-regular graph (d > 2), i.e., a connected graph where

each vertex has degreed. Furthermore, let the matrix,A, as defined in Equation 10 be primitive. Then a MAP

consensus is achieved with the BP algorithm.

Proof. Since,d > 2 it follows that the spectral radius,ρ(A), is larger than1. From standard results in Perron-

Frobenius theory [9] it follows that,

lim
k→∞

(A/ρ(A))k = W (16)

where,W , is a rank-one matrix formed from the left and right eigenvector corresponding to the maximal eigen-

value. For simplicity, defineα(k) =
∑k

j=0 ρ(A)j . By equality (14)

lim
k→∞

xh
k

α(k)
= lim

k→∞

k−1∑

j=0

(
Aj

ρ(A)j

)
ρ(A)j

α(k)
uh = lim

k→∞

k−1∑

j=0

(W + εj)
ρ(A)j

α(k)
uh,

where, in the last equation, we have used Equation 16 to obtain a real-valued matrix sequence,ε = {εj} that

vanishes asj →∞ and that satisfies‖ε‖∞ ≤ C0 < ∞. This implies that for somel > 0,

xh
k

α(k)
= Wuh +

k−1∑

j=k−l

εj
ρ(A)j

α(k)
uh +

k−1−l∑

j=0

εj
ρ(A)j

α(k)
uh

Therefore, we have ∣∣∣∣
xh

k

α(k)
−Wuh

∣∣∣∣ ≤ max
k−l≤j≤k−1

‖εju
h‖∞ + C0ρ(A)−l‖uh‖∞

where, for the first term of the RHS we have used the fact thatρ(A)j/α(k) ≤ 1 and for the second term we have

usedρ(A)k−l/α(k) ≤ ρ(A)−l. Consequently, for anyε > 0 there exists a sufficiently large numberl such that

the limiting differencelim supk

∣∣∣ xh
k

α(k) −Wuh
∣∣∣ ≤ ε. Now sinceε is arbitrary the result follows. To establish the

fact that the consensus is a MAP estimate we note that for a regular graph the unique left eigenvector (upto a

constant multiplication) forW is a column vector of ones. Therefore, it follows that,

lim
k→∞

xh
k(e)

α(k)
∝

∑

v∈V

uh(v), e ∈ E. (17)

The result now follows along the lines of Theorem 4.2 (from Equation 15). ¤

The theorem does not hold for general graphs, i.e., sensors do reach a consensus but the estimate is not

guaranteed to be a MAP estimate. To see this consider the following example:
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Example: Consider binary hypothesis testing in a 9-sensor network under the communication structure repre-

sented by the graph of Figure 2(a). Each edge in the graph represents two directed edges in opposite direc-

tions. The eigenvectors no longer have equal weights corresponding to each edge. Suppose that the observations

(xv : v ∈ V ) translate to node potentialsφ0 = [q, 1− q], φ1 = [p, 1− p] andφv = [0.5, 0.5] for k = 2, 3, 4, 5, 6,

wherep, q ∈ [0, 1]. Figure 2(b) illustrates the true MAP estimate and the final consensus due to BP for different

values ofp andq. Note that the consensus is determined to a larger extent by the value ofq rather than the value

of p. Note also that the consensus reflects a flawed estimate if(p, q) lies in the area between the solid and dashed

lines.

(a) A 9-node irregular communica-

tion graph
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Belief Propagation
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Hypothesis−1 
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(b) Decision regions for the MAP estimate

(dashed) and the final consensus of BP

(solid).

Figure 2: Illustration of how asymmetric graphs bias the consensus decision away from the optimal.

We now extend these results to random graphs. The random graph is constructed in the following manner.N

sensor nodes are uniformly distributed in a square unit area denoted by the regionZ centered at zero as shown in

the Fig. 3(a). Unlike deterministic regular graphs discussed earlier, the communication connectivity radius needs

to be chosen carefully. This is to ensure that the random graph is still regular with high probability. It is well-

known [20] that the minimum communication radius,R, is of the order oflog N√
N

to ensure graphical connectivity

of N uniformly distributed sensor nodes. However, for this minimum radius the degree (i.e. number of neighbors

for each node) is highly variable. To ensure a constant degree with high probability we need a slightly larger

radius of connectivity, i.e.,R = (2 log N)3/2
√

N
. For the sake of mathematical simplicity we consider a periodic

extension of the graph so that issues related to dealing with boundary nodes does not arise. For this situation the

edges are formed by linking any two vertices that are at a distance smaller thanR in the original graph or in the

11



extension. In particular two nodes, whose planar coordinates are respectively,(a1, b1), (a2, b2), are connected

by a link if

min
(
(a1 − ã2)2 + (b1 − b̃2)2

)1/2
≤ R; ã2 = (a2)mod(1), b̃2 = (b2)mod(1)) (18)

(a) Randomly distributed sensors

with constant connectivity radius in

an unknown plume.
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Figure 3: Classification by Sensor Networks.

Theorem 4.4 Consider the random graph setup above. A MAP consensus is achieved by an approximate BP

algorithm, which converges to the BP algorithm as|V | → ∞.

Proof. We provide a brief outline here and refer the details to the appendix.

(A) We show that the in-degree and out-degree for each node as defined in Equation 9 is asymptotically equal to

(log(n))3 almost surely. Next the primitivity of the matrixA with high probability is established. This implies

that that there is a rank-one matrixW such that,limk→∞
(

A
ρ(A)

)k
= W .

(B) We consider an approximate BP algorithm, specifically,

x̃h
k = uh + A(I + ∆)−1x̃h

k−1, x̃h
0 = 0 (19)

where,∆ = diag[δii] is a suitably chosen diagonal matrix with,|δii| ≤ 1/ log(N) and such thatA(I + ∆) has

equal column sums. The approximate message passing scheme corresponds to weighting each message in inverse

proportion to its out-degree before transmission.

(C) The weighting does not destroy primitivity and therefore we have

lim
k→∞

(
A(I + ∆)−1

ρ(A(I + ∆)−1)

)k

= W̃
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where the left eigenvector ofW is a vector of all ones. Now the argument follows along the lines of Theorem 4.3

and for a suitable normalizationα(k), we have

lim
k→∞

x̃h
k(e)

α(k)
∝

∑

v∈V

uh(v), e ∈ E.

for someC0 > 0 with high probability. The MAP consensus can now be established along the lines of Theo-

rem 4.3. Now, asN →∞ the weighting converges to zero, which is equivalent to the BP algorithm. ¤

The convergence properties for a typical random graph are illustrated in Figure 3(b). Nevertheless, the draw-

back of the BP algorithms are fivefold: (a) The estimates for general graphs are not guaranteed to be MAP

estimates; (b) Message updates at the various nodes need to follow a certain order; (c) the scheme is not nec-

essarily robust to link failures; (d) BP algorithms require customizing information for a particular node, in that

message from nodeJ to nodeK is a function of messages received from neighbors ofJ excludingK. It would

be simpler and energy efficient if one could fuse the received messages at each node and just broadcast them

without the need for customization. (e) Equation 17 holds out the possibility that consensus to the exact posterior

distribution is achievable at least for regular graphs. Indeed, it follows from Equation 17 that,

1
α(k)

log mh
k(v, v′) ∝

∑

v∈V

log fv
h(y) = log

∏

v∈V

fv
h(y) =⇒ 1

α(k)|N(v)|
∑

v′∈N(v)

xh
k(v′, v) ∝ log

∏

v∈V

fv
h(y)

where, the proportionality does not depend on the hypothesis. The last expression is the normalized sum of

log-messages from the neighbors of each node. This differs from the exact MAP log-likelihood function by the

log-prior distributionlog(πo(h)). This justifies consideration of a modified belief estimator. Specifically, we

define the log-belief estimate,log π̃v
k(h), as

log π̃v
k(h) = log(πo(h)) + η(k)

∑

v′∈N(v)

xh
k(e′) (20)

This also motivates the concept of a strong consensus.

Definition 4.3 (Strong Consensus) Sensor nodesv ∈ V are said to achieve a strong consensus if the belief

estimate,̃πv
k(h), converges to the same distribution (not necessarily the correct posterior distribution). We say

that a sensor nodev ∈ V converges in distribution if,

lim
k→∞

π̃v
k(h) = Prob{h|(Yv : v ∈ V )} ∀ h ∈ H.

Furthermore the sensor network is said to asymptotically converge in distribution if each sensor converges to the

same posterior distribution.
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4.2 Modified BP Algorithms

The preceding arguments lead us to consider convergence and strong consensus for general graphs. Consensus

and convergence appear to hinge on whether or not the transition matrix,A, is primitive. For connected graphs

this can be accomplished by modifying the message passing algorithm as follows:

zh
k = uh + (I + A)zh

k−1

where, we have used the symbolzh
k as the state in place ofxh

k to avoid confusion with the BP algorithm. It then

follows that the matrix(I + A) is primitive and Theorem[8.5.1] of [9] applies and it follows that:

Proposition 4.1 Consider a connected graph G=(V,E) and the message passing algorithm given above along

with the belief estimate of Equation 20. It follows that the messages converge to a strong consensus, which is

equal to a weighted log-likelihood, i.e.,

log π̃v
k(h) −→ log(π0(h)) +

∑

v∈V

lv log fv
h(y)

where, the weights,lv, are coefficients of the left eigenvector ofW = limm→∞(ρ(A)−1A)m.

Proof. The proof follows by direct substitution and is omitted. ¤

The main issue as the above proposition suggests is that the consensus achieved is in general a weighted log-

likelihood ratio, i.e., unbalanced graphs lead to incorrect posterior distributions. Therefore, the question arises

as to how to balance the messages for an arbitrary graph. We explore two possibilities both of which lead to the

desired solution:

Self Loops:Here the message passing scheme described by Equation 12 is modified by creating virtual self-loops

in the communication graph. The number of self-loops for a particular node is equal to the difference between

the maximum degree of the graph and the degree of a particular node, i.e.,

zh
k = uh + (D + A)zh

k−1, zh
0 = 0

Alternatively, from standard linear systems theory it follows that the following scheme may be used as well:

zh
k = (D + A)zh

k−1, zh
0 = uh

In the above schemes,D = diag[dee], is a diagonal matrix withdee = dmax − de, wherede =
∑

e′∈E ae′e is the

in-degree of sensor nodes(e) ∈ V , anddmax = max{de : e ∈ E}. With this modification it follows that the

14



column sums are all identical. Therefore, the coefficients of the left eigenvector are all equal. Consequently, the

messages,zh
k , converge to the correct posterior distribution. The main drawback of this idea is that the maximum

degree must be known a priori at each node. The problem can be overcome by choosingdee = d∗ − de whered

is any number that is known to be larger thandmax. An alternative strategy is explored next.

Normalization: Here each transmitter node normalizes its message for each hypothesis by the number of differ-

ent messages it receives, i.e., we have

zh
k = (I + A)Dzh

k−1, zh
0 = uh, (21)

whereD = [dee] is a diagonal matrix withdee = 1/de, wherede is again the in-degree of sensor nodes(e). With

this modification, it follows that the conditions for Theorem[8.5.1] of [9] are satisfied with column sums being

identical. Therefore, the coefficients for the left eigenvector are all equal. The advantage of this strategy is that

message passing algorithm does not need to know the graph topology. Another aspect of this strategy is that the

maximum eigenvalue of the transition matrix is one. Consequently, the messages are all bounded, and potential

numerical instabilities are thereby avoided. We will point out a third aspect of this scheme when we deal with

link failures in Section 5.2.

Broadcast:Each transmitter node broadcasts the same message to all its neighbors. This is different from earlier

strategies because in the BP algorithm message from nodeJ to nodeK is based on messages received from all

the neighboring nodes excludingK. In contrast in the current scheme, the message update is undirected and

combines messages from all the adjacent nodes, which is then normalized as before and broadcast. Evolution of

messages admits a linear representation as before, though with reduced dimensionality. That is,

zh
k = (I + A)Dzh

k−1, zh
0 = uh, (22)

wherezh
k = (zh

k (v) : v ∈ V ) (where(zh
k (v) : h ∈ H) is the message broadcast by nodev at roundk) and

uh = (uh(v) : v ∈ V ) areV -dimensional column vectors,A = [av,v′ ]V×V such thatav,v′ = δ((v, v′) ∈ E),

andD is a diagonal matrix that transforms columns ofA into probability vectors. Again, by arguments described

above it follows that the beliefs converge to the centralized posterior distribution.

Furthermore, all of these strategies are consistent with the currently employed wireless protocols. In summary

we have the following theorem, which is stated without proof:

Theorem 4.5 For an arbitrary graph topology the message passing scheme of Equations 22, 20 converge to

the centralized posterior distribution at all nodes.
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5 Robustness Issues

5.1 Detection with Finite-Link Capacity

To deal with finite link capacity we take a robustness viewpoint. In other words, the problem we pose is to

determine how quantization of the likelihood vector impacts the MAP estimate. Suppose, each message (note

that this is not the log-message) is quantized with a logarithmic quantizer,Q(·) given by,

Q(z) = (1 + δ)z, for some|δ| ≤ γ

where,γ is the maximum allowable quantization. In the logarithmic domain this translates to:

zh
k = Azh

k−1 + log(1 + δ)1 + uh, xh
0 = uh

where1 is a column vector of all ones. We can assume without loss of generality thatAT is a stochastic

matrix based on the results in the previous section. Our task now reduces to quantifying the maximum allowable

quantization level,γ, so that a MAP consensus can be achieved. We then have the following result.

Theorem 5.1 The maximum quantization allowable (for sufficiently large number of identical sensors) such

that consensus does not deviate from the MAP estimate is given by:

|γ|2 < min
h1 6=h2, h0

exp
(

Eh0

(
log fh1

log fh2

))
= min

h1 6=h2, h0

|exp (D(fh0‖fh1)−D(fh0‖fh2))|

where,D(·‖·) is the Kullback-Leibler distance andEh0(·) is the expectation under hypothesish0.

Proof. Proceeding along the lines of Theorem 4.3 we note that,

lim sup
k→∞

∣∣∣∣∣
zh
k

k
−

∑

v∈V

uh(v)

∣∣∣∣∣ ≤ lim sup
k→∞

∣∣∣∣∣∣

k−1∑

j=0

Aj

k
log(1 + δk−j)

∣∣∣∣∣∣
≤ lim sup

k→∞
max

p

∣∣∣∣∣∣

V∑

q=0

k−1∑

j=0

aj
pq

k

∣∣∣∣∣∣
log(1+γ) ≤ |V | log(1+γ)

where, the third inequality follows from the fact that ifb(·) ≤ bmax then|∑k a(k)b(t− k)| ≤ bmax
∑

k |a(k)|.
The last inequality follows from primitivity and stochasticity ofA. If the log-likelihood ofh is higher thanh′ we

require that,
1
|V |

∑
v

(uh(v)− uh′(v)) > 0 =⇒ zh
k

k
>

zh′
k

k

¿From the strong law of large numbers it follows that1
|V |

∑
v(u

h(v)−uh′(v)) converges to the differences in the

Kullback-Leibler distance [5] under the true hypothesis. This implies that we need

log(1 + γ) ≤ 1
2

min
h1 6=h2, h0

|D(fh0‖fh1)−D(fh0‖fh2)|
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Consequently, it follows that if the distributions corresponding to each hypothesis are well-separated, the

number of quantization-levels are also a constant. Therefore, log-messages can be discretized into constant

number of bits equal tolog2(B/ log(1 + γ)) bits per message (whereB is the maximum value of any log-

message). This follows from the results in Section 4, where we showed that the log-messages are bounded.

5.2 Packet Losses and Asynchronous Operation

In this section we relax the assumption that a message is transmitted along each communication link at each round

of the algorithm. Our aim here is to account for the following two effects: First, messages may be corrupted and

lost due to imperfections in point-to-point communication. Although link layer protocols would provide some

relief against this issue, robustness of network operation against message losses needs to be addressed, especially

if the physical communication medium is wireless. Secondly, one can imagine situations where some sensors

operate on a slower time-scale than others, thereby slowing down the network under the lock-step message-

passing algorithm outlined in Section 3. Namely, if each sensor waits for messages from all neighbors to compose

their next message, then the network evolves at the time scale of the slowest sensor. This limitation may be

overcome if each sensor contributes to the collaborative effort at its own time-scale. In both cases described

above the network operation is asynchronous in the sense that not all links are necessarily active at each round of

the algorithm. Here we address the attendant effects of this generalization in stochastic and deterministic settings.

Consider the broadcast operation of Section 4.2 in the case when the connectivity of the network is time-

varying. Namely, evolution of the messages is represented as

zh
k+1 = (I + Ak)Dkz

h
k , zh

0 = uh, (23)

whereAk = [aij(k)] is a binary matrix andDk = [dij(k)] is a diagonal matrix with

djj(k) =

(
1 +

∑

i

aij(k)

)−1

,

so that in particular columns of(I + Ak)Dk are probability vectors. Given sensorsi, j we shall say that link

i → j is functional in roundk if sensorj receives a message from sensori in roundk. Entries ofAk are then

interpreted as

aij(k) = I{ link j → i is functional at roundk}.

Hence the system (23) describes the evolution of local beliefs when each transmitted message is normalized by

the number of outgoing functional links (i.e., the number of receivers of the message) in the same round. We
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point out that such an algorithm is consistent with the currently employed wireless protocols.

Theorem 5.2 Suppose that the matrices(Ak : k ≥ 1) is are iid, and thatE[A1] is irreducible. Then for

v ∈ V there exists a random sequence(γk(v) : k ≥ 1) such that

lim
k→∞

zh
k (v)

γk(v)
=

∑

v′
uh(v′), almost surely.

In particular for large values ofk, the vector(zh
k (v) : h ∈ H) and the posterior distributionπ have common

modes.

We prove the theorem via an adaptation of the techniques in [27] for asymptotic analysis of stochastic-matrix

products. We start with auxiliary results.

Given square matrixP = [pij ] define

λ(P ) = 1−min
i1,i2

∑

j

min(pi1j , pi2j).

Let Bk = [(I + Ak)Dk]T , so thatBk is a stochastic matrix and

zh
k = (B1B2 · · ·Bk)T uh, k ≥ 1. (24)

Lemma 5.1 Under the hypothesis of Theorem 5.2, for eachε > 0 there existsk(ε) such that fork ≥ k(ε)

P
(
λ

(
Bko+1Bko+2 · · ·Bko+k(ε)

)
< 1

)
> 1− ε, ko ≥ 0.

Proof. It suffices to show that for large enoughk all entries of the matrix product

Bko+1Bko+2 · · ·Bko+k

are positive with probability at least1− ε. By definition ofBks, entries of this product are positive if and only if

all entries in

(I + Ako+1)T (I + Ako+2)T · · · (I + Ako+k)T (25)

are positive. The(i, j)th entry in the product (25) is positive if and only if a hypothetical message that originates

at nodei in roundko can reach nodej by roundko + k by traversing a functional link in each round. Note that a

self-looping link is always functional due to the identity matrix contained in each factor of (25). Letq(i, j) be the

probability that linki → j is functional at a round, so that without loss of generalityE = {(i, j) : q(i, j) > 0},
and let(ξ(i, j) : (i, j) ∈ E) be independent geometric random variables whereξ(i, j) has parameterq(i, j).
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SinceE[A1] is irreducible by hypothesis, the time to reach any node from any other node via functional links is

stochastically dominated by
∑

(i,j)∈E ξ(i, j). Define the random variableκ as

κ = min
{
k : (I + Ako+1)T (I + Ako+2)T · · · (I + Ako+k)T has positive entries

}
.

Since there are|V |2 node pairs,κ is stochastically dominated by|V |2 ∑
(i,j)∈E ξ(i, j). Let µ be the mean of this

latter variable so that

P (λ (Bko+1Bko+2 · · ·Bko+k) < 1) ≥ 1− P (κ > k) ≥ 1− µ

k
,

where last inequality follows by an application of Markov’s inequality. The lemma follows by choosingk(ε) =

µ/ε. ¤

Corollary 5.1 Since eachBk takes values from a finite set, there exists a positive numberd < 1 such that

λ(Bko+1Bko+2 · · ·Bko+k(ε)) < d wheneverλ(Bko+1Bko+2 · · ·Bko+k(ε)) < 1, for ko ≥ 0.

For square matrixP = [pij ] define

δ(P ) = max
j

max
i1,i2

|pi1j − pi2j |. (26)

The following lemma is a recitation of [27, Lemma 2]:

Lemma 5.2 For k ≥ 1

δ (BkBk−1 · · ·B1) ≤
k∏

i=1

λ(Bi).

Proof of Theorem 5.2.Fix σ, ε > 0 andk > k(ε). Appeal to Lemma 5.2 to write

δ(B1B2 · · ·Bk) ≤
k mod k(ε)∏

i=1

λ(Bi)
bk/k(ε)c∏

j=1

λ
(
Bk−jk(ε)+1Bk−jk(ε)+2 · · ·Bk−(j−1)k(ε)

)
.

Since each factor of the product on the left hand side is at most 1, Corollary 5.1 implies that the product is larger

thanσ only if there are more thanblogd(σ)c values ofj with

λ
(
Bk−jk(ε)+1Bk−jk(ε)+2 · · ·Bk−(j−1)k(ε)

)
> d.

Lemma 5.1 now implies that fork > k(ε)blogd(σ)c

P (δ(B1B2 · · ·Bk) > σ) ≤
blogd(σ)c∑

j=1


 bk/k(ε)c

j


 (1− ε)bk/k(ε)c−jεj ≤ (1− ε)k/k(ε)kblogd(σ)cc,
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wherec does not depend onk. The left hand side is thus summable ink; in turn

lim sup
k→∞

δ(B1B2 · · ·Bk) ≤ σ, almost surely,

due to the Borel-Cantelli Lemma. Arbitrariness ofσ implies thatδ(B1B2 · · ·Bk) converges, hence by defini-

tion (26) rows of the productB1B2 · · ·Bk almost surely become identical (though they do not necessarily settle

to a fixed vector). In light of equality (24) the theorem follows by identifyingγk(v) with the vth entry of an

arbitrary row ofB1B2 · · ·Bk. ¤

Remark 5.1 Note that the proof of Theorem 5.2 relies only on Lemma 5.1; hence the conclusion of the

theorem holds under much more relaxed assumptions on the statistics of(Ak : k ≥ 1). From a deterministic

perspective, it is not difficult to see that this conclusion holds if each link is functional infinitely often, provided

that the communication graph is irreducible and aperiodic.

Remark 5.2 The algorithm does not require estimation of packet loss probabilities.

In practice estimating convergence rates is extremely difficult and is known to be NP hard. To illustrate the effect

of packet losses we have performed a number of experiments. From simulations it appears that the convergence

rate degrades gracefully and we do not see appreciable differences even for sufficiently large packet losses. A

typical simulation of the average convergence is illustrated in Figure 4 forN = 400 sensors placed on a uniform

grid with connectivity between any two nodes separated by minimum internode distance. At each round each

link is assumed to be functional with probabilityp, independent of other links and other rounds.

Figure 4: Convergence rate of consensus for different packet loss probabilities; Y-axis denotes percentage of

sensors that have achieved consensus; X-axis denotes time index.
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Scheme Energy (Joules/Node)

Decentralized Broadcast O(N3/2d4
0Eb)

Decentralized Multihop O(N1/2d4
0Eb)

Belief Propagation (grid) O(N1/2d4
0Eb)

Hierarchical BP O(log(N)d4
0Eb)

Table 1: Energy scaling for different schemes;d0 is the internode distance;Eb is the energy required to transmit

1-bit over a unit distance.

6 Scaling Laws

The scheme developed above is based on refinement of information at each time step and at each sensor location.

In effect, we differentiate between data and information, and successively blend refinement and transportation of

data in the course of the algorithm. This motivates comparison of decentralized detection with the BP approach

developed in the paper. Comparisons between conventional decentralized detection scheme and the BP scheme

appears in the Table 1. We consider four possible schemes for sensors on a uniform two-dimensional grid

with connectivity between any two nodes separated by minimum internode distance. The first two schemes

use conventional decentralized detection with a fusion center located approximately at the center. The last two

schemes employ some version of distributed algorithms presented here.

We can handle two cases: (a)N sensor nodes distributed uniformly over a square area; (b)N nodes on a

uniform square grid (lattice). For brevity we only consider the latter case here. Each node is separated by some

minimum distance,d0 with a power attenuation that scales with distanced asd−4 implying that if Eb is the

joules/bit required for reliable decoding over a unit distance thenEbd
4 is the corresponding energy required for

reliable transmission for distance equal tod.

For the decentralized scheme we designate an arbitrary node as the fusion center. We have two possible

communication schemes that can be applied. The first scheme is a point-to-point scheme wherein each node

communicates its local decision directly to the fusion center. The second scheme relies on multi-hop, wherein

each node relays its local decision to a neighboring node, which in turn forwards that information in the direction

of the fusion center. For both of these schemes we have the following result.

Proposition 6.1 The average energy required for decentralized detection under the point-to-point scheme

scales asN3/2Eb joules/bit/node while energy for the multi-hop scheme scales as
√

NEb joules/bit/node.
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Proof. For simplicity, we only consider a square area with nodes on a uniform grid organized into vertical and

horizontal rows with the center node as the fusion center as shown in Figure 5. For the point-to-point scheme, it

Figure 5: Sensors on a Uniform grid;0, kC , kR denotes the fusion center, kth column and row respectively.

follows that the average energy consumption,Eave, is given by:

Eave =
Eb

N

∑

k

d4
v

where,dv is the distance from the vth node to the fusion center. Now, a uniform square grid with minimum

distance separation ofd0 requires a dimension of length and width equal tod0

√
N . A lower bound for energy is

computed as:

Eave =
Eb

N

∑

v∈V

d4
v ≥

Eb

N

√
N∑

k

(
√

N)(
√

kd0)4 = O(N2)Eb

where, the second equality follows from the fact that
√

N nodes are located along any row and the minimum

distance from the kth row to the fusion center iskd0. The energy requirements for the multi-hop scheme can be

computed by a straightforward application of max-flow min-cut theorem. Consider a cut along the kth horizontal

row from the fusion center. The number of bits passing the cut towards the fusion center is equal to the number

of nodes in the cut set, which is equal to(
√

N − k)
√

N . Now this traffic must be supported by
√

N nodes that

are at the boundary of the cut set and the total energy required isEb

√
N(
√

N − k)d4
0. Summing this energy over

all cuts and normalizing with respect to the number of nodes gives us:

Eave =
Eb

N

√
N∑

k=1

√
N(
√

N − k)d4
0 ≈ O(

√
N)

Next we consider the BP approach. It follows from [9, 21] that an exponential convergence rate can be readily

established, i.e.,

‖x(k)−
N∑

j=1

uh(j)‖∞ ≤ C0r
k

22



Herer is the ratio between the second and first largest eigenvalues of the matrixÃ described in Equation 21.

This leads to the conclusion that for a fixed minimum K-L distance between any two hypothesis, it requires

O(log(1/r)) messages to realize the MAP estimate. Nevertheless, this is misleading because the constant term

C0 depends on graph as well [21]. To get a better idea of the convergence rate we compute upper and lower

bounds. The diameter of the communication network quantifies a lower bound on the time it takes for the

proposed scheme to converge to the consensus at each node as observed below.

Lemma 6.1 Suppose the network graph has a diameter equal toD. The energy required for the consensus

scheme is lower bounded byD joules/bit/node.

Proof. The proof follows from the fact thatAk has zero entries so long ask < D. This is because the diameter

characterizes the minimum graphical distance between any two arbitrary nodes and it takes at leastD hops to

guarantee that a message from any node reaches another arbitrary node.

Remark 6.1 For identical sensors, by appealing to large deviations theory [5], it is not difficult to show that

with blog(1/ε)c number of messages it is sufficient to ensure that with high probability (taken with respect to the

observations) each sensor deviates less thanε from the centralized MAP estimate.

We are after a more general result, i.e., the minimum time to reach a consensus irrespective of the specific

realization of the observations. To derive an upper bound we first collect several results. First, from [4], it follows

that for a stochastic matrixP we have,

‖P tx− π‖∞ ≤ ε, ∀ t ≥ 1
1− |λ2| log

N

ε

whereπ is the equilibrium distribution andλ2 is the second largest eigenvalue in magnitude. In our context we

are given a stochastic matrix,̃A = (I + A)D (where the columns sum to one) and we need to derive bounds on

its second largest eigenvalue.

An upperbound can be readily derived for grid graphs, which follows from [22]. A grid graph is defined as

follows. Suppose,G1 andG2 are graphs so that(v, w1) and(v, w2), (v1, w) and(v2, w) are adjacent inG1×G2

if and only if w1, w2 are adjacent inG2, andG1 respectively. The eigenvalues are described in the following

proposition, which we state from [22]:

Proposition 6.2 Consider a grid graph as described above formed with line graphsG1 and G2. It then

follows that the eigenvalues of the adjacency matrix of the grid graph are the sum of the eigenvalues ofG1 and

G2 respectively.
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The proposition can be directly applied to compute the second eigenvalue. SupposeG1 andG2 are each formed

with
√

N nodes along a straight line with a separation distance equal tod0. Furthermore, let the communication

connectivity radius be equal tod0. Then the eigenvalues of the adjacency matrix are(1−cos(πk/
√

N − 1)), k =

0, 1, 2, . . . ,
√

N − 1. Consequently, the second eigenvalue of the (normalized) adjacency matrix,Ã, approaches

1 as1− C/N , whereC is some constant. This implies the following energy scaling for grid graphs:

Proposition 6.3 For grid graphs the average energy required for achieving the MAP consensus for a hypoth-

esis testing problem with two hypothesis scales asO(N)d4
0Eb Joules/node.

We point out that to establish this result we have used the fact that the conversion from messages to bits does not

significantly increase the energy requirements. This follows from the quantization results in Section 5, where we

showed there forM hypothesis it only takesO(M) bits to encode messages for each node.

A similar result can also be established for random graphs described in Theorem 4.4 except that the results

now hold with high probability. These results imply that the energy requirements for achieving consensus is

worse than that required for multi-hop decentralized detection and significantly better than the point-to-point

decentralized detection scenario. However, it should be pointed out that the consensus based approach achieves

the optimal MAP consensus irrespective of the actual realization along with significant robustness to link losses.

Our remedy relies on seeking a MAP estimate at a few nodes as opposed to all of the nodes. In this scheme

sensor nodes are organized hierarchically as shown in Figure 6. In the lowest layer small clusters of sensors

achieve their respective consensus within the cluster. A cluster head within each cluster forms part of a higher

level network over a larger area. Consensus in this larger area is then attained. This strategy can be repeated over

several layers with significant energy savings. We point out that the algorithms employed in this setup are ad-hoc

and lack knowledge of node locations, which is consistent with the underlying philosophy outlined in the rest of

the paper.

Now considerN nodes on a grid graph. Partition intoP = N/L clusters each of sizeL. SupposeEm is

the energy required to transmit each message to a neighboring node. To achieve a consensus among each of

the clusters the total energy,E(P,L, Em), required is equal to the product of the number of clusters times the

number of nodes in the cluster times the number of messages,M , per node (to achieve consensus) times energy,

Em, required for each message. Now the number of messages required to achieve a consensus in a cluster is of

order of the size of the cluster. Therefore,

E0 = E(P,L, Em) = PL(L)(Em) = NLd4
0Eb.
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Figure 6: Illustration of Hierarchical Scheme; Sensor nodes organized in to clusters of sizeL; Each cluster has a

clusterhead which forms part of a higher level network

Now at the next layerP nodes collaborate to achieve a consensus. The smallest distance between any two

nodes in theP cluster is now
√

Ld0. Therefore, if a point-to-point scheme is used the energy/message/node,

Em = L2d4
0Eb. The total energy is thenE(1, P, Em) = P (P

√
L

4
d4

0Eb). However, for a multi-hop scheme

(using intermediate nodes as relays) the energy,Em =
√

Ld4
0Eb and so the total energy isE1 = E(1, P,E0) =

P (P
√

Ld4
0Eb). Therefore, forP = L =

√
N the average energy/node required for the multi-hop case scales

asEave = (E0 + E1)/N ≡ O(
√

N), which is equal to the average energy required for multi-hop decentralized

scheme. This idea can be extended to obtain the following setup. The first layer is given byN/L partitions of

sizeL clusters. The second layer is partitioned into(N/L)/L = N/L2 partitions of sizeL clusters (formed with

cluster heads for each cluster in the first layer). This process is then repeated until all the nodes are exhausted.

The main drawback of the optimal multi-hop scheme is that it uses knowledge of node locations. Therefore,

to get around this issue a suboptimal scheme can be considered. Here at the kth layer the cluster heads from the

(k-1)th broadcast information to the neighboring nodes (which serve as relays). These neighboring nodes in turn

broadcast the received information to their neighbors and so on it follows. Ultimately, this information is received

by the nearest clusterheads, which then update their likelihoods/messages and re-broadcast the new information.

The energy required for this scheme can be computed as follows. As described earlier, in the second layer the

distance between any two clusterheads is no more than,d =
√

Ld0. Therefore, if a message is broadcast and

relayed by adjacent nodes it is guaranteed to reach the nearest clusterhead after
√

L time steps. In this time a

maximum ofL nodes have also broadcast the same message. This follows from the fact that there are at mostL

nodes in the circle of radius
√

Ld0. We now have the following theorem:
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Theorem 6.1 For the hierarchical setup described above the average energy scales asO(L log(N)) Joules/node.

The proof follows by direct computation. First, we note that if the minimum distance isd0 for the first layer,

then the minimum distance is
√

Ld0 in the second layer. In general, for the kth layer the minimum distance,

dk =
√

Ldk−1. Therefore, the energy and the average energy,Ek, Ek
ave, respectively (assuming a multihop

strategy) used upto the kth layer is:

Ek = Ek−1 + (N/Lk)L2

(
dk

d0

)2

d4
0Eb, Ek

ave = Ek−1
ave + (1/Lk)L2

(
dk

d0

)2

d4
0Eb.

Now the maximum value fork is bounded bykmax = log(N)/ log(L). Therefore upon direct computation

we get that the average energy scales asO(L log(N)/ log(L)) Joules/node to achieve a MAP estimate. For a

constantL this leads to exponential improvement in energy scaling.

7 Distributed Estimation

The techniques of Section 5.2 can be extended to continuous parameter estimation via standard approximation

techniques. Namely, letZ be a continuous random variable onRk, and let the observations(Yv : v ∈ V ) be

conditionally independent givenZ. If Z has finite mean, then givenε > 0 there exists a finite partition{Rm(ε)}
of Rk and constants{γm(ε)} such that

‖Z − Zε‖ < ε; where Zε =
∑
m

γm(ε)I{Z ∈ Rm(ε)}.

When each eventI{Z ∈ Rm(ε)} is interpreted as a separate hypothesis, the distributed algorithm of Section 5.2

can be employed to compute exact posterior probabilities of these events, in turn the centralized posterior distri-

bution ofZ can be approximated up to a desired accuracy.

It is worthwhile to consider in more detail special cases in which the constituent variables of the problem are

jointly Gaussian, since distributed algorithms that entail no approximation errors can be identified for such cases.

In that case, define, for eachv, the locally computable quantities

µv = E[Z|Yv = yv], Σv = E[(Z − µv)2|Yv = yv], ξv = σ−1
v µv.

Note that the conditional independence assumption implies that the centralized MAP estimate ofZ has the form

E[Z|Yv = yv, v ∈ V ] =

(∑
v

σ−1
v

)−1 ∑
v

ξv.
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Consider now a message passing algorithm that involves two types of messages represented by the two decoupled

linear systems

xk = (I + Ak)Dkxk−1, x0(v) = ξv

sk = (I + Ak)Dksk−1, s0(v) = σ−1
v ,

where(I + Ak)Dk is as defined in Section 5.2, so that by Theorem 5.2

lim
k→∞

xk

sk
= E[Z|Yv = yv, v ∈ V ].

8 Conclusion

We have considered the scenario ofN distributed noisy sensors observing a single event. The sensors are dis-

tributed and can only exchange messages through a network. The sensor network is modelled by means of a

graph, which captures the connectivity of different sensor nodes in the network. The task is to arrive at a con-

sensus about the event after exchanging such messages. The paper focuses on characterizing the fundamental

conditions required to reach a consensus. The novelty of the paper lies in applying belief propagation as a mes-

sage passing strategy to solve a distributed hypothesis testing problem for a pre-specified network connectivity.

We show that the message evolution can be re-formulated as the evolution of a linear dynamical system, which is

primarily characterized by network connectivity. Next a family of modified algorithms are considered. These al-

gorithms converge to a MAP consensus irrespective of graph topology and are robust to random link failures and

finite link capacities. Energy scaling laws are then derived, which compare favorably with respect to conventional

decentralized detection schemes. Finally a natural extension to distributed estimation is also presented.
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9 Appendix

Proof of Theorem 4.4

Consider the regionZ of unit area in whichN nodes are uniformly distributed with edges between any two

nodes if Equation 18 is satisfied. SupposeCj is a circle of radiusR = α(log N)3/2
√

N
around the nodej. The edge

connectivity matrix as defined in Equation 10 is denoted byAN and the accompanying graph byΓ(AN ). We are

interested in the asymptotic properties asN →∞.

Proof that number of links approaches a constant:We introduce the random variableXj
k ∈ {0, 1} to indicate

whether or not node,k, is within the radiusR of nodej. The sumSN =
∑N

k=1 Xj
k is the total number of nodes

that are linked to nodej. It follows from the uniform distribution that,p = Prob{Xj
k = 1} = Vol(Cj). Therefore,

E(
∑N

k=1 Xj
k) = pN . It follows from Chernoff bound that,

Prob

{∣∣∣∣∣
N∑

k=1

Xj
k − pN

∣∣∣∣∣ ≥ εpN

}
≤ e−ε2pN/3 =⇒ Prob

{∣∣∣∣∣
N∑

k=1

Xj
k − pN

∣∣∣∣∣ ≥
pN

log N

}
≤ 1

Nα2

29



where we have chosenε = 1/ log N in the latter expression. We can repeat this argument forN nodes in the

network.

Prob

{
max

1≤j≤N

∣∣∣∣∣
N∑

k=1

Xj
k − pN

∣∣∣∣∣ ≥
pN

log N

}
≤ 1

Nα2−1

The upper bound is summable inN for α2 > 2. By a direct application of Borel-Cantelli lemma it follows that,

1
pN

N∑

k=1

Xj
k −→ 1, almost surely=⇒ node degree= log3 N

(
1 +

C

log N

)
, |C| ≤ 1, w.h.p (27)

Proof of primitivity: This follows from Theorem [8.5.3] in [9], which states the following: SupposeA is an

irreducible and non-negative matrix associated with the directed graph,Γ(A). Let Lj = [kj
1, kj

2, . . .] be the set

of all path lengths that start at nodej and end atj. The matrix,A, is primitive if the greatest common divisor of

path lengths is equal to one for everyj. Irreducibility can be established through strong connectedness (see The-

orem [6.2.24] in [9]) of the induced graph. The main complication is that the matrixA as defined by Equation 10

is directed. In particular note thatae,e′ = 0 if e ande′ forms a directed cycle. To establish strong connectedness of

Γ(AN ) we lete1 = (s1, d1), em = (sm, dm) be any two edges. From the node connectivity it follows that there

is a directed path from noded1 to nodedm. Suppose, this path contains a directed cycle, i.e., the path contains

the sequence of edgese, e′, which form a directed cycle. Ife 6= e1 it is always possible to obtain a modified path

that does not include this cycle (simply deletee′ from the path). If not, consider circles,C1, C2 of radii R/2, R

centered around nodess1, d1 respectively. Consider any node,j, other thans1 in the intersection of these circles

(which exist with high probability). Replacee′ by the directed edge(d1, j) and augment with the directed edge

(j, s1). The new path now formed is a feasible directed path and establishes strong connectedness and therefore

irreducibility. Primitivity follows from the fact that the intersection of circles contain multiple nodes with high

probability. Therefore, paths of even and odd lengths can be constructed.

Proof of Equal Column Sums: Now since the matrixA is primitive it follows that there exists a unique

positive Perron eigenvalue,ρ(A) and a positive eigenvector. Furthermore primitivity is not destroyed by pre-

multiplication by(I + ∆)−1 as was done in Equation 19. It suffices to show thatÃ = A(I + ∆)−1 has equal

column sums. Notice that a columnj of A haslog3 N(1+C/ log N) non-zero entries from Equation 27. There-

fore, by choosing|∆| ≤ 1/ log N the columns can be made equal.
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