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Abstract

We consider the problem of classifying among a sedbhypothesis withV distributed noisy sensors.
The N sensors can collaborate over a finite link-capacity network. The task is to arrive at a consensus about
the event after exchanging such messages. In contrast to the conventional decentralized detection approach,
wherein the bit rates for each link is explicitly constrained, our approach is based on a high-rate limit perspec-
tive. We apply a variant of belief propagation—to account for finite link-capacity—as a strategy for collabora-
tion to arrive at a solution to the distributed classification problem. We show that the message evolution can be
re-formulated as the evolution of a linear dynamical system, which is primarily characterized by network con-
nectivity. We show that a consensus to the centralized MAP estimate can almost always reached by the sensors
for any arbitrary network. We then extend these results in several directions. First, we demonstrate that these
results continue to hold with quantization of the messages, which is appealing from the point of view finite bit
rates supportable between links. We then demonstrate robustness against packet losses, which implies that op-
timal decisions can achieved with asynchronous transmissions as well. Next, we present energy scaling laws
for distributed detection and demonstrate significant improvement over conventional decentralized detection.

Finally, extensions to distributed estimation are described.

1 Introduction

Recent advances in sensor and computing technologies provide impetus for deploying wireless sensor networks—
a network of massively distributed tiny devices capable of sensing, processing and exchanging data over a wire-

less medium.
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In this paper we focus on the scenarioféfdistributed noisy sensors observing a single phenomena. The
sensors can only collaborate through a network defined by a connectivity graph. The task is to arrive at a consen-
sus about the event after exchanging such messages. Fundamental problems arise when data is distributed and

centralized solutions are no longer feasible due to time/rate/energy constraints.

The general question of dealing with distributed data in the context of detection has been an active topic of
research(see [1-3,6,7,10-13,16, 19, 23-26] and references therein). Much of this research focuses on a fusion
centric approach withV sensors having communication links to a data fusion center as shown in Fig. 1(a).

Here, the research is focused on capacity constrained networks. Research has addressed quantization of sensor

phenomena
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Figure 1: Various schemes for detection in sensor networks.

data [11] and exploiting source correlation [15] to reduce sensor bit rate. In particular cases, it has been shown
that for a N-sensor network with a capacity constraint of N bits per unit time, having each sensor send one bit
is optimal [3]. In general, the data from each sensor is compressed on to a message taking values over a finite
alphabet. The objective is to find optimal fusion rule and the associated decision rules at each of the individual
sensors to minimize the error probability. The principle drawbacks of the approach are well-known and has been
documented in [23, 24]. We point out some of these here for the sake of exposi)dhcdn be shown that (if the
hypothesis were conditionally independent) the decision rules at each sensor reduce to a likelihood ratio threshold
test. Nevertheless, the decision rules are coupled in that thresholds have to be solved jointly for all the sensors.
This not only has computational implications but also assumes centralized knowledge of the sensor Bjodels. (
The network topologies for which these results hold are restrictveCpnsidering all energy costs in an energy
budget as in [18] shows that sending one bit of data consumes only marginally less energy than sending many

bits. It has been argued [2, 10, 13, 19] that in energy-limited wireless sensor networks a more appropriate goal is
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to minimize the probability that sensors must transmit. Nevertheless, a hierarchical structure with a single fusion
center is still used.¥) Moreover, energy for communicating over large distances is significantly more than that
required to communicate over small distances. Finally, a fusion centric approach has the disadvantage of a single

point of failure.

To overcome these issues we develop a data-centric as opposed to decision-centric communication strategy.
Related work for distributed optimization in sensor networks have been proposed recently in [8, 17] for specific
types of network topologies. In this paper we pursue a more general objective of developing a truly ad-hoc, asyn-
chronous, energy efficient detection theory for arbitrary network topologies. Our problem focuses on deriving
conditions for arriving at a consensus at all the sensors and situations where the consensus is the centralized MAP
estimate. A natural idea for collaboration is to exchange a vector of individual sensor beliefs (probabilities) for
different hypothesis between linked sensors at any instant of time. This idea is formalized in the “so called” belief
propagation (BP) algorithm [14] and preliminary results on their application to the detection problem is described
in a number of our papers [1, 25, 26]. A description is shown in Figure 1(b) where sensor nodes send a vector
of likelihoods for each hypothesis at any instant of time. These likelihoods can be dynamically updated based
on information received by the sensor in the past. Evidently, the algorithm overcomes the centralization issue
alluded to earlier. In this setup, we neither have a fusion center nor does each sensor need to know models for
adjacent sensors. Nevertheless, BP is known to work generally for non-loopy network topologies, a situation that
is quite restrictive and difficult to impose in a sensor network. Furthermore, on account of finite link capacity, it
is unclear as to how to deal with attendant effects of quantization. We deal with the firstissue in Section 4 by first
classifying loopy graph topologies for which the standard BP does converge to the MAP consensus. However,
these turn out to be limited and motivates us to consider variants of BP algorithm and we show in Section 4.2
that for the class of problems where all sensors are engaged in the same classification task, consensus can indeed
be attained through such modifications. We further prove that this consensus is not only the MAP estimate but
also that the exact posterior distribution can be realized. We next deal with the finite link capacity in Section 5 by
employing a novel robustness perspective. By showing that our algorithm is robust to perturbations of messages
we are able to quantify explicitly the size of quantization before performance degrades. Next we show that our
algorithms are robust to random packet losses in Section 5.2. In Section 6 energy scaling laws in wireless envi-
ronments for uniform grid as well as random networks are derived. The results show exponential improvement
in energy scaling over the conventional fusion center approach. Finally, in Section 7 extensions to distributed
estimation are described. In summary the main advantages of the proposed scheme are as(#)llds:

sensor network can operate in a completely asynchronous fashion, i.e., the algorithm as well as the outcomes



do not depend on when a message is transmit@piSecond, each sensor node in the networks does not have
knowledge of sensing models for other sensors. This implies that the algorithm works irrespective of knowing
“who is sending what.[C) The algorithm always converges to the optimal MAP estim@e There is no single

point of failure as is the case for the fusion center approach.

2 Setup

We consider MAP estimation in M-ary hypothesis testing with hypothéses { H,, Hs,--- , Hys} and prior
distribution,(-). Estimation is based on a random vector= (Y, : v € V) of observations that belong to
an arbitrary abstract space. Throughout the p&pés interpreted as a set of sensors, gpds interpreted as
realization of the measurement taken by senserV'. Let f,, be the conditional probability density function of
Y under hypothesiél,, form = 1,2,--- , M. We shall assume that observations are conditionally independent
given the true hypothesis; namely,
fm@) =] folw), y=@w:veV)eRY €y
veV
for marginal densitieg),. Let 7 denote the posterior distribution of the true hypothesis givenihat v, for
v € V, which is identified uniquely by the relation
T(Hm) o< wo(Hm) [T fin(wo), m=1,2,---, M. (2)
veV
In particularH,,- is a MAP estimate if

m* € arg max {FO(Hm) H fﬁl(yv)} .

veV

We concentrate on distributed applications in which a single decision maker having access to all observations
(Y, : v € V) is not available. Instead, each sensor can collaborate with other sensors and form an estimate of
the posterior distribution. The collaboration is limited by a communication network structure represented by a
weighted, strongly connected digraph= (V, E). The vertices/ of this graph correspond to sensors, and an
ordered paifv’, v) of vertices belongs to the edge deif there exists a communication link from sensérto
senson. Senson’ is referred to as aeighborof sensow if (v/,v) € E. Let N(v) denote the set of neighbors
of sensow so that

Nw)={eV:(,v)eE}, wveV.



Relationship to Markov Random Fields In motivating the collaborative framework of the paper, it will prove
useful to interpret the posterior distributionin terms of Markov random fields (MRFs). A random vector
X = (X, : v € V) is a MRF with respect to an undirected gra@h= (V, E) if its marginals admit certain con-
sistency conditions defined relative to the neighborhood relatios[f, 28]. In particular, if all combinations
of possible marginals have positive probability, then by the Hammersley-Clifford theorem there exists positive
mappingsp, : v € V, andi, : e € E such that

Prob(X, =x,, veV) x H Oo(y) H Ye(Ty, Ty ), (3)

VeV e=(v')EE

for each realizatioriz, : v € V) of X. In broad terms, node potentials account for likeliness of marginal
values whereas edge potentigisaccount for pairwise correlations iXi. Let G be an arbitrary connected graph

spanning the nodds, and consider the distribution (3) &f with

bo(Hp) = (mo(Ha)) YV o (y0), wveEV, (4)

we(HjaHm) = 5(Hj>Hm)y €€E> (5)

whered (-, -) is the standard Kronecker delta function. It is easy to verify that due to connectivitynudrginal
distributions of X are identical, and furthermore they equalito Although most combinations of marginal
values ofX have zero probability, this issue will not lead to complications in applying efficient algorithms that
compute marginal distributions of MRFs (such as belief propagation [14, 28]) in order to arrive at estimates of the
underlying hypothesis based arhere. Furthermore, in the context of the detection problem we have enormous
flexibility in choosing the edges. Specifically, any arbitrary graph, i.e., arbitrary choice of edges associated with
edge potentials as in Equation 5 accounts for the informational aspects of the pratherimplies that the

MRF model G = (V, E), can be chosen to coincide with the communication network gi@ph, (V, E). This

justifies the use of BP as a message passing algorithm

3 Collaborative Framework

The so called BP algorithm [14, 28] provides a framework for collaboration between nodes of a graph to compute
marginal distributions of a MRF. The main idea from a detection perspective is that each sensor madsmits

a vector whosenth component is related to a local estimate for hypoth&sjsat nodev. This overcomes the
centralization issue underlying conventional decentralized detection, where decisions are transmitted. In the
mechanics of the algorithm, at time stegach sensor nod€ € V forwards a messagm,(f/’”)(h), h € H, to

sensor node via the communication infrastructure represented by the digtap¥lore specifically, sensor node
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v’ computes the product of most recently received messages pertaining to each hypo{easlsding message
from v), and averages this product across all hypothesis with adequate weighing to reflect correlations between

the hypothesié andh’. On account of the specific potentials (4)—(5) these messages are given by

my" " (h) = 1 (6)
ml(gv’,v

hy = dun) T w0y k=1, (7)

deN(v)—{v}
along any edgév, v') € E, for each hypothesis € H, and round: > 0. Messages are used by recipient nodes

to compile theibeliefs which are estimates for the posterior distributiodefined as follows:

Definition 3.1 (Belief) The belief(7] (k) : h € H) of nodev € V at roundk is a probability vector uniquely

identified by the relation
(k) o< mo(h)gu(h) [T mi " (h). (®)
V€N (v)

¢, From the viewpoint of distributed system operation, it is worthwhile to note that: (i) Each message is deter-
mined locally by the observation at the sensor and the prior messages received from neighboring sensors, (ii)
Ccomposition of the messages does not require global knowledge of sensor models, and (iii) the algorithm also
entails a relaxed synchronization among sensors, as it can be implemented by programming each sensor to send
out initial messages immediately and to send outtilsmessages only after receivifig— 1)th messages from

all of its neighbors.

If G is a singly-connected graph then well-known results [28] on Pearl’s sum-product algorithm guarantee that
each beliefr}, v € V, converges to the true posterior distributiowithin a finite number of rounds. For general
graphs and general potentials the sum-product algorithm is not expected to converge. Our focus is whether the
scheme does indeed converge for the special structures endowed by the classification problem. To explore this

strategy we first transform the original problem into a linear dynamical system.

We identify each edge € E by its source vertex(e) and its destination verteke) so thate = (s(e), d(e)).
Therefore, each edge, can be associated with neighboring edgesjncident on it and the set of edges,,

that it is incident on, i.e.,

I.={ ek | d)=s(e)} 9)

O.={ €E | s(e)=d(e)}



For each pair of edges ¢’ € F let
et = 6(s(e), d(e'))(1 — d(s(e"), d(e))). (10)

Note thata. .. = 1 if and only if edgee’ € I. and the ordered paife’, e) is not a directed cycle. For each

hypothesisi € H let

u(v) = log(gu(h)), veV
zi(e) = log(mf(n)), e€FE.
Taking the logarithm of both sides in equalities (7) leads to the linear system
zi(e) = u"(s(e)) + D aceri_i(¢),  g(e) =0. (11)
e'cE
Define the vector” = (u"(s(e)) : e € F) and define the binary matri® = [a. /] g« . SO that equality (11)
takes the vector form

el =l Al 2h =0, (12)

We note that the dynamical evolution in Equation 12 depends only on the graphical structure and not on the
individual observations. This key insight as we will see in the next section results in consensus among different
sensors based primarily on the network topology. Finally, we will show how to achieve the correct MAP estimates

for arbitrary connected graphs.

4 Consensus and Convergence

In this section we derive results for reaching a consensus based on our analysis in the previous section. We lift
the restriction on link capacity limits and discuss decentralized determination of MAP estimates. In a subsequent
section we will discuss methods for achieving a MAP consensus with finite-link capacities and lossy links. We

start with a formal definition of consensus in the present context.

Definition 4.1 (MAP Consensus) Sensor nodes V' eventually succeeds in MAP estimation if

limsup 7 (h) =0 (13)

k—o0
for all b € H such thath ¢ argmax; 7w(h'). The sensor network is said to asymptotically achieve a MAP-
consensus if each sensor eventually succeeds in MAP estimation. Sensor network is said to achieve a consensus
if Equation 13 holds for the same subset of hypothésesH, which are not necessarily MAP estimates, at all

nodesy € V.



We point out that the notion of consensus is substantially weaker than the conventional objective of estimating
the distribution. In Section 4.2 we define a stronger notion of convergence while discussing modifications to the
BP algorithm. The weaker notion is useful when we are only interested in achieving the MAP decision rule and
as it turns out the message passing algorithm can guarantee a MAP consensus for particular graph topologies. In
the following we will state results for different graphical structures and provide main outlines for the proof for

these results. First, note that the solution to the linear system satisfies:

E
—_

=) At k>1 (14)

s

i
o

The results rely on the following straightforward observation, which is given here without proof:

Lemma 4.1 The matrixA’ = [a’ ]z« p Wherea! , is the number of directed paths of lengtledges that

start with edge®’, end with edge, and that do not have any 2-hop cycles.

Based on the above discussions we have the following results. The first theorem concerns the case when the
graphd is a tree and the subsequent result deals with ring graphs. It is well-known that in this case BP leads to
the true posterior distributions even for general Markov fields. However, the proof in our context makes use of

the special structure of the transition matdxdefined in Equation 10.

Theorem 4.1 (Trees) IfG is a tree then the network asymptotically achieves MAP-consensus with BP algo-

rithm.

Proof. If G is a tree, them defined as in Equation 10 is nilpotent sindé = 0 for all integers; larger than
the diameter of the tree. Equality (14) therefore indicates that the messages are guaranteed to converge within a

number of steps no larger than the diameter. Note that, fdrc £

1 if there exists a simple directed path
o0
Z a‘;e, = in G with source edge’ and destination edge
j=0

0 else

hence equality (14) leads to

lim 27 (e) = 1{dist(v, s(e)) < dist(v, d(e))}u"(v)

k—oo
veV

for e € F, where distv, v") represents the length of the unique path between vertieéss V. It now follows
by equality (8) that the limit of the estimafg (7) at each sensar € V' is equal to the posterior distribution (2).
U



Theorem 4.2 (Rings) IfG is a ring then the network asymptotically achieves MAP-consensus with BP algo-

rithm.

Proof. If G is a simple cycle then far, ¢’ € FE the sequenceug o 23 =0,1,2---) has periodV|. In particular

AJ = A7HV] and thusd is idempotent. Equality (14) then leads to

h V-1
. xi(e) 1 o
lim “AL = Alu™.
s ko |V Z N
Jj=0
It is not difficult to see thad ;'J.V:'O—l ai . = 1forall edgese,e’ € E that have a common orientation (that is,

clockwise or counter-clockwise) and th@?ﬁo_ ! al , = 0 otherwise; in turn
i 7 1 n E 15
. —V‘ZU(U% echb. (15)

veV
Since
) o doexp [ > bW v) |,
v’ €N (v)
it follows via (15) that for any two hypothesésh’ € H
o1 v(h) 2 /
1 21 k - = heo 1y h / )
koo kSRR |V <Z“ ()= u (“)>

v'eVv v Ev

The conclusion of the theorem now follows since

> uMw) = log <H %(h)) = log(n(h)), heH,

v'eVv v eV

by definitions (2) and (4). O

Although consensus is achieved in the sense of Definition 4.1, convergence of beliefs may not emerge. This
happens only when a unique MAP estimate does not exist, and in this case mode of the belief at each sensor may

oscillate among maximizers of the posterior distributiofsee [25] for an example).

4.1 Regular Graphs

For general graphs with arbitrary cycles it turns out that the dynamical evolution does not converge to the correct
likelihood ratios. Nevertheless, it turns out that for d-regular graphs and random graphs MAP consensus can be

guaranteed. First, we need the notion of a primitive matrix.

Definition 4.2 A matrix A is said to be primitive ifA™ > 0 for some positive integer..
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We now have the following theorem:

Theorem 4.3 LetG = (V, E) be a finite connected d-regular grapli & 2), i.e., a connected graph where
each vertex has degrek Furthermore, let the matrix4, as defined in Equation 10 be primitive. Then a MAP

consensus is achieved with the BP algorithm.

Proof. Since,d > 2 it follows that the spectral radiug(A), is larger thanl. From standard results in Perron-
Frobenius theory [9] it follows that,

lim (A/p(A)* =W (16)

k—o0
where,IV, is a rank-one matrix formed from the left and right eigenvector corresponding to the maximal eigen-

value. For simplicity, define:(k) = Z;?:O p(A)7. By equality (14)

h k—1 A ; b1 )
i Tk — fim PAY b A

where, in the last equation, we have used Equation 16 to obtain a real-valued matrix seguenge} that

vanishes ag — oo and that satisfiele|| . < Cy < oo. This implies that for somé> 0,

Therefore, we have
n
L h

< h - A —1y1,,h o
(k) max ||eu"||oc + Cop(A) " ||u"||

T k—1<j<k—1

where, for the first term of the RHS we have used the factthd}’ /o (k) < 1 and for the second term we have
usedp(A)*~!/a(k) < p(A)~!. Consequently, for any > 0 there exists a sufficiently large numbesuch that

the limiting differencelim supy, | 5t

h
— Wuh‘ < e. Now sincee is arbitrary the result follows. To establish the
fact that the consensus is a MAP estimate we note that for a regular graph the unique left eigenvector (upto a

constant multiplication) foi?” is a column vector of ones. Therefore, it follows that,

lim zi(€) x g u(v), ecE a7
k—oo Oé(k) ’ '
veV
The result now follows along the lines of Theorem 4.2 (from Equation 15). O

The theorem does not hold for general graphs, i.e., sensors do reach a consensus but the estimate is not

guaranteed to be a MAP estimate. To see this consider the following example:
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Example: Consider binary hypothesis testing in a 9-sensor network under the communication structure repre-
sented by the graph of Figure 2(a). Each edge in the graph represents two directed edges in opposite direc-
tions. The eigenvectors no longer have equal weights corresponding to each edge. Suppose that the observations
(z, : v € V) translate to node potentials = [¢,1 — q|, 1 = [p,1 — p] and¢,, = [0.5,0.5] for k = 2,3,4, 5,6,

wherep, ¢ € [0, 1]. Figure 2(b) illustrates the true MAP estimate and the final consensus due to BP for different
values ofp andq. Note that the consensus is determined to a larger extent by the vajuatber than the value

of p. Note also that the consensus reflects a flawed estimatg;if lies in the area between the solid and dashed

lines.

MAP Estimate vs. Consensus
T T T T

0o\l - - MAP Estimate
08 hS B
071
06 Hypothesis-0
T 05
04r
Hypothesis-1
0.3
021
0.1
0 01 0.2 03 0.4 0‘5 0.6 07 08 09 1
P
(a) A 9-node irregular communica- (b) Decision regions for the MAP estimate
tion graph (dashed) and the final consensus of BP

(solid).

Figure 2: lllustration of how asymmetric graphs bias the consensus decision away from the optimal.

We now extend these results to random graphs. The random graph is constructed in the following Manner.
sensor nodes are uniformly distributed in a square unit area denoted by theZeggoered at zero as shown in
the Fig. 3(a). Unlike deterministic regular graphs discussed earlier, the communication connectivity radius needs
to be chosen carefully. This is to ensure that the random graph is still regular with high probability. It is well-
known [20] that the minimum communication radius,is of the order ofl% to ensure graphical connectivity
of N uniformly distributed sensor nodes. However, for this minimum radius the degree (i.e. number of neighbors
for each node) is highly variable. To ensure a constant degree with high probability we need a slightly larger
radius of connectivity, i.e.R = %. For the sake of mathematical simplicity we consider a periodic

extension of the graph so that issues related to dealing with boundary nodes does not arise. For this situation the

edges are formed by linking any two vertices that are at a distance smallek inathe original graph or in the
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extension. In particular two nodes, whose planar coordinates are respectively,), (a2, b2), are connected

by a link if

i (a1 — @)+ (b~ 52)?)* < Bi = (ax)mod1), by = (b)mod 1) (18)
min { (a1 a2 1 2 = g a2 a2 y U2 2

Percentage of Sensors with the True MAP Estimate
100 T T T

90F

70r
8 eor

s0F

X ° . .. ¢ ‘.\ . . S 4or
. . * L]

ry s 20+
connectivity

d H 20 40 60 80 100 120 140
radius Number of Local Message Passing Iterations

Percentage of Sen:

(2) Randomly distributed sensors (b) Detection Probability Rate with 400
with constant connectivity radius in Sensors with 10 different Hypothesis.

an unknown plume.

Figure 3: Classification by Sensor Networks.

Theorem 4.4 Consider the random graph setup above. A MAP consensus is achieved by an approximate BP

algorithm, which converges to the BP algorithm|&§ — oo.

Proof. We provide a brief outline here and refer the details to the appendix.

(A) We show that the in-degree and out-degree for each node as defined in Equation 9 is asymptotically equal to
(log(n))® almost surely. Next the primitivity of the matrix with high probability is established. This implies

that that there is a rank-one matfiX such that]img_, (ﬁ)k =W.

(B) We consider an approximate BP algorithm, specifically,
i=u AT+ A, dh=0 (19)

where,A = diagd;;] is a suitably chosen diagonal matrix with;;| < 1/log(/N) and such thatl(I + A) has
equal column sums. The approximate message passing scheme corresponds to weighting each message in inverse
proportion to its out-degree before transmission.

(C) The weighting does not destroy primitivity and therefore we have

. A(T+A)~1 \*
S (,o(A(I n A)—l))

12
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where the left eigenvector &¥ is a vector of all ones. Now the argument follows along the lines of Theorem 4.3

and for a suitable normalizatian(k), we have

zj.(e)
lim “2>7 u"(v), ecE.

for someC, > 0 with high probability. The MAP consensus can now be established along the lines of Theo-

rem 4.3. Now, agvV — oo the weighting converges to zero, which is equivalent to the BP algorithm. [

The convergence properties for a typical random graph are illustrated in Figure 3(b). Nevertheless, the draw-
back of the BP algorithms are fivefold: (a) The estimates for general graphs are not guaranteed to be MAP
estimates; (b) Message updates at the various nodes need to follow a certain order; (c) the scheme is not nec-
essarily robust to link failures; (d) BP algorithms require customizing information for a particular node, in that
message from nodé to nodeK is a function of messages received from neighborg ekcluding K. 1t would
be simpler and energy efficient if one could fuse the received messages at each node and just broadcast them
without the need for customization. (e) Equation 17 holds out the possibility that consensus to the exact posterior

distribution is achievable at least for regular graphs. Indeed, it follows from Equation 17 that,

1 / v v 1 / v
(k) logmi(v,v') o< Y log fi(y) =log [ fi(y) = (RN ()| > ' v) oclog [T 1 (w)

veV veV v’ €N (v) veV

where, the proportionality does not depend on the hypothesis. The last expression is the normalized sum of
log-messages from the neighbors of each node. This differs from the exact MAP log-likelihood function by the
log-prior distributionlog(m,(k)). This justifies consideration of a modified belief estimator. Specifically, we
define the log-belief estimatiyg 7} (1), as
log }/(h) = log(mo(h)) + n(k) > a}() (20)
v’ €N (v)

This also motivates the concept of a strong consensus.

Definition 4.3 (Strong Consensus) Sensor nodes V are said to achieve a strong consensus if the belief
estimate7; (h), converges to the same distribution (not necessarily the correct posterior distribution). We say

that a sensor nodee V' converges in distribution if,

lim #2(h) = Prob{h|(Y, : v€ V)} YV h e H.

k—o0

Furthermore the sensor network is said to asymptotically converge in distribution if each sensor converges to the

same posterior distribution.
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4.2 Modified BP Algorithms

The preceding arguments lead us to consider convergence and strong consensus for general graphs. Consensus
and convergence appear to hinge on whether or not the transition mtiscprimitive. For connected graphs

this can be accomplished by modifying the message passing algorithm as follows:
=l (I + A)2)

where, we have used the symb@las the state in place @f,g to avoid confusion with the BP algorithm. It then

follows that the matriXI + A) is primitive and Theorem[8.5.1] of [9] applies and it follows that:

Proposition 4.1 Consider a connected graph G=(V,E) and the message passing algorithm given above along
with the belief estimate of Equation 20. It follows that the messages converge to a strong consensus, which is

equal to a weighted log-likelihood, i.e.,

log 7}/ (h) — log(mo(h)) + Y _ L log f£(y)
veV

where, the weights,,, are coefficients of the left eigenvector®f= lim,, ... (p(A) 1 A4)™.
Proof. The proof follows by direct substitution and is omitted. O

The main issue as the above proposition suggests is that the consensus achieved is in general a weighted log-
likelihood ratio, i.e., unbalanced graphs lead to incorrect posterior distributions. Therefore, the question arises
as to how to balance the messages for an arbitrary graph. We explore two possibilities both of which lead to the

desired solution:

Self Loops:Here the message passing scheme described by Equation 12 is modified by creating virtual self-loops
in the communication graph. The number of self-loops for a particular node is equal to the difference between

the maximum degree of the graph and the degree of a particular node, i.e.,
M=ul+(D+ A, =0
Alternatively, from standard linear systems theory it follows that the following scheme may be used as well:
2 = (D + A)zy, 2 = u

In the above schemes) = diagd..|, is a diagonal matrix witllee = dpar — de, Whered, = ). ae. is the

in-degree of sensor nodge) € V, andd.x = max{d. : e € E}. With this modification it follows that the
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column sums are all identical. Therefore, the coefficients of the left eigenvector are all equal. Consequently, the
messages;?, converge to the correct posterior distribution. The main drawback of this idea is that the maximum
degree must be known a priori at each node. The problem can be overcome by cligosing” — d. whered

is any number that is known to be larger than.. An alternative strategy is explored next.

Normalization: Here each transmitter node normalizes its message for each hypothesis by the number of differ-

ent messages it receives, i.e., we have
z,}; =+ A)Dz,?_l, zg = uh, (21)

whereD = [d..| is a diagonal matrix witll.. = 1/d., whered, is again the in-degree of sensor nade). With

this modification, it follows that the conditions for Theorem([8.5.1] of [9] are satisfied with column sums being
identical. Therefore, the coefficients for the left eigenvector are all equal. The advantage of this strategy is that
message passing algorithm does not need to know the graph topology. Another aspect of this strategy is that the
maximum eigenvalue of the transition matrix is one. Consequently, the messages are all bounded, and potential
numerical instabilities are thereby avoided. We will point out a third aspect of this scheme when we deal with

link failures in Section 5.2.

Broadcast: Each transmitter node broadcasts the same message to all its neighbors. This is different from earlier
strategies because in the BP algorithm message from Add@odeK is based on messages received from all

the neighboring nodes excludirg. In contrast in the current scheme, the message update is undirected and
combines messages from all the adjacent nodes, which is then normalized as before and broadcast. Evolution of

messages admits a linear representation as before, though with reduced dimensionality. That is,
= (I+A)Dz, b =", (22)

wherezl = (zl'(v) : v € V) (where(z!(v) : h € H) is the message broadcast by nadet roundk) and
uh = (u(v) : v € V) areV-dimensional column vectors} = [a, /]y xv Such thata, ,» = §((v,v') € E),
andD is a diagonal matrix that transforms columnsdiinto probability vectors. Again, by arguments described

above it follows that the beliefs converge to the centralized posterior distribution.

Furthermore, all of these strategies are consistent with the currently employed wireless protocols. In summary

we have the following theorem, which is stated without proof:

Theorem 4.5 For an arbitrary graph topology the message passing scheme of Equations 22, 20 converge to

the centralized posterior distribution at all nodes.
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5 Robustness Issues

5.1 Detection with Finite-Link Capacity

To deal with finite link capacity we take a robustness viewpoint. In other words, the problem we pose is to
determine how quantization of the likelihood vector impacts the MAP estimate. Suppose, each message (note

that this is not the log-message) is quantized with a logarithmic quardjzergiven by,
Q(z) = (14 9)z, forsomeld| <~
where,y is the maximum allowable quantization. In the logarithmic domain this translates to:
2= A2l 4 log(146)1 +ul, zh =l

where1 is a column vector of all ones. We can assume without loss of generalityAthas a stochastic
matrix based on the results in the previous section. Our task now reduces to quantifying the maximum allowable

guantization levely, so that a MAP consensus can be achieved. We then have the following result.

Theorem 5.1 The maximum quantization allowable (for sufficiently large number of identical sensors) such

that consensus does not deviate from the MAP estimate is given by:

WP < min exp<Eh0 <1gfh>)— min [exp (D(fug |l fi) = Dol fa))

hi#ha, ho log fp, h1#£h2, ho

where,D(-||-) is the Kullback-Leibler distance anl;,, (-) is the expectation under hypotheais

Proof. Proceeding along the lines of Theorem 4.3 we note that,

lim sup ko Z u"(v)| < limsup Z — log(1 + 6;—;)| < limsup max ] log(1+y) < |V]log(1+47)
e = koo |i5 K R ==

where, the third inequality follows from the fact thabif) < by, then| )", a(k)b(t — k)| < bpaz > la(k)].
The last inequality follows from primitivity and stochasticity 4f If the log-likelihood ofh is higher tharh’ we

require that,

’
h Zh

|‘1/| zv:(uh(v) —u" (v)) > 0= % >0

¢ From the strong law of large numbers it follows tﬁ?tzv(uh(v) —u" (v)) converges to the differences in the

Kullback-Leibler distance [5] under the true hypothesis. This implies that we need

1 .
log(1 +7) < 2 w5 |D(froll 1) — D(froll frr)]
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Consequently, it follows that if the distributions corresponding to each hypothesis are well-separated, the
number of quantization-levels are also a constant. Therefore, log-messages can be discretized into constant
number of bits equal tdog,(B/log(1 + ~)) bits per message (whet® is the maximum value of any log-

message). This follows from the results in Section 4, where we showed that the log-messages are bounded.

5.2 Packet Losses and Asynchronous Operation

In this section we relax the assumption that a message is transmitted along each communication link at each round
of the algorithm. Our aim here is to account for the following two effects: First, messages may be corrupted and
lost due to imperfections in point-to-point communication. Although link layer protocols would provide some

relief against this issue, robustness of network operation against message losses needs to be addressed, especially
if the physical communication medium is wireless. Secondly, one can imagine situations where some sensors
operate on a slower time-scale than others, thereby slowing down the network under the lock-step message-
passing algorithm outlined in Section 3. Namely, if each sensor waits for messages from all neighbors to compose
their next message, then the network evolves at the time scale of the slowest sensor. This limitation may be
overcome if each sensor contributes to the collaborative effort at its own time-scale. In both cases described
above the network operation is asynchronous in the sense that not all links are necessarily active at each round of

the algorithm. Here we address the attendant effects of this generalization in stochastic and deterministic settings.

Consider the broadcast operation of Section 4.2 in the case when the connectivity of the network is time-

varying. Namely, evolution of the messages is represented as
Zl}flJrl = (I + Ak’)Dkzl}fl’ Zg = uh¢ (23)

whereA, = [a;;(k)] is a binary matrix and;, = [d;;(k)] is a diagonal matrix with

-1
dj;(k) = (1 +) az‘j(@) ,
i
so that in particular columns ¢ + Ax)D; are probability vectors. Given sensarg we shall say that link
i — 7 is functionalin roundk if sensorj receives a message from sensar roundk. Entries of A, are then
interpreted as

a;j(k) = I{ link j — 4 is functional at round}.

Hence the system (23) describes the evolution of local beliefs when each transmitted message is normalized by

the number of outgoing functional links (i.e., the number of receivers of the message) in the same round. We
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point out that such an algorithm is consistent with the currently employed wireless protocols.

Theorem 5.2 Suppose that the matricgsl, : £ > 1) is are iid, and thatE[A,] is irreducible. Then for

v € V there exists a random sequereg(v) : k£ > 1) such that

lim => u"()), almostsurely.

In particular for large values of;, the vector(z}(v) : h € H) and the posterior distributiom have common

modes.
We prove the theorem via an adaptation of the techniques in [27] for asymptotic analysis of stochastic-matrix
products. We start with auxiliary results.

Given square matri¥ = [p;;] define

A(P) =1~ min > " min(pi;, pisj)-
j

Let By = [(I + Ax) D], so thatB, is a stochastic matrix and
Lemma 5.1 Under the hypothesis of Theorem 5.2, for each 0 there exists:(e) such that fork > k(e)

P (A (Biys1Bror2-+  Broyne) <1) >1—¢€, ks >0.

Proof. It suffices to show that for large enougtall entries of the matrix product

By, +1Bk,+2 - Biy+k

are positive with probability at least— e. By definition of B, s, entries of this product are positive if and only if
all entries in

(I 4 Apye) T+ Agyy2)T - (T + Ay )T (25)

are positive. Théi, 7)*" entry in the product (25) is positive if and only if a hypothetical message that originates
at nodei in roundk, can reach nodg¢ by roundk, + & by traversing a functional link in each round. Note that a
self-looping link is always functional due to the identity matrix contained in each factor of (25¢(4.¢} be the
probability that linki — j is functional at a round, so that without loss of generality= {(7, j) : ¢(i,7) > 0},

and let(¢(i,7) : (i,7) € E) be independent geometric random variables wijéiej) has parametey(i, j).
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SinceE[A,] is irreducible by hypothesis, the time to reach any node from any other node via functional links is

stochastically dominated bE(Z.J)EE &(1, 7). Define the random variableas
k=min{k: (I + Ap,11)" (I + Ap,+2)" -+ (I + Ap4x)" has positive entries.

Since there ar/|? node pairs is stochastically dominated By |2 > G.)er $(i:). Lety be the mean of this

latter variable so that

P(/\ (BkoJrlBkOJrQ s Bk-DJrk) < 1) >1-— P(/ﬁ: > k) >1—-

=

)

where last inequality follows by an application of Markov’s inequality. The lemma follows by choésging=

/€. O

Corollary 5.1 Since eachB;, takes values from a finite set, there exists a positive numiberl such that

A Bk, +1Bk,+2 - - Bko—i-k(e)) < d wheneve\(By,+1Bg,+2 - - 'Bko—l-k(e)) < 1, fork, > 0.

For square matrix’> = [p;;] define

5(P) = mjaX 11111%;{ |pi1j - pi2j|' (26)

The following lemma is a recitation of [27, Lemma 2]:

Lemmab5.2 Fork > 1
k

§ (BkBy-1---B1) < [ MBy).
=1

Proof of Theorem 5.2.Fix o, ¢ > 0 andk > k(e). Appeal to Lemma 5.2 to write

k mod k(e) Lk/k(e)]
§(B1By--- By) < H A(B;) H A (Br—jk()+1Br—jr(err2 Br—(j-1)k(o) -
i=1 Jj=1

Since each factor of the product on the left hand side is at most 1, Corollary 5.1 implies that the product is larger

thano only if there are more thaflog,(o) | values ofj with

A (Br—jk(e)+1Br—jre)+2 -+ Bo—(j—1)k(e)) > d-

Lemma 5.1 now implies that far > k(e)|logy(o)

[logy(c)] k/k o
P(§(B1By---By) >0) < Z ( L/ k(e)] ) (1 — e)B/RE]=il < (1 — e)k/Melogal@)]

j=1 J
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wherec does not depend dn The left hand side is thus summablekinin turn
limsupd(B1By - - Bg) < o, almost surely,
k—oo
due to the Borel-Cantelli Lemma. Arbitrarinessoimplies thatd(B; Bz - - - By) converges, hence by defini-
tion (26) rows of the producB; B- - - - By, almost surely become identical (though they do not necessarily settle
to a fixed vector). In light of equality (24) the theorem follows by identifyindv) with the vth entry of an

arbitrary row of B Bs - - - By. O

Remark 5.1 Note that the proof of Theorem 5.2 relies only on Lemma 5.1; hence the conclusion of the
theorem holds under much more relaxed assumptions on the statistids ofk > 1). From a deterministic
perspective, it is not difficult to see that this conclusion holds if each link is functional infinitely often, provided

that the communication graph is irreducible and aperiodic.

Remark 5.2 The algorithm does not require estimation of packet loss probabilities.

In practice estimating convergence rates is extremely difficult and is known to be NP hard. To illustrate the effect
of packet losses we have performed a number of experiments. From simulations it appears that the convergence
rate degrades gracefully and we do not see appreciable differences even for sufficiently large packet losses. A
typical simulation of the average convergence is illustrated in Figure & fer 400 sensors placed on a uniform

grid with connectivity between any two nodes separated by minimum internode distance. At each round each

link is assumed to be functional with probabiljtyindependent of other links and other rounds.

Ratio of sensors with the true MAP estimate
1 =

Vs Increasing Loss
[7 Probabilities

0 100 200 300 400 500 600 700 800 900 1000
k —

Figure 4. Convergence rate of consensus for different packet loss probabilities; Y-axis denotes percentage of

sensors that have achieved consensus; X-axis denotes time index.
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Scheme Energy (Joules/Node)

Decentralized Broadcast ~ O(N®/2d}Ey)

Decentralized Multihop O(N'2d}Ey)

Belief Propagation (grid O(N'2diEy)

Hierarchical BP O(log(N)d3 Ep)

Table 1: Energy scaling for different schemégis the internode distancé;, is the energy required to transmit

1-bit over a unit distance.

6 Scaling Laws

The scheme developed above is based on refinement of information at each time step and at each sensor location.
In effect, we differentiate between data and information, and successively blend refinement and transportation of
data in the course of the algorithm. This motivates comparison of decentralized detection with the BP approach
developed in the paper. Comparisons between conventional decentralized detection scheme and the BP scheme
appears in the Table 1. We consider four possible schemes for sensors on a uniform two-dimensional grid
with connectivity between any two nodes separated by minimum internode distance. The first two schemes
use conventional decentralized detection with a fusion center located approximately at the center. The last two

schemes employ some version of distributed algorithms presented here.

We can handle two cases: (&) sensor nodes distributed uniformly over a square areaN(lbpdes on a
uniform square grid (lattice). For brevity we only consider the latter case here. Each node is separated by some
minimum distanceg, with a power attenuation that scales with distadcasd—* implying that if £, is the
joules/bit required for reliable decoding over a unit distance thgit is the corresponding energy required for

reliable transmission for distance equalito

For the decentralized scheme we designate an arbitrary node as the fusion center. We have two possible
communication schemes that can be applied. The first scheme is a point-to-point scheme wherein each node
communicates its local decision directly to the fusion center. The second scheme relies on multi-hop, wherein
each node relays its local decision to a neighboring node, which in turn forwards that information in the direction

of the fusion center. For both of these schemes we have the following result.

Proposition 6.1 The average energy required for decentralized detection under the point-to-point scheme

scales asV3/2E}, joules/bit/node while energy for the multi-hop scheme scaleélé, joules/bit/node.
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Proof. For simplicity, we only consider a square area with nodes on a uniform grid organized into vertical and

horizontal rows with the center node as the fusion center as shown in Figure 5. For the point-to-point scheme, it

1 1 1
| I |

A 1 1 1 ’
| | |

1c 2c (\/FL)C

N

Figure 5: Sensors on a Uniform gridl; k¢, kr denotes the fusion center, kth column and row respectively.

follows that the average energy consumptifg,., is given by:
= % Z dl
k
where,d, is the distance from the vth node to the fusion center. Now, a uniform square grid with minimum
distance separation df, requires a dimension of length and width equad¢e/N. A lower bound for energy is
computed as:

Eave = % > dy> Z N)(Vkdo)* = O(N?)E,

veV

where, the second equality follows from the fact th@ nodes are located along any row and the minimum
distance from the kth row to the fusion centekig. The energy requirements for the multi-hop scheme can be
computed by a straightforward application of max-flow min-cut theorem. Consider a cut along the kth horizontal
row from the fusion center. The number of bits passing the cut towards the fusion center is equal to the number
of nodes in the cut set, which is equal(tgd N — k)v/N. Now this traffic must be supported BYN nodes that

are at the boundary of the cut set and the total energy requifgd &V (v N — k)d}. Summing this energy over

all cuts and normalizing with respect to the number of nodes gives us:
5 YN
b
=% > VNN - k)~ O(VN)
k=1

Next we consider the BP approach. It follows from [9, 21] that an exponential convergence rate can be readily

established, i.e.,

=

Ja(k Z Ml < Cor*
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Herer is the ratio between the second and first largest eigenvalues of the Matiescribed in Equation 21.

This leads to the conclusion that for a fixed minimum K-L distance between any two hypothesis, it requires
O(log(1/r)) messages to realize the MAP estimate. Nevertheless, this is misleading because the constant term
Cy depends on graph as well [21]. To get a better idea of the convergence rate we compute upper and lower
bounds. The diameter of the communication network quantifies a lower bound on the time it takes for the

proposed scheme to converge to the consensus at each node as observed below.

Lemma 6.1 Suppose the network graph has a diameter equd) tdl'he energy required for the consensus

scheme is lower bounded By joules/bit/node.

Proof. The proof follows from the fact that* has zero entries so long as< D. This is because the diameter
characterizes the minimum graphical distance between any two arbitrary nodes and it takes/athepstto

guarantee that a message from any node reaches another arbitrary node.

Remark 6.1 For identical sensors, by appealing to large deviations theory [5], it is not difficult to show that
with |log(1/¢) | number of messages it is sufficient to ensure that with high probability (taken with respect to the

observations) each sensor deviates less thfaom the centralized MAP estimate.

We are after a more general result, i.e., the minimum time to reach a consensus irrespective of the specific
realization of the observations. To derive an upper bound we first collect several results. First, from [4], it follows

that for a stochastic matri® we have,

1 1 N
T og &
1 —|Ag] & e

wherer is the equilibrium distribution ands is the second largest eigenvalue in magnitude. In our context we

|Plz — m||oo <€, V>

are given a stochastic matrid, = (I + A)D (where the columns sum to one) and we need to derive bounds on

its second largest eigenvalue.

An upperbound can be readily derived for grid graphs, which follows from [22]. A grid graph is defined as
follows. Suppose(; andG;, are graphs so théb, w;) and(v, ws), (v1, w) and(ve, w) are adjacent il x Go
if and only if w1, wo are adjacent iffzo, andG; respectively. The eigenvalues are described in the following

proposition, which we state from [22]:

Proposition 6.2 Consider a grid graph as described above formed with line graBhsand G,. It then
follows that the eigenvalues of the adjacency matrix of the grid graph are the sum of the eigenvélyesdf

G- respectively.
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The proposition can be directly applied to compute the second eigenvalue. SappasdG, are each formed
with v/ N nodes along a straight line with a separation distance equgl teurthermore, let the communication
connectivity radius be equal th. Then the eigenvalues of the adjacency matriX arecos(nk /N — 1)), k =
0,1,2, ..., vN — 1. Consequently, the second eigenvalue of the (normalized) adjacency matipproaches

1asl — C/N, whereC is some constant. This implies the following energy scaling for grid graphs:

Proposition 6.3 For grid graphs the average energy required for achieving the MAP consensus for a hypoth-

esis testing problem with two hypothesis scale€@é¥7)d; £, Joules/node.

We point out that to establish this result we have used the fact that the conversion from messages to bits does not
significantly increase the energy requirements. This follows from the quantization results in Section 5, where we

showed there fol/ hypothesis it only take® (M) bits to encode messages for each node.

A similar result can also be established for random graphs described in Theorem 4.4 except that the results
now hold with high probability. These results imply that the energy requirements for achieving consensus is
worse than that required for multi-hop decentralized detection and significantly better than the point-to-point
decentralized detection scenario. However, it should be pointed out that the consensus based approach achieves

the optimal MAP consensus irrespective of the actual realization along with significant robustness to link losses.

Our remedy relies on seeking a MAP estimate at a few nodes as opposed to all of the nodes. In this scheme
sensor nodes are organized hierarchically as shown in Figure 6. In the lowest layer small clusters of sensors
achieve their respective consensus within the cluster. A cluster head within each cluster forms part of a higher
level network over a larger area. Consensus in this larger area is then attained. This strategy can be repeated over
several layers with significant energy savings. We point out that the algorithms employed in this setup are ad-hoc
and lack knowledge of node locations, which is consistent with the underlying philosophy outlined in the rest of

the paper.

Now considerN nodes on a grid graph. Partition infd = N/L clusters each of sizé. Supposer,, is
the energy required to transmit each message to a neighboring node. To achieve a consensus among each of
the clusters the total energli(P, L, E,,), required is equal to the product of the number of clusters times the
number of nodes in the cluster times the number of messageper node (to achieve consensus) times energy,
E,,, required for each message. Now the number of messages required to achieve a consensus in a cluster is of

order of the size of the cluster. Therefore,
Ey = E(P,L,E,,) = PL(L)(E,,) = NLd3E}.
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Figure 6: lllustration of Hierarchical Scheme; Sensor nodes organized in to clusters bf Eaeh cluster has a

clusterhead which forms part of a higher level network

Now at the next layerP nodes collaborate to achieve a consensus. The smallest distance between any two
nodes in theP cluster is nowy/Ldy. Therefore, if a point-to-point scheme is used the energy/message/node,
E.,, = L?d3E,. The total energy is thef(1, P, E,,,) = P(Pﬁ4d§Eb). However, for a multi-hop scheme
(using intermediate nodes as relays) the endigy,= \/Ld}E;, and so the total energy I8, = E(1, P, Ey) =
P(PV/Ld}Ey). Therefore, forP = L = +/N the average energy/node required for the multi-hop case scales
asF,.. = (Fo+ F1)/N = O(+/N), which is equal to the average energy required for multi-hop decentralized
scheme. This idea can be extended to obtain the following setup. The first layer is givéfhyartitions of

sizeL clusters. The second layer is partitioned iid/L) /L = N/L? partitions of sizel, clusters (formed with

cluster heads for each cluster in the first layer). This process is then repeated until all the nodes are exhausted.

The main drawback of the optimal multi-hop scheme is that it uses knowledge of node locations. Therefore,
to get around this issue a suboptimal scheme can be considered. Here at the kth layer the cluster heads from the
(k-1)th broadcast information to the neighboring nodes (which serve as relays). These neighboring nodes in turn
broadcast the received information to their neighbors and so on it follows. Ultimately, this information is received
by the nearest clusterheads, which then update their likelihoods/messages and re-broadcast the new information.
The energy required for this scheme can be computed as follows. As described earlier, in the second layer the
distance between any two clusterheads is no more than,\/Ldy. Therefore, if a message is broadcast and
relayed by adjacent nodes it is guaranteed to reach the nearest clusterhegd aitee steps. In this time a
maximum ofL nodes have also broadcast the same message. This follows from the fact that there ard.at most

nodes in the circle of radiug’Ld,. We now have the following theorem:
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Theorem 6.1 For the hierarchical setup described above the average energy scal@dasg(N)) Joules/node.

The proof follows by direct computation. First, we note that if the minimum distandg fer the first layer,
then the minimum distance ig'Ld, in the second layer. In general, for the kth layer the minimum distance,
d, = VLd,_,. Therefore, the energy and the average enefijy, E¥ _, respectively (assuming a multihop

ave’

strategy) used upto the kth layer is:

ave

d 2 d 2
EF = E*1 4 (N/L¥)L? <d’;> diE,, EF, = EF 14+ (1/LF)L? <d’;> dEE,.

Now the maximum value fok is bounded byk,,.., = log(/N)/log(L). Therefore upon direct computation
we get that the average energy scale®4s log(/N)/log(L)) Joules/node to achieve a MAP estimate. For a

constantl this leads to exponential improvement in energy scaling.

7 Distributed Estimation

The techniques of Section 5.2 can be extended to continuous parameter estimation via standard approximation
techniques. Namely, lef be a continuous random variable &4, and let the observation’, : v € V) be
conditionally independent gived. If Z has finite mean, then given> 0 there exists a finite partitiof\R,,(¢) }

of R¥ and constant$y,,(¢)} such that
1Z — Z|| < & where Z. = ym(e)I{Z € Rin(e)}.

When each evet{ Z € R,,(¢)} is interpreted as a separate hypothesis, the distributed algorithm of Section 5.2
can be employed to compute exact posterior probabilities of these events, in turn the centralized posterior distri-

bution of Z can be approximated up to a desired accuracy.

It is worthwhile to consider in more detail special cases in which the constituent variables of the problem are
jointly Gaussian, since distributed algorithms that entail no approximation errors can be identified for such cases.

In that case, define, for eachthe locally computable quantities
Hy = E[Z’Yv = y’U]’ Y, = E[(Z - Mv)2|Yv = yv]y & = O'fu_luv'

Note that the conditional independence assumption implies that the centralized MAP estitidtasathe form

-1
E|Z|Y, = yy,v € V] = (Z a;1> > &
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Consider now a message passing algorithm that involves two types of messages represented by the two decoupled

linear systems

x, = I+ Ap)Dixgp—1, x0(v) =&

si = (I+Ag)Dgsi—1, so0(v) =0,

where(I + Ay)Dy is as defined in Section 5.2, so that by Theorem 5.2

lim 25 = BZ|Y, = yu,v € V].
k—oo Si

8 Conclusion

We have considered the scenario/éfdistributed noisy sensors observing a single event. The sensors are dis-
tributed and can only exchange messages through a network. The sensor network is modelled by means of a
graph, which captures the connectivity of different sensor nodes in the network. The task is to arrive at a con-
sensus about the event after exchanging such messages. The paper focuses on characterizing the fundamental
conditions required to reach a consensus. The novelty of the paper lies in applying belief propagation as a mes-
sage passing strategy to solve a distributed hypothesis testing problem for a pre-specified network connectivity.
We show that the message evolution can be re-formulated as the evolution of a linear dynamical system, which is
primarily characterized by network connectivity. Next a family of modified algorithms are considered. These al-
gorithms converge to a MAP consensus irrespective of graph topology and are robust to random link failures and
finite link capacities. Energy scaling laws are then derived, which compare favorably with respect to conventional

decentralized detection schemes. Finally a natural extension to distributed estimation is also presented.
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9 Appendix

Proof of Theorem 4.4
Consider the regior£ of unit area in whichN nodes are uniformly distributed with edges between any two

. . . e . . . . a(logN)3/2
nodes if Equation 18 is satisfied. Supp@ses a circle of radiusk = N

connectivity matrix as defined in Equation 10 is denotediyand the accompanying graph byAy ). We are

around the nodg. The edge

interested in the asymptotic properties’s— oco.

Proof that number of links approaches a constant:We introduce the random variabJé,Z € {0, 1} to indicate
whether or not node, is within the radiusi of nodej. The sumSy = S0 X,Z is the total number of nodes
that are linked to nodg It follows from the uniform distribution thag = Prob{ X7 = 1} = \ol(C;). Therefore,
E(X ), X]) = pN. It follows from Chernoff bound that,

Prob{

N

ZXg—pN

k=1

N

ZX]z—pN

k=1

> epN} < e~¢PN/3 — Prob{

pN 1
> < 3
log N N«
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where we have chosen= 1/log N in the latter expression. We can repeat this argumeniVfarodes in the

network.

1
X} — pN
Z P log N } No?-1

The upper bound is summable M for o? > 2. By a direct application of Borel-Cantelli lemma it follows that,

Prob{ max
1<j<N

N
ZXJ — 1, almost surely—=> node degree=log® N ( 1 + —— ¢ ,|C] <1, w.hp (27)
ka f log N

Proof of primitivity: This follows from Theorem [8.5.3] in [9], which states the following: Suppdsis an
irreducible and non-negative matrix associated with the directed grdph), Let L; = [k], k,...] be the set

of all path lengths that start at nogend end ajj. The matrix,A, is primitive if the greatest common divisor of
path lengths is equal to one for everyirreducibility can be established through strong connectedness (see The-
orem [6.2.24] in [9]) of the induced graph. The main complication is that the mataix defined by Equation 10

is directed. In particular note that .- = 0 if e ande’ forms a directed cycle. To establish strong connectedness of
['(Ayx) we lete; = (s1, d1), em = (sm, dn,) be any two edges. From the node connectivity it follows that there
is a directed path from nod§ to noded,,. Suppose, this path contains a directed cycle, i.e., the path contains
the sequence of edgese’, which form a directed cycle.  # ¢, it is always possible to obtain a modified path
that does not include this cycle (simply deletdrom the path). If not, consider circle§;, C; of radii R/2, R
centered around nodes, d; respectively. Consider any nodg other thars; in the intersection of these circles
(which exist with high probability). Replacé by the directed edg&l;, j) and augment with the directed edge
(7,s1). The new path now formed is a feasible directed path and establishes strong connectedness and therefore
irreducibility. Primitivity follows from the fact that the intersection of circles contain multiple nodes with high
probability. Therefore, paths of even and odd lengths can be constructed.

Proof of Equal Column Sums: Now since the matrixA is primitive it follows that there exists a unique
positive Perron eigenvalug{A) and a positive eigenvector. Furthermore primitivity is not destroyed by pre-
multiplication by (I + A)~! as was done in Equation 19. It suffices to show that A(I + A)~! has equal
column sums. Notice that a columjrof A haslog® N (1 + C/log N') non-zero entries from Equation 27. There-

fore, by choosingA| < 1/log N the columns can be made equal.
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