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ABSTRACT sensors. A special case of this scenario was studied
in [2, 4] for a completely connected topology with no

We describe distributed tracking of a linear dynami- C .
. communication delay. They show that the centralized
cal system via networked sensors. The networked sen-

. : . estimate can be constructed at a designated node if
sors communicate with each other by means of a multi- . . ; .
o nodes send their local estimates along with a correction
hop protocol over a communication network. MMSE-

. o O term that can be computed locally. Recently, we have
optimal solution is Kalman filtering when measure- P y y

. been made aware of the work in [6], which describes
ments are available centrally, but new methods are re-

. o . approximate distributed Kalman filtering for arbitrar
quired to account for communication constraints. We P 9 y

. : . . . networks with no communication delays. However,
derive optimal algorithms to deal with arbitrary net-

work topology and then extend these results to accountthe underlying philosophy of our scheme deviates sig-

¢ cation del q Kot | Th hificantly from the existing schemes:
or communication delays and packet losses. 1he pro-(a) similar to [6] there is no designated leader/fusion
posed techniques differ from related techniques pro- . .

. . ) . node and the idea is to reach a consensus at each sen-
posed in two important aspects: a) there is no desig-

) sor node;
nated leader/fusion node and each sensor attempts t ,
. : ) ) However, [6] uses message passing to compute the
optimally track the system trajectory based on its local

. . . . . least squares solution of the current state based only
observations and time-dependent information available . .
: on current data and does not incorporate correlations
from other sensors in the network; b) the message com- . .
. . . ) of the current state with the past data. This is subop-
putation at each sensor is structurally identical, where,. - . .
. . “timal from an energy efficient perspective. We build
the computed message from each sensor is the inno- . . .
. - : .__on [2, 4] and incorporate correlations in our message
vation in the state conditioned on all the information

. . assing scheme for arbitrary networks. Our scheme
available upto that time at each sensor. Consequentl . o
) . has the pleasing feature wansmitting only the local
the sensor network can be queried at any time and at

) ) . Innovations
any node to obtain optimal estimates for the state Of(c) [6] is suboptimal in the information sense, i.e., com-
the dynamical system. L

puted estimate at any stage is not necessarily equal to
the centralized estimate.
1. INTRODUCTION Large collections of sensors call for multi-hop com-
] ] ] munications, whose implications need to be clarified
We consider a collection of sensors that collectively ,q 5 what should be sent on each link towards a des-
track a linear system that is driven by noise. The meéa-jynateq sensor. Furthermore, if communication de-
suremgntmodel _'S aI_so I!near, hence the OP“ma' IVIMSEIays are significant then the optimal centralized esti-
centralized solution is given by the canonical Kalman e that respects such delays is different from sensor
filter. Here we consider decentralized tracking sub- 1, sensor. We derive optimal algorithms to deal with
ject to a multi-hop communication model among the 4 pitrary network topologies, wherein at each stage a
This work was supported by PECASE grant no. N00014-02- SENSOr computes the optimal estimate conditioned on
100362, NSF grants CCF-0430983, CNS-0435353, ANI-0238397. locally available information and the new information




in the form of innovations received from adjacent sen- whereP,, = E(X; — X;,)(X¢ — Xt|t)T is the condi-
sors. We show that when no delays are present thigional error covariance matrix at timteand is given by
scheme converges to the centralized solution. We nexthe recursion:

extend this scheme to account for packet losses. Fi-

nally, we derive distributed algorithmgto deal with com- L > Gl ()35 Cuw)
munication delays for some special network topolo- vev
gies. With delays consensus is not the correct notionThese steps are commonly referred to as the measure-
(since sensors with superior SNRs will always have ment update steps. To complete the Kalman filter up-
better estimates). Consequently, the best one can hop@ates we require the so called prediction steps, which
for is to have each sensor attempt to optimally track are given by:

the system trajectory based on its local observations Xyo = AXyy_1, Pryap = Apt|tAT S (2

and time-dependent information available from other

sensors in the network. Consequently, the sensor netOur objective in this paper is to address the tracking
work can be queried at any time and at any node toproblem when sensors are networked through a com-

obtain optimal estimates for the state of the dynamical munication network. Specifically, we consider a com-
system. munication infrastructure represented by a directed graph

G = (V, E), in which each edgév,v’) € E indicates
a directed communication link from sensarsensor
V. Let F = [I{(v,v") € E}]yxy be the connectiv-
ity matrix of G. We will assume that7 is strongly
connected and will maintain a self-logp, v) € E at
each sensor € V, so thatF' is indecomposable and

2. PROBLEM STATEMENT

Let R" denoten-dimensional real vectors, and denote
by M™*™ the set of symmetric positive-definite matri-
ces of dimensiom x n. We consider the discrete-time

system aperiodic.
Xi1=AX; + Wi, X~ N(0,%0), 3. FAST NETWORK/SLOW SENSING
where A is a stablen x n matrix andW = (W, : Here we assume that the network is significantly faster
t =0,1,2,---) is an 1D sequence such th#t, ~ than the dynamics of the system. In this case we can
N(0, Zw ), independently of(. assume that the system time is frozen and the network
We consider tracking the sequer(ég : t = 0,1,2, - - - )has infinite time to share the data. We analyze the fol-
based on measurements taken by a colledtimiisen- ~ lowing message passing scheme in this context. Each
sors. The measurement of sensot V taken at time  Sensor updates its state based on past information and
slott is denoted by; (v) € R™ and it satisfies the new message received from its neighboring sen-
sors. It then sends out the innovation in the state infor-
Y (v) = Cy(v) Xy + Up(v), v eV, mation to its neighbors. In addition the updated error
covariance matrix is also transmitted. The latter is par-
whereCy(v) is anm x n matrix, and(U;(v) : t = ticularly important, whenever the global observation
0,1,2,---)isanlID sequence such thdt(v) ~ N (0, £r7).model is not locally available at each sensor.
In particular if all measurements are immediately avail- ~ The general idea for fusion can be described by

able to a central processor then the MMSE estimatorconsidering the two sensor case. Consider a local sen-

is a Kalman filter. Specifically, the MMSE estimate sor that is required to transmit its information to the fu-
Xy = EIXi|Y;(v) 1 v € Vyr < ] of X; based on sion sensor. The state update for the centralized kalman
tit — T . ) =

L filter is given by Equation 1. For the local sensor, the
Y, (v), v € V,1 < t, satisfies state updateX?, is given by,

S Xl = B(X, | Yilr). 7 < 1) = X}y +P},OF ()55 Zu(0)
X = Xeje—1+ Py Z Cy (V)5 (Yi(v)=C(v) Xyje—1)

vev where Y;(7), P!

t[t? Zl(t) = }/l(t)ict(l)Xﬂt—la Ct(l)
(1) are the local sensor data, local error covariance, local



innovations and the local observation matrix respec-the local error covariance updaﬂ%(k) are:
tively. It follows that,

_ _ AP/ (k+1) = AP, (
CtT(l)EUlyl(t) = (Ptllt) I(Xé‘t ( : ue;(v)
! ~1 l
- (- P|tCt DXy Ct(l))Xﬂt—l) A t‘t( ) = Ct(U)EUICtT(U)
Let Y, h ilabl he fusi : ! -
et Yy(r) b_et e data avai abe_at t__e usion sens.or ( t‘t(kJrl)) _ Pt\t VAP (E+ 1)
The centralized update can be simplified as follows:

_ T pyy—1 B
Xyp = Xy + Py (1) By (Vr (1) = Col) Xyje—1) message update transmitted and the local state up-

+P CF S5 (Vi) — Co(D) Xop—1) date is given by:
1 v U -1
= Xy-1+ Pt|tCtT(f) 71( Yi(t) — Ct(f)Xt\t—l) mis1(v) = W UEXNEU) Pt‘t(k +1) <Pt‘t(k)) my (u)
+Py(Ph) N (X, — X o) mo(v) = (X1},(0) = Xy—1)
—Pt\tCtT(l)EU Ce(D)(Xype—1 — Xé|t_1) = P (0)Ci ()25 (Vi (v) — Cr(v) Xyji—1)

Therefore, the centralized Kalman filter can be written
in terms of the local Kalman filter estimates. This is
the key insight we employ in generalizing the scheme
to general graphs. We state this fact as a lemma next:

Xy (k+1) (I +|VIAP,(k + 1)) X1 + [V|mg41(v)

Theorem 3.1 Consider the decentralized updating
Lemma 3.1 Suppose(X ;. P;) (XtQ‘p Pj,)aretwo scheme presented above. Supposg, Py is the
local sensor state and error covariance streams re- centralized state estimate and the error covariance ma-

spectively and?, is the centralized error covariance, trix respectively conditioned on sensor data upto time
it follows that the fused sensor update is given by: t for all of the sensors. It follows that,

2
Xijp = KoXyjp—1 + Py Z(Pﬂt (Xij\t Xg|t 1)
=1

—Pﬂtzct 2000 Xy = X)) (3)

hm Xt‘t(k) — Xt‘t? hm P|t(k) — Ptltv'l) S V

4. PACKET LOSSES

Our aim in this section is to account for the following
two effects: First, messages may be corrupted and lost
To describe the general case l€étv) denote the  qgye to imperfections in point-to-point communication.

set of sensors such that there exists a directed(one- hoﬁlthough link layer protocols would provide some re-
communication) edge from to eachv’ € N(v) in e against this issue, robustness of network operation
G. Suppose for the moment that the fitsipdates  against message losses needs to be addressed, espe-
of (1) have already been executed and the network hag;a|ly if the physical communication medium is wire-
achieved a consensus for state estindgte; .1, Xy.—1  |ess. Secondly, one can imagine situations where some
and error covariancé’ _y;—1, Py;—1. This implies  sensors operate on a slower time-scale than others, the-
that the last term in Equation 3 is identically zero. Therereby slowing down the network under the lock-step
fore, only the differences between measured and th%essage -passing algorithm outlined above. This lim-
predicted, i.e. (Xt]|t th|t 1) needs to communicated. jtation may be overcome if each sensor contributes to
To this end, letn (v) be thekth state message update the collaborative effort at its own time-scale. In both
and AP, (k) be the error covariance update, sent by cases described above the network operation is asyn-
sensow to each neighboring sensor M(v). The up- chronous in the sense that not all links are necessarily

dates for error covariance transmittedy t‘t( ) and active at each round of the algorithm.



We consider next the message passing algorithmat the originating sensor subject to communication de-
above in the case when communication links are im-lays. Namely,
perfect in that a transmitted message can be lost. The

evolution of messages can then represented as mi(v) = (&(v), P (v))
where
M1 = QrQr—1 - - Qomo, (4)

v) = v) — Xyp— 5
whereQy, = (I + Fj,) Dy, such thatF), = [f;;(k)] is a &) () e 1k - ©)
binary matrix andDj, = [d;; (k)] is a diagonal matrix p(v) = E (X(k) | Y¥(v), Y (*U)) (6)
with " B() = B (X m(@) (X~ p(0))

djj(k) = (HZfij(k)) ) with Y*(v) = (Yz(v) : 7 < t) andY*1(—v) =
! (Yr(u): 7 < t,u#w).
so that in particular columns 6}, are probability vec- In a completely connected network this message is

tors. Given sensors j we shall say that link — j is simultaneously received by all sensors at titme 1.
functionalin round % if sensorj receives a message The same message transmission scheme is adopted by
from sensoti in that round. Entries of}, are then in-  all sensors, though it is clear that messages differ from

terpreted as sensor to sensor since they are adapted to different fil-
trations. At timet + 1 each sensov constructs its
fi;(k) = I{link j — i is functional at round:}. next messagey;.1(v), based on the received mes-

sagesn;(u), u # v, as well as the local measurement
Hence the system (4) describes the evolution of localy; (v) taken after the last transmitted message. We
messages when each transmitted message is normagpecify this construction as follows. Note that
ized by the number of outgoing functional links (i.e., -
the number of receivers of the message) in the samat+1(v) = Xyy 14+ Kir1(v) (Yir1(v) — Cryr (v) Xyype)
round. 3 ) (7)
whereK;1(v) = Pry1(v)Cipa(v)'S;" . The condi-

Theorem 4.1 Suppose that the matricég), : k >  t1onal error covariancét.1(v) is given by

1) is are 1ID, and thatE/[F}] is irreducible. Then for 5—1 ~1 Ty—1
' . i v) =P, + C DY C v), 8
v € V a consensus to the centralized Kalman Filter 141(0) = Py + Conn(0) 5y Cenv), - (8)
state estimate and the corresponding error covariancewhere P, ;; can be constructed from,,_; and re-

is achieved by the distributed tracking algorithm de- cejved information?; (v), u # v, via the recursion (2)

scribed above. and the representation
-1
5. COMMUNICATION DELAYS Py = (Z Bl (u) — (V — 1)Ptl—t11> )
ueV

Our next task is to deal with communication delays.

We first focus on a completely connected network for Note that the last term in (8) is local information at
simplicity of exposition and describe implementation Sensor. Manipulation of equality (1), as outlined in
on a general network later in the section. In this setup Section 3, yields that

we assume that a transmitted estimate arrives at the ~
destination nodes with a delay equal to unit time. Thus, ~ “tt = Xeit—1 + Pijs > P (w);
if a message is transmitted at timeits reception is uev

completed by another sensor at time 1. We shall  thereforeX, ., can be computed based af,_; and
denote the message transmitted by sensat timet my(u),u # v via (2), in turn 41 (v) is calculated
by m,(v), and define it as an encoding of the optimal via (7). We collect these observations in the following
prediction of the state at timebased on data available theorem.

(10)



Theorem 5.1 When initiated with algorithm for a linear topology that is compatible with
this lower bound. We give an extension of the algo-
Xop =0  Foj-1 = o rithm can to a mesh topology.
&) =0 Pytv)=0, veV, We continue to indicate the measurement time-scale
by the lettert and the messaging time-scale by the let-
the algorithm described above maintains equality (6) ter . In this respect, the time slot between consecutive
at each steg of the recursion (7). measurements is assumed to be divided iBtsub-
slots, andn; ;(v) denotes the message transmitted by
sensomw in the kth sub-slot of slot.
Consider first the linear network topology depicted
by Figure 1, and assume th@;_, P,;—;) is known
by the sensors at time We give next an algorithm
that brings all sensors to an information state that al-
lows computation of X, P, ;) afterV messag-
ing rounds. This goal is achieved via two types of mes-
sages, namelynzk(u) andm, ;. (v), with the under-
standing that messages with superscHipfresp. —)
proceed from left to right (resp. right to left). Specifi-
cally, we define the messages’, , , (v) as follows:

Remark 5.1 The pair(X;;—1, P;;—1) is an inter-
nal state for the sensor at tinie m,(v) is determined
by (X¢jt—1, Pre—1), together with the local information
Y;(v) and Cy(v) 'S Cy(v), whereas( X,y 14, Pry1e)
is determined by new information obtained at the end
of timet.

Remark 5.2 The algorithm guarantees that each
sensorv dynamically constructg:,(v), i.e. the opti-
mal estimate ofX; that can be obtained subject to
the delay constraints imposed by the network. In gen-
eral, the error covariance®; (v) associated with these
estimates are different due to non-identical observa- .
tion models. These covariance matrices are also con- m;F—H,k(v) = (gffl—l,k(v)’ Ptﬁl,k(v))
structed locally; in turn the network can be queried to

identify a sensor with a highest quality estimate. where

Remark 5.3 One can imagine other message pass- Ptﬁl,kﬂ(”) - Rt:—Fi-l,k(v )+ P '(v)
ing algorithms that lead to the same conclusions ob- ¢, , . (v) = &f ), (v+1)+ P (v)&(v),
tained above. In particular, with appropriate modifica-
tion of 'Ehe processing of messages,lTheorem 5.1 holdsyith the understanding that bo{ﬁ&-l,k—f—l@) = 0 and
true if P,(v) is replaced p}C‘t(v)TZU .Ct(v) '|n each ptf—l,k-&-l(v) —0forv=—1,V +1.
messagen,(v). Depending on the dimensions of the Let Q.1 +(v) be defined via the equality
state and the observation variables one algorithm may ’
be more favorable than the other, particularly for ap- | - L~ -1
plications in which link capacities are limited. rp(v) = (Pt+1,k:(“ — D)+ P (v 1)>
—(V — 1)Pt‘—t{1.
6. MULTI-HOP TOPOLOGIES

It can be verified by inspection thél; 11 x(v) = Py
In this section we relax the assumption of the com- for i > max{v, V — v}; in turn the following theorem
pletely connected network topology, but assume thathglds.
each link in the network can serd > 1 messages be-

tween two consecutive measurements by sensors. If Theorem 6.1 Fork > V.

is large than flooding the network with messages that

are defined in the previous section might be a viableptﬂ‘t = AQu11()AT + Ty

solution to arrive at a network-wide consensus, how- X — X

ever the present focus is on efficient message passing * ' fe=1

algorithms that would work with the smallest possible +Qty1,1(v) (5;;1#(0 D)+ v+ 1))

value of K. The diameter of the network graph is a
trivial lower bound for suchik’, and we give here an forallv € V.
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Fig. 1. Message passing on a linear topology. Mes-
sages with superscript (resp.—) are sent to node
with larger (resp. smaller) index, and are constructed

as indicated in the text. Fig. 2. a) A mesh topology for the communication

graph. b) Messages sent by each (interior) node.

The methodology can be extended to the mesh topol-
ogy of Figure 2 by defining 8 message types 7. REFERENCES
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