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ABSTRACT

We describe distributed tracking of a linear dynami-
cal system via networked sensors. The networked sen-
sors communicate with each other by means of a multi-
hop protocol over a communication network. MMSE-
optimal solution is Kalman filtering when measure-
ments are available centrally, but new methods are re-
quired to account for communication constraints. We
derive optimal algorithms to deal with arbitrary net-
work topology and then extend these results to account
for communication delays and packet losses. The pro-
posed techniques differ from related techniques pro-
posed in two important aspects: a) there is no desig-
nated leader/fusion node and each sensor attempts to
optimally track the system trajectory based on its local
observations and time-dependent information available
from other sensors in the network; b) the message com-
putation at each sensor is structurally identical, where
the computed message from each sensor is the inno-
vation in the state conditioned on all the information
available upto that time at each sensor. Consequently,
the sensor network can be queried at any time and at
any node to obtain optimal estimates for the state of
the dynamical system.

1. INTRODUCTION

We consider a collection of sensors that collectively
track a linear system that is driven by noise. The mea-
surement model is also linear, hence the optimal MMSE
centralized solution is given by the canonical Kalman
filter. Here we consider decentralized tracking sub-
ject to a multi-hop communication model among the
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sensors. A special case of this scenario was studied
in [2, 4] for a completely connected topology with no
communication delay. They show that the centralized
estimate can be constructed at a designated node if
nodes send their local estimates along with a correction
term that can be computed locally. Recently, we have
been made aware of the work in [6], which describes
approximate distributed Kalman filtering for arbitrary
networks with no communication delays. However,
the underlying philosophy of our scheme deviates sig-
nificantly from the existing schemes:
(a) similar to [6] there is no designated leader/fusion
node and the idea is to reach a consensus at each sen-
sor node;
(b) However, [6] uses message passing to compute the
least squares solution of the current state based only
on current data and does not incorporate correlations
of the current state with the past data. This is subop-
timal from an energy efficient perspective. We build
on [2, 4] and incorporate correlations in our message
passing scheme for arbitrary networks. Our scheme
has the pleasing feature oftransmitting only the local
innovations.
(c) [6] is suboptimal in the information sense, i.e., com-
puted estimate at any stage is not necessarily equal to
the centralized estimate.

Large collections of sensors call for multi-hop com-
munications, whose implications need to be clarified
as to what should be sent on each link towards a des-
ignated sensor. Furthermore, if communication de-
lays are significant then the optimal centralized esti-
mate that respects such delays is different from sensor
to sensor. We derive optimal algorithms to deal with
arbitrary network topologies, wherein at each stage a
sensor computes the optimal estimate conditioned on
locally available information and the new information



in the form of innovations received from adjacent sen-
sors. We show that when no delays are present this
scheme converges to the centralized solution. We next
extend this scheme to account for packet losses. Fi-
nally, we derive distributed algorithms to deal with com-
munication delays for some special network topolo-
gies. With delays consensus is not the correct notion
(since sensors with superior SNRs will always have
better estimates). Consequently, the best one can hope
for is to have each sensor attempt to optimally track
the system trajectory based on its local observations
and time-dependent information available from other
sensors in the network. Consequently, the sensor net-
work can be queried at any time and at any node to
obtain optimal estimates for the state of the dynamical
system.

2. PROBLEM STATEMENT

Let Rn denoten-dimensional real vectors, and denote
by Mn×n the set of symmetric positive-definite matri-
ces of dimensionn×n. We consider the discrete-time
system

Xt+1 = AXt + Wt, X0 ∼ N(0, Σ0),

whereA is a stablen × n matrix andW = (Wt :
t = 0, 1, 2, · · · ) is an IID sequence such thatWt ∼
N(0, ΣW ), independently ofX0.

We consider tracking the sequence(Xt : t = 0, 1, 2, · · · )
based on measurements taken by a collectionV of sen-
sors. The measurement of sensorv ∈ V taken at time
slot t is denoted byYt(v) ∈ Rm and it satisfies

Yt(v) = Ct(v)Xt + Ut(v), v ∈ V,

whereCt(v) is anm × n matrix, and(Ut(v) : t =
0, 1, 2, · · · ) is an IID sequence such thatUt(v) ∼ N(0, ΣU ).
In particular if all measurements are immediately avail-
able to a central processor then the MMSE estimator
is a Kalman filter. Specifically, the MMSE estimate
Xt|t = E[Xt|Yτ (v) : v ∈ V, τ ≤ t] of Xt based on
Yτ (v), v ∈ V, τ ≤ t, satisfies

Xt|t = Xt|t−1+Pt|t
∑

v∈V

CT
t (v)Σ−1

U (Yt(v)−C(v)Xt|t−1)

(1)

wherePt|t = E(Xt −Xt|t)(Xt −Xt|t)T is the condi-
tional error covariance matrix at timet and is given by
the recursion:

P−1
t|t = P−1

t|t−1 +
∑

v∈V

CT
t (v)Σ−1

U Ct(v)

These steps are commonly referred to as the measure-
ment update steps. To complete the Kalman filter up-
dates we require the so called prediction steps, which
are given by:

Xt|t = AXt|t−1, Pt+1|t = APt|tAT + ΣW (2)

Our objective in this paper is to address the tracking
problem when sensors are networked through a com-
munication network. Specifically, we consider a com-
munication infrastructure represented by a directed graph
G = (V, E), in which each edge(v, v′) ∈ E indicates
a directed communication link from sensorsv sensor
v′. Let F = [I{(v, v′) ∈ E}]V×V be the connectiv-
ity matrix of G. We will assume thatG is strongly
connected and will maintain a self-loop(v, v) ∈ E at
each sensorv ∈ V , so thatF is indecomposable and
aperiodic.

3. FAST NETWORK/SLOW SENSING

Here we assume that the network is significantly faster
than the dynamics of the system. In this case we can
assume that the system time is frozen and the network
has infinite time to share the data. We analyze the fol-
lowing message passing scheme in this context. Each
sensor updates its state based on past information and
the new message received from its neighboring sen-
sors. It then sends out the innovation in the state infor-
mation to its neighbors. In addition the updated error
covariance matrix is also transmitted. The latter is par-
ticularly important, whenever the global observation
model is not locally available at each sensor.

The general idea for fusion can be described by
considering the two sensor case. Consider a local sen-
sor that is required to transmit its information to the fu-
sion sensor. The state update for the centralized kalman
filter is given by Equation 1. For the local sensor, the
state update,X l

t|t is given by,

X l
t|t = E(Xt | Yl(τ), τ ≤ t) = X l

t|t−1+P l
t|tC

T
t (l)Σ−1

U Zl(t)

where,Yl(τ), P l
t|t, Zl(t) = Yl(t)−Ct(l)Xt|t−1, Ct(l)

are the local sensor data, local error covariance, local



innovations and the local observation matrix respec-
tively. It follows that,

CT
t (l)Σ−1

U Yl(t) = (P l
t|t)

−1(X l
t|t

− (I − P l
t|tC

T
t (l)Σ−1

U Ct(l))X l
t|t−1)

Let Yf (τ) be the data available at the fusion sensor.
The centralized update can be simplified as follows:

Xt|t = Xt|t−1 + Pt|tCT
t (f)Σ−1

U (Yf (t)− Ct(f)Xt|t−1)

+Pt|tCT
t (l)Σ−1

U (Yl(t)− Ct(l)Xt|t−1)

= Xt|t−1 + Pt|tCT
t (f)Σ−1

U (Yf (t)− Ct(f)Xt|t−1)

+Pt|t(P l
t|t)

−1(X l
t|t −X l

t|t−1)

−Pt|tCT
t (l)Σ−1

U Ct(l)(Xt|t−1 −X l
t|t−1)

Therefore, the centralized Kalman filter can be written
in terms of the local Kalman filter estimates. This is
the key insight we employ in generalizing the scheme
to general graphs. We state this fact as a lemma next:

Lemma 3.1 Suppose,(X1
t|t, P

1
t|t) (X2

t|t, P 2
t|t) are two

local sensor state and error covariance streams re-
spectively andPt|t is the centralized error covariance,
it follows that the fused sensor update is given by:

Xt|t = K0Xt|t−1 + Pt|t
2∑

j=1

(P 1
t|t)

−1(Xj
t|t −Xj

t|t−1)

−Pt|t
2∑

j=1

CT
t (j)Σ−1

U Ct(j)(Xt|t−1 −Xj
t|t−1) (3)

To describe the general case letN(v) denote the
set of sensors such that there exists a directed(one-hop
communication) edge fromv to eachv′ ∈ N(v) in
G. Suppose for the moment that the firstt updates
of (1) have already been executed and the network has
achieved a consensus for state estimateXt−1|t−1, Xt|t−1

and error covariancePt−1|t−1, Pt|t−1. This implies
that the last term in Equation 3 is identically zero. There-
fore, only the differences between measured and the
predicted, i.e.,(Xj

t|t−Xj
t|t−1) needs to communicated.

To this end, letmk(v) be thekth state message update
and∆P v

t|t(k) be the error covariance update, sent by
sensorv to each neighboring sensor inN(v). The up-
dates for error covariance transmitted,∆P v

t|t(k) and

the local error covariance update,P v
t|t(k) are:

∆Pv(k + 1) =
1

|N(v′)|
∑

u∈N(v)

∆Pu(k)

∆P v
t|t(0) = Ct(v)Σ−1

U CT
t (v)

(
P v

t|t(k + 1)
)−1

= P−1
t|t−1 + |V |∆Pv(k + 1)

The message update transmitted and the local state up-
date is given by:

mk+1(v) =
1

|N(v′)|
∑

u∈N(v)

P v
t|t(k + 1)

(
Pu

t|t(k)
)−1

mk(u)

m0(v) = (Xv
t|t(0)−Xt|t−1)

= P v
t|t(0)Ct(v)Σ−1

U (Yt(v)− Ct(v)Xt|t−1)

Xv
t|t(k + 1) = (I + |V |∆Pv(k + 1))Xt|t−1 + |V |mk+1(v)

Theorem 3.1 Consider the decentralized updating
scheme presented above. Suppose,Xt|t, Pt|t is the
centralized state estimate and the error covariance ma-
trix respectively conditioned on sensor data upto time
t for all of the sensors. It follows that,

lim
k→∞

Xv
t|t(k) = Xt|t, lim

k→∞
P v

t|t(k) = Pt|t ∀ v ∈ V

4. PACKET LOSSES

Our aim in this section is to account for the following
two effects: First, messages may be corrupted and lost
due to imperfections in point-to-point communication.
Although link layer protocols would provide some re-
lief against this issue, robustness of network operation
against message losses needs to be addressed, espe-
cially if the physical communication medium is wire-
less. Secondly, one can imagine situations where some
sensors operate on a slower time-scale than others, the-
reby slowing down the network under the lock-step
message-passing algorithm outlined above. This lim-
itation may be overcome if each sensor contributes to
the collaborative effort at its own time-scale. In both
cases described above the network operation is asyn-
chronous in the sense that not all links are necessarily
active at each round of the algorithm.



We consider next the message passing algorithm
above in the case when communication links are im-
perfect in that a transmitted message can be lost. The
evolution of messages can then represented as

mk+1 = QkQk−1 · · ·Q0m0, (4)

whereQk = (I + Fk)Dk such thatFk = [fij(k)] is a
binary matrix andDk = [dij(k)] is a diagonal matrix
with

djj(k) =

(
1 +

∑

i

fij(k)

)−1

,

so that in particular columns ofQk are probability vec-
tors. Given sensorsi, j we shall say that linki → j is
functional in roundk if sensorj receives a message
from sensori in that round. Entries ofFk are then in-
terpreted as

fij(k) = I{ link j → i is functional at roundk}.

Hence the system (4) describes the evolution of local
messages when each transmitted message is normal-
ized by the number of outgoing functional links (i.e.,
the number of receivers of the message) in the same
round.

Theorem 4.1 Suppose that the matrices(Fk : k ≥
1) is are IID, and thatE[F1] is irreducible. Then for
v ∈ V a consensus to the centralized Kalman Filter
state estimate and the corresponding error covariance
is achieved by the distributed tracking algorithm de-
scribed above.

5. COMMUNICATION DELAYS

Our next task is to deal with communication delays.
We first focus on a completely connected network for
simplicity of exposition and describe implementation
on a general network later in the section. In this setup
we assume that a transmitted estimate arrives at the
destination nodes with a delay equal to unit time. Thus,
if a message is transmitted at timet, its reception is
completed by another sensor at timet + 1. We shall
denote the message transmitted by sensorv at timet
by mt(v), and define it as an encoding of the optimal
prediction of the state at timet based on data available

at the originating sensor subject to communication de-
lays. Namely,

mt(v) = (ξt(v), P̃t(v))

where

ξt(v) = µt(v)−Xt|t−1 (5)

µt(v) = E
(
X(k) | Y k(v), Y k−1(−v)

)
(6)

P̃t(v) = E
(
(Xt − µt(v))(Xt − µt(v))T

)

with Y k(v) = (Yτ (v) : τ ≤ t) and Y k−1(−v) =
(Yτ (u) : τ < t, u 6= v).

In a completely connected network this message is
simultaneously received by all sensors at timet + 1.
The same message transmission scheme is adopted by
all sensors, though it is clear that messages differ from
sensor to sensor since they are adapted to different fil-
trations. At timet + 1 each sensorv constructs its
next message,mt+1(v), based on the received mes-
sagesmt(u), u 6= v, as well as the local measurement
Yt+1(v) taken after the last transmitted message. We
specify this construction as follows. Note that

µt+1(v) = Xt+1|t+K̃t+1(v)
(
Yt+1(v)− Ct+1(v)Xt+1|t

)
(7)

whereK̃t+1(v) = P̃t+1(v)Ct+1(v)T Σ−1
U . The condi-

tional error covariancẽPt+1(v) is given by

P̃−1
t+1(v) = P−1

t+1|t + Ct+1(v)T Σ−1
U Ct+1(v), (8)

wherePt+1|t can be constructed fromPt|t−1 and re-

ceived informationP̃t(u), u 6= v, via the recursion (2)
and the representation

Pt|t =

(∑

u∈V

P̃−1
t (u)− (V − 1)P−1

t|t−1

)−1

. (9)

Note that the last term in (8) is local information at
sensorv. Manipulation of equality (1), as outlined in
Section 3, yields that

Xt|t = Xt|t−1 + Pt|t
∑

u∈V

P̃−1
t (u)ξt(u); (10)

thereforeXt+1|t can be computed based onXt|t−1 and
mt(u), u 6= v via (2), in turnµt+1(v) is calculated
via (7). We collect these observations in the following
theorem.



Theorem 5.1 When initiated with

X0|0 = 0 P0|−1 = Σ0

ξ0(v) = 0 P̃−1
0 (v) = 0, v ∈ V,

the algorithm described above maintains equality (6)
at each stepk of the recursion (7).

Remark 5.1 The pair(Xt|t−1, Pt|t−1) is an inter-
nal state for the sensor at timet: mt(v) is determined
by(Xt|t−1, Pt|t−1), together with the local information
Yt(v) andCt(v)T Σ−1

U Ct(v), whereas(Xt+1|t, Pt+1|t)
is determined by new information obtained at the end
of timet.

Remark 5.2 The algorithm guarantees that each
sensorv dynamically constructsµt(v), i.e. the opti-
mal estimate ofXt that can be obtained subject to
the delay constraints imposed by the network. In gen-
eral, the error covariances̃Pt(v) associated with these
estimates are different due to non-identical observa-
tion models. These covariance matrices are also con-
structed locally; in turn the network can be queried to
identify a sensor with a highest quality estimate.

Remark 5.3 One can imagine other message pass-
ing algorithms that lead to the same conclusions ob-
tained above. In particular, with appropriate modifica-
tion of the processing of messages, Theorem 5.1 holds
true if P̃t(v) is replaced byCt(v)T Σ−1

U Ct(v) in each
messagemt(v). Depending on the dimensions of the
state and the observation variables one algorithm may
be more favorable than the other, particularly for ap-
plications in which link capacities are limited.

6. MULTI-HOP TOPOLOGIES

In this section we relax the assumption of the com-
pletely connected network topology, but assume that
each link in the network can sendK ≥ 1 messages be-
tween two consecutive measurements by sensors. IfK
is large than flooding the network with messages that
are defined in the previous section might be a viable
solution to arrive at a network-wide consensus, how-
ever the present focus is on efficient message passing
algorithms that would work with the smallest possible
value ofK. The diameter of the network graph is a
trivial lower bound for suchK, and we give here an

algorithm for a linear topology that is compatible with
this lower bound. We give an extension of the algo-
rithm can to a mesh topology.

We continue to indicate the measurement time-scale
by the lettert and the messaging time-scale by the let-
terk. In this respect, the time slot between consecutive
measurements is assumed to be divided intoD sub-
slots, andmt,k(v) denotes the message transmitted by
sensorv in thekth sub-slot of slott.

Consider first the linear network topology depicted
by Figure 1, and assume that(Xt|t−1, Pt|t−1) is known
by the sensors at timet. We give next an algorithm
that brings all sensors to an information state that al-
lows computation of(Xt+1|t, Pt+1|t) afterV messag-
ing rounds. This goal is achieved via two types of mes-
sages, namelym+

t,k(v) and m−
t,k(v), with the under-

standing that messages with superscript+ (resp. −)
proceed from left to right (resp. right to left). Specifi-
cally, we define the messagesm∓

t+1,k(v) as follows:

m∓
t+1,k(v) = (ξ∓t+1,k(v), P̃∓

t+1,k(v))

where

P̃∓
t+1,k+1(v) = P̃∓

t+1,k(v ± 1) + P̃−1
t (v)

ξ∓t+1,k+1(v) = ξ∓t+1,k(v ± 1) + P̃−1
t (v)ξt(v),

with the understanding that bothξ∓t+1,k+1(v) = 0 and

P̃∓
t+1,k+1(v) = 0 for v = −1, V + 1.

Let Qt+1,k(v) be defined via the equality

Q−1
t+1,k(v) =

(
P̃+

t+1,k(v − 1) + P̃−
t+1,k(v + 1)

)−1

−(V − 1)P−1
t|t−1.

It can be verified by inspection thatQt+1,k(v) = Pt|t
for k ≥ max{v, V − v}; in turn the following theorem
holds.

Theorem 6.1 For k ≥ V

Pt+1|t = AQt+1,k(v)AT + ΣW

Xt|t = Xt|t−1

+Qt+1,k(v)
(
ξ+
t+1,k(v − 1) + ξ−t+1,k(v + 1)

)

for all v ∈ V .



…

1 V

m+

m−

Fig. 1. Message passing on a linear topology. Mes-
sages with superscript+ (resp.−) are sent to node
with larger (resp. smaller) index, and are constructed
as indicated in the text.

The methodology can be extended to the mesh topol-
ogy of Figure 2 by defining 8 message types

mD
t+1,k(v) = (ξD

t+1,k(v), P̃D
t+1,k(v)),

D ∈ {E, W,S,N,NE, NW,SE, SW}, in the fol-
lowing fashion: ForD ∈ {NE, NW,SE, SW} let
nD(v) denote the neighbor of sensorv in the exact
opposite direction indicated byD (e.g.nNE(v) is the
south-west neighbor, etc.), and let

mD
t+1,k+1(v) = mD

t+1,k(nD(v))

+
(
P̃−1

t (v)ξt(v), P̃−1
t (v)

)

for suchD. ForD ∈ {E, W,S,N} let nD(v) denote
the neighbors ofv that are in the three directions that
are oppositeD (e.g.nE(v) consists of the west, the
north-west, and the south-west neighbors ofv), and let

mD
t+1,k+1(v) =

∑

u∈nD(v)

mD
t+1,k(u)

+
(
P̃−1

t (v)ξt(v), P̃−1
t (v)

)
.

All summations above are understood to be componen-
twise.

Theorem 6.2 Leto(u, v) denote the orientation of
sensorv with respect to its neighboru. If k is larger
than the diameter of the network then

P−1
t|t =


 ∑

u∈N(v)

P̃
o(u,v)
t+1,k (u)



−1

− (V − 1)P−1
t|t−1

Xt|t = Xt|t−1 + Pt|t
∑

u∈N(v)

ξ
o(u,v)
t+1,k (u)

for all v ∈ V .

(a) (b)

SEm

EmWm

Nm

Sm

NWm NEm

SWm

(1,1) (1,5)

(4,5)(4,1)

Fig. 2. a) A mesh topology for the communication
graph. b) Messages sent by each (interior) node.
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