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Distributed sensing systems, which are networks of tiny sensing devices, hold the promise of providing

an inexpensive, non-intrusive means to understand phenomena that exhibit spatial and temporal variations

at multiple scales. Such systems are envisioned under two general architectures: Distributed systems that

perform distributed sensing and in-network data processing to complete some desired tasks such as hypoth-

esis testing or target tracking, and decentralized systems that perform distributed sensing but centralized

data processing at a fusion center to achieve the desired task. The latter approach is taken in [4], and the

former approach is taken in [5]. In this work we also focus on the architecture that performs in-network

data processing.

While significant effort over the last decade has produced the necessary infrastructure for deployment,

efficient monitoring requires development of new distributed signal processing and decision making ap-

proaches in wirelessly networked, power limited regimes. We consider the example of a sensor network for

environmental monitoring as a motivating example to illustrate the set of problems and the issues involved.

Here change is rarely predictable. Periods of relative stasis are punctuated by extreme events occurring

on short time scales [23]. It is during these extreme events that some of the most interesting phenomena

occur; yet almost all field monitoring programs rely on rigid time sampling protocols and sparse spatial

sampling for recording environmental and ecological data [23]. Moreover, non-linear relationships between

environmental and ecological processes are ubiquitous (e.g, photosynthesis is non-linear with light), and

inappropriate averaging of environmental time-series data can lead to large errors in prediction of these pro-

cesses. A network sensing system, in situ over extended areas and long times, that can monitor, evaluate,

and adapt to its environment would greatly improve our ability to resolve extreme events in high temporal

and spatial resolution while preventing an overwhelming and unneeded collection of data occurring during

periods and at locations of relative stasis.
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Consequently, environmental monitoring poses two fundamental challenges:

(A) Lifetime: For statistical accuracy, sensing systems need to be functional over long periods of time.

(B) Burstiness:Environmental phenomena are characterized by sudden events with periods of relative stasis

punctuated by extreme events occurring over a short time.

Lifetime not only necessitates energy conservation but also requires combating sensor loss as well as

degradation in sensing and communication processes over time. Burstiness entails adaptivity to sudden

changes requiring the system to fuse spatial information over a wide region in a short time, which re-

sults in large energy expenditure. Together, these two requirements call for a natural structural hierar-

chy for distributed sensing. To conserve energy a sparse sensor network will perform the task of search-

ing/sensor selection for localized isolated events (insignificant spatial correlation across sensors). Upon

detection it will opportunistically trigger a sensor sub-network, which will then perform the task of discov-

ering/estimation/tracking of interesting environmental processes by fusing spatially correlated information.

The salient aspects of the article are:

(A) Demonstration of a distributed, bottom-up energy efficient systems approach for search/sensor selec-

tion and discovery/fusion. The two problems described above require diametrically opposite strategies.

Indeed, fusion requires spatial integration of sensed information. In contrast, search entails strategies that

can quickly rule out sensors that do not have the desired information.

(B) Asynchronous computational strategies to overcome effects of uncertain communication links, packet

losses and channel errors.

(C) Development of distributed strategies that only utilize local information and models. This ensures ro-

bustness to possible model differences across sensors.

Based on the discussion above we focus on two specific classes of problems;searchanddiscovery:

1. Search Problem: The objective is to select sensors containing relevant information, in scenarios

where correlation between across sensors can be small (see Figure 1(a)). This problem arises in a

number of other contexts such as labeling useful information in a data stream contaminated by clutter,

matching a reference image to a target, sensor selection problems and target tracking in cluttered

environments.

2. Discovery Problem: Here the main task is to fuse correlated information from multiple multi-modal

networked sensors (see Figure 1(b)) over a multi-hop network to discover the underlying phenomena.

This problem arises in a number of scenarios such as target tracking, change detection, and target
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identification.

(a) Search Problem (b) Fusion Problem

Figure 1: Schematic illustration of Search and Fusion Problems. In search each target is sensed by a small

subset of sensors, i.e., the spatial correlations across the sensor network is small. In fusion problems the

sensors can be viewing a single underlying phenomena and the spatial correlations across the sensor network

is relatively large.

The mathematical and practical developments discussed here have appeared in a number of our prior

publications. As a matter of reference we have dealt with distributed hypothesis testing using variants of

belief propagation in [19, 2, 20], asynchronous distributed detection, estimation, and energy scaling issues

in [14], distributed tracking and Kalman filtering over multi-hop networks in [1], and search and sampling

in [22, 9, 10]. In parallel we have recently initiated practical implementation of these techniques at an

environmental test site. A laboratory scale test-bed demonstrating these techniques was selected as a finalist

in theCrossbow Challenge Competition[15].

Collaboration: While it is clear that fusion problem requires collaboration to integrate correlated informa-

tion, it is not obvious why collaboration may be required for search problems. The following example points

to some of the advantages of collaboration:

Suppose we have two sensors,S1 and S2, with observationsX1 and X2. The objective is to map

each observation to one of two hypotheses,H0 or H1. The Maximum-Likelihood (ML) rule divides the

observation space evenly for all possible sets of hypotheses, and for a given value ofX1, the mapping of

that observation is done irrespective of the value ofX2. This is depicted in Figure 2 (a). Now consider a

more complicated decision rule to reduce the probability of false alarm (which corresponds to declaringH0

whenH1 is true), as in Figure 2 (b). As it can be seen, mapping ofX1 depends on the value ofX2, and to be

able to perform this joint mapping,S1 andS2 need to exchange some information about their observations.

This example clarifies why collaboration can be necessary or beneficial even in problems where the

observations are independent and the decisions can be made completely in a decoupled fashion.
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(a) Decoupled decision regions (b) Coupled decision regions

Figure 2: ML Rule vs. More elaborate rules: To be able to realize elaborate decision regions, a collaboration

among sensors is necessary even if their observations are independent.X1 andX2 represent the observation

spaces of sensorsS1 andS2 respectively.

1 Adaptive Decision Strategies for the Search Problem

We develop methodologies that are inspired by recent developments in testing large number of hypothesis

in the statistics literature.

We denote byH1(v) (resp. H0(v)) the hypothesis that the observation of sensorv is generated in the

presence (resp. absence) of a local target. LetV be the set of all sensors and letX(v) denote the true

hypothesis for sensorv ∈ V . In the extreme situation, this model entails that variablesX(v) : v ∈ V bear

no statistical relation. But even in this case, as we have presented above, collaboration can be beneficial or

even necessary.

We consider a problem where some local phenomena are independently distributed on a sensor field.

The number of phenomena scattered on the sensor field is unknown, between zero andN . Also, we as-

sume no prior knowledge of the probability of a phenomenon being at any given location on the sensor

field. Therefore we assume a non-Bayesian structure on the problem. The overall objective is to devise

a distributed decision rule such that it has large detection power, leads to small false alarms, and incurs a

minimal communication cost to the system. We have the notional convention that a decision rule has larger

detection power over another rule if it leads to smaller expected number of misses.

Given the above description of the problem, the general mathematical formulation is as follows:

min Expected(#misses) subject to: False Alarms & Bit Budget Constraints (1)

In this formulation, the bit budget constraint can be chosen in a very straight forward manner. An upper
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limit on the total number of transmissions can be set to the sensor network, and that limit can be enforced

throughout the sensor network by keeping track of the number of transmitted bits.

Although there may be other possible strategies in terms of choosing a constraint to control the false

alarms, in this work we explore two quantities: Probability of false alarm, and False Discovery Rate (FDR).

The probability of false alarm is a very common quantity in detection problems. It can be used when

the cost of making a false alarm is very high. However, it turns out that in many detection problems, as the

number of observations get large, using the probability of false alarm as a constraint can be very stringent

in terms of detection power. In the problems where detection performance is a concern, FDR can be used

to control the false alarms, where FDR is defined as the expected ratio of the number of false alarms to the

number of observations that are declared to be significant. Although it is not so commonly used in detection

problems, it is still a sensible quantity to consider. It is especially useful in problems where we are not

concerned so much with making any false alarms, but rather a percentage of false alarms among the ones

declared significant is allowed. We further discuss these two strategies below.

Among the scenarios that can be formulated within this framework is the boundary estimation problem.

Here the problem is to determine the boundary separating two homogenous mediums, which is a generaliza-

tion of localization of multiple targets. Similarly, the problem of determining the spatial region,Rα, where

the random field,φs takes values larger thanα, i.e.,Rα = {s | φs ≥ α} is another scenario that can be

addressed within this framework as well.

In solving the search problem we first focus on a setting where we are interested in optimizing probability

of global detection subject to global false positive constraint. The optimal decision rule in this case is a

standard likelihood ratio test, however when decisions are uncoordinated the tradeoff between detection

power and false alarm rate scales unfavorably with increasing sensor population. More precisely, for a fixed

local probability of false alarm at each sensor, as the number of sensors increase, the global probability of

false alarm increases as well. Consequently, to control the global probability of false alarm at some level,

the local probability of false alarms must be bounded at much smaller levels. An example will help clarify

the point:

Example: Let us assume that there are 10000 sensors scattered on a field. We wish to have probability

of false alarm less than or equal to 0.2. If we set the local probability of false alarm at level 0.2 at each

sensor, by the law of large numbers, there would be about 2000 false alarms declared on the sensor network;

furthermore, the probability of making any false alarm is near 1.

As the example illustrates, if the multiplicity of false alarms is not taken into account the global proba-
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bility of false alarm cannot be controlled. A very common approach to resolving this multiplicity issue in

the probability of false alarm is known as the Bonferroni procedure. From the union bound, to control the

global probability of false alarm at levelγ, it suffices to control the local probability of false alarm at level

γ/N , whereN is the number of sensors.

Prob{Local False Alarm} ≤ γ/N =⇒ Prob{Global False Alarm} ≤ γ

To understand how this local control of probability of false alarm affects the decision regions, we recon-

sider the two sensor example. Figure 3 depicts the ML decision regions and the modified decision regions

corresponding to the Bonferroni procedure. We can see that although the region over which(H0,H0) is

mapped has been enlarged, the decision regions remain decoupled. Hence the easy decentralization of this

strategy follows.

Figure 3: Modified ML regions: Global probability of false alarm decreases as the{H0,H0} decision region

is expanded in the direction of diagonal arrow. These decision regions are still decoupled, thus they can be

viewed as a variation of the original ML decision regions, partitioned by the solid lines.

It is important to notice that as the number of observations get large, the threshold for local probability

of false alarm tends to zero, which in turn leads to arbitrarily low detection power.

Nevertheless, it can be shown that this is not just an issue of uncoordinated decisions but rather is an issue

due to the stringent constraint of global probability of false alarm. In other words, the unfavorable tradeoff

remains even if coordinated thresholds are used due to the fact that controlling the global false positive

probability is not possible without forgoing detection power. For this reason a relaxed objective needs to

be formalized. Inspired by recent developments in statistical theory (see [10] for details) we formalize the

problem in terms of the False Discovery Rate (FDR).

To better explain this idea consider table below, whereN is the number of samples (or sensor nodes)

known in advance. The locations and the hypotheses are drawn with some probability distribution, which
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may not be known.R is an observable random variable;U, V, S, T are unobservable random variables.

DeclaredH0 DeclaredH1 Total

TrueH0 U V N0

TrueH1 T S N −N0

Total N −R R N

The false discovery rate concept, instead of trying to control the probability of making any type one

error, controls the expected ratio of the number of observations falsely declared as significant, (V ), to the

total number of observations declared as significant, (R), i.e.,

FDR = E{V/V + S} = E{V/R}.

This relaxation improves the detection power while maintaining FDR to within some levelγ. It is easy to

establish that the false alarm rate [6] is bounded from below by FDR, i.e.,Prob{V ≥ 1} ≥ E{V/R}.

Although it is a weaker notion in terms of false alarm probability, the significant increase in the power of

detection makes it a desirable approach in many problems. Mathematically, the problem is as follows:

minE(T ) subject to: FDR = E{V/R} ≤ γ, B ≤ α

where,B is the number of transmitted bits and the minimization is over all decision strategies.

Constraining FDR is very different from constraining false alarm probability. First, the two constraints

are philosophically different in terms of their goals. False alarm probability controls the possibility of

making any type one error, while FDR constraint controls the expected ratio of false alarms to the total

number of observations that are declared to be significant. Therefore, the cost structure of these constraints

are also very different, and this fact reflects in the decision regions. To better understand this point, we

consider the two sensor example discussed earlier.

Example Suppose,A denotes the class of one false alarm errors. This amounts to deciding{H0,H1} or

{H1,H0} if {H0,H0} is true and in this case the ratioV/R is 1. LetB now denote two false alarms, i.e.,

we decide{H1,H1} for {H0,H0}. In this scenario two observations are declared significant, while both

are false alarms, but stillV/R is 1. From an FDR perspective, the costs of classA andB errors are equal.

However, if we consider detection power, classB error is more desirable, because{H1,H1} decision will

never miss, whatever the ground truth might be. Therefore, it makes sense to favor the{H1,H1} region over

{H1,H0} and{H0,H1} regions. Figure 4 depicts the two classes of errors and a possible decision region
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that is biased for{H1,H1} region. In general, the intuition leads us to the following fact: for the same ratio

of V/R, decision regions that lead to larger values ofR are desirable.

(a) Class A and Class B errors (b) Modified Decision Regions

Figure 4: The nature of FDR constraint: Interestingly, two false alarms are more desirable than one false

alarm, which leads to a biased decision regions as partitioned by dashed lines in (b).

In general, our objective reduces to optimizing the expected number of detections subject to FDR and

communication-bit constraint. It turns out that the solution requires adaptively increasing the threshold and

can be implemented by means of feedback. The main idea can be described as follows: All the sensors first

fix a detection threshold, which corresponds to small false alarms. Based on the number of declarations

corresponding to this threshold, a new threshold is locally computed by all the sensors. New declarations

corresponding to this threshold are then made, which is then fed back to the sensor network and the thresh-

olds are then updated again. Such an adaptive system constitutes a feedback structure, which is illustrated

in Figure 5.

Figure 5: An adaptive decision making strategy for sensor networks. The previous decisions are fed back to

the sensors, which then adjust their corresponding decision thresholds.

Only one-bit messages from sensors, which declare positive hypothesis, are required to be communi-

cated. Counting the number of sensors that have significant observations throughout the sensor network to

update the threshold is accomplished through the asynchronous message passing approach based on local
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ad-hoc information coalescence, which is described in detail in [21]. The general algorithm is briefly de-

scribed in Section 2.3.1 and it applies here by setting the initial values ofestimates to 1 for sensors with

a significant observation and to 0 for other sensors. This approach also requires each sensor to be aware

of only the sensors that it can communicate directly, but it has significant reduction of energy consumption

over other local ad-hoc messaging algorithms such as gossip and belief propagation.

The main insight behind the distributed FDR scheme is that the number of declarations at each stage

provides a confidence level (in terms of false positives) for future declarations. To present the FDR procedure

we need a transformation of the measured random variable. This transformation converts the distribution

underH0 to a uniform distribution and is commonly referred to as the p-value:

pi(X) =
∫ ∞

X
f0i(t)dt = 1− F0i(X) (2)

wheref0i is the probability density function (pdf) of the observations underH0 at sensori. The distributed

FDR procedure in [10] is presented below:

1. Each sensor calculates thep value of its observation,pi, and testspi with 1
mγ

2. The sensors withpi ≤ 1
mγ declare their observations as significant, and communicate these decisions

to other sensors by a suitable protocol, (assumel of them declare their observations significant)

3. Decisions of thel sensors are fed back to the network and sensors update their threshold tol+1
m γ

4. Remaining sensors test theirp values by the new threshold and declare their observations significant

accordingly, (assumek more sensors declare their observations significant)

5. The new significant decisions are fed back to the system again, and threshold is updated tol+k+1
m γ

6. Steps 4 and 5 are repeated until when there is no more sensors that declare their observations as

significant under the most current threshold, which is when the process terminates.

The idea is that through the feedback system depicted in Figure 5 we retain the dynamic, linearly increas-

ing structure of the centralized thresholding strategy. Furthermore, only the sensors that have significant

observations declare themselves to the network with a one bit message. The procedure we present in [9, 10]

requires a further local transformation of each p-value, which we refer to asDomain Transformed FDR

(DTFDR) to achieve optimal detection power and energy scaling. The significance of this transformation is

that it clusters all the significant observations to the same part of observation space, and it is applicable at

each sensor node with knowledge of the local observation model. It is due to this clustering that DTFDR

procedure can achieve minimal expected number of misses.
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As it can easily be seen from Figure 6, the detection performance is much larger with an adaptive

approach using FDR as the control constraint as opposed to the non-adaptive approach with probability of

false alarm as the control constraint. As a trade off, the number of false alarms has increased by choosing

FDR over probability of false alarm in the problem formulation.

(a) Objects of interest in sensor field(b) Detection via Bonferroni procedure (c) Detection via FDR procedure

Figure 6: Detection using non-adaptive Bonferroni procedure and adaptive FDR procedure: For simplicity,

the sensor field is a 100x100 grid with a sensor at each pixel. In (a) the black pixels are the objects of interest

whereas in (b) and (c) the black pixels are the sensors that detect an object of interest.

Figure 7 illustrates the tradeoff between communication bits and number of detections generated using

100 observations, 30 of which were significant. The experiments were repeated for 1000 times to get the

average behavior of the systems. Now consider the following problem for illustration: The FDR constraint

is set toγ = .15, and the bit budget toα = 5. In this setting, the system using DTFDR procedure can

detect 5 targets on average, while the system using FDR procedure cannot detect any. The advantage of

using DTFDR procedure is the linear relationship induced between the number of bits used and the number

of detections, which is absent if FDR procedure is used.

Figure 7: Communication Costs for DTFDR Procedure (dashed) and FDR procedure (dotted): DTFDR

procedure leads to a linear relationship between bit budget and the number of correct detections, where this

relationship lacks for FDR procedure.
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In a separate simulation study, we generated a sensor field of size 100x100, where each pixel corresponds

to a sensor. Then, fixing the FDR threshold, we varied the communication bit budget available to the

network, α to investigate the detection performance of FDR procedure and the DTFDR procedure in a

communication constrained distributed detection setting. The results are presented for illustrative cases in

Figure 8 and 9.

(a) Objects of interest (b) Detection via FDR (c) Detection via DTFDR

Figure 8: Detection performance of a sensor network using FDR and DTFDR procedures with a 600-

bit communication budget: The sensor field is a 100x100 grid with a sensor at each pixel. Here, due

to stringent communication bit budget, by using FDR procedure the sensor network detects no objects of

interest whereas by using DTFDR procedure many sensors can detect an object of interest within their

vicinity. In (a) the black pixels are the objects of interest and in (c) the black pixels are the sensors that

detect an object of interest.

For α ≤ 800, implementation of the FDR procedure was unable to detect the observations from pos-

itive hypothesis, whereas the DTFDR procedure was able to do so. As the communication constraint was

loosened, the performance of DTFDR procedure increased accordingly, almost in a linear fashion.

The predicted behavior of FDR procedure analogous to the one presented in Figure 7 in terms of having

a necessary minimum amount of bit budget to detect any significant observations manifests itself in these

figures as well. Until the bit budget is increased to 800, there was no detection.

It is also noteworthy that even when FDR procedure starts to declare observations as significant with

sufficient amount of bit budget as in Figure 9, the number of false alarms are substantially more than that

of DTFDR procedure. This is a very clear demonstration of DTFDR procedure’s capability of minimiz-

ing E(#misses), since for the same number of significant declarations the number of false alarms are

minimized.
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(a) Objects of interest (b) Detection via FDR (c) Detection via DTFDR

Figure 9: Detection performance of a sensor network using FDR and DTFDR procedures with a 1200-bit

communication budget: The sensor field is a 100x100 grid with a sensor at each pixel. In (a) the black

pixels are the objects of interest, in (b) and (c) the black pixels are the sensors that detect an object of

interest. Using FDR procedure the sensor network detects the objects of interest, however there are many

false alarms as well. DTFDR procedure minimizes the number of false alarms, and minimizes the number

of bits wasted on communicating false alarms.

2 Discovery Problem: Distributed Detection, Estimation & Tracking

An appealing modeling framework for capturing important correlations among features generated by dis-

tributed sensors with different modalities is the use of graphical statistical models.

A graphical model is a collection of random variables whose joint distribution is specified by a set of

potentials. Potentials are real-valued functions of realizations of these random variables and they determine

the nature and the strength of correlations. Markov random fields (MRFs) are special random fields that

possess a graphical structure. Namely, potentials of a MRF satisfy certain properties that lead to conditional

independence relations with respect to cut-sets of the associated graph, as illustrated in Figure 10. Here we

adopt such models with the interpretation that each node of the graph denotes a random quantity that pertains

to a sensor measurement, and the graph structure connecting the nodes reflects first-order dependencies

between the measurements of various sensors. In general graphical model structures are well-suited to

account for the underlying state of the sensed medium. In particular, the dominance of local connectivity in

such a network maps naturally to a sparsely connected graph structure. The idea of statistical inference on

graphical models has been applied to situations that exhibit spatial variation using centralized processing,

most notably in coding theory [13] and image processing [24] and more recently for fusion of audio-visual

data for tracking moving objects [3]. A detailed discussion of graphical models and some applications to
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distributed fusion in sensor networks is presented in [5].

Figure 10 illustrates a graphical model associated with the audio-visual fusion. Such a system may use

video data, captured by a camera, to track the spatial location of the target based on its continually shifting

image. If the target emits sound, such a system may use audio data, captured by a microphone pair (or array),

to track the object location using the time delay of arrival of the audio signals at the different microphones.

In principle, however, a tracker that exploits both modalities may achieve better performance than one that

exploits either one or the other. The reason is that each modality may compensate for weaknesses of the

other one. Thus, whereas a tracker using only video data may mistake the background for the target or lose

the target altogether due to occlusion, a tracker also using audio data could continue focusing on the target

by following its sound pattern.

(a) (b)

Figure 10: Illustration of independence in Graphical Models; (a): Feature 1 is independent of features 4,5,6

given the values of features 2 and 3. (b) illustrates a typical graphical model used in audio-visual fusion.

2.1 Fusion Algorithms

We present a distributed and dynamic approach that relies on local message passing and local filtering by

individual sensors for fusion of multi-modal sensor information. Our technique uses belief-propagation to

address problems of target localization, target identification, and target tracking.

The general question of dealing with distributed data in the context of detection has been an active topic

of research (see [17, 18, 8] and references therein). Previously proposed techniques can be broadly catego-

rized into two groups: The fusion-centric approach assumes that each sensor has a communication link to a

data fusion center. Quantization of sensor data in this model was addressed by [17] and effects of power con-

straints on noisy communication channels were considered in [8]. The ad-hoc approach, on the other hand,
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involves no designated fusion center but focuses on establishing consensus within the network via message

exchanges. This approach is arguably more suitable to address energy issues in large-scale networks and also

appears to have robustness advantages. Early work [7] establishes that consensus is achieved if messages are

conditional expectations adopted to local measurements and messages, however the agreement itself is in

general sensitive to the relative timing of messages, and computing the conditional expectations is not prac-

tically appealing. Message specifications and rigid messaging schedules that lead to consensus on optimal

decisions were given in [16] for the special case of a completely connected communication topology.

We present an ad-hoc model and develop a data-oriented communication strategy in order to overcome

the alluded issues. One of the main advantage of our scheme is that there is no single point of failure and that

there are sufficiently large number of independent information channels that will not be degraded simultane-

ously. A natural idea for collaboration is to exchange a vector of individual sensor beliefs (that is, a sensor’s

estimate of the correct posterior probabilities) for different hypothesis between linked sensors at any instant

of time. This idea is formalized by the belief propagation algorithm [12] in the context of artificial intelli-

gence. Kalman smoothing is a special case of this idea applied to linear graphs with Gaussian potentials. The

main problem is that belief propagation is known to work only for non-loopy network topologies, a situation

that is quite restrictive and difficult to impose in a network sensing system. Nevertheless, our preliminary

investigation points to the fact that for scenarios involving target tracking and detection, this issue does not

arise. We explain this idea by means of an example involving distributed detection involving a collection of

distributed noisy sensors observing a single phenomena, a situation that can be conveniently represented by

Markov random fields. Details can be found in some of our recent papers [2, 20, 19, 1, 14]. We focus on

a Bayesian hypothesis testing problem, which involves a set{H1,H2, · · · ,HM} of hypotheses, along with

a known prior distributionπo (the formulation extends easily to distributed estimation). We are interested

in estimating the true hypothesis based on a collection of observations(Y1, Y2, · · · , YV ) where each entry

represents a measurement taken by a distinct sensor. Consider the case when the measurements are sub-

ject to uncorrelated observation noise, a situation captured by conditional independence of the observations

given the true hypothesis. That is, the conditional distribution of the observation vector(Y1, Y2, · · · , YV )

factors and it turns out that the posterior probabilityπ(Hm) of hypothesisHm based on these measurements

satisfies

π(Hm) ∝ πo(Hm)
V∏

v=1

fv(Yv|Hm),

Our objective is to compute a MAP estimate, which is the hypothesis with the largest posterior probability.
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(a) Received Messages (b) Transmitted Messages

Figure 11: Illustration of Belief Propagation

The collaboration between sensors is limited by a communication network structure represented by a

weighted connected graphG = (V,E, C). The verticesV of this graph correspond to sensors, the edges

E correspond data links, and the weightsC specify link capacities. Our focus in this section is to apply

belief propagation in the context of our classification problem. In the mechanics of the algorithm, at each

time stepk, each sensor node,v′, forwards a messagemv′→v
k (Hm) to the neighboring (linked) sensor node

v about each hypothesisHm. Namely, sensor node,v′, computes the product of all the messages pertaining

to each hypothesisHm′ (excluding the message fromv), and averages this product across all hypothesis

with weighting to reflect correlations between the hypothesisHm andHm′ . In the instantiation of belief

propagation pertaining to the present classification problem, these messages satisfy

mv→v̂
k+1 (Hm) = fv(Yv|Hm)

∏
neighborsv′ of v except̂v

mv′→v
k (Hm) (3)

The nature of the messages are illustrated in Figure 11. Our focus is whether the scheme converges for the

special structures endowed by the detection problem for general graphs. In contrast to other applications, be-

lief propagation admits an exact analysis in the present instantiation because messages pertaining to distinct

hypotheses evolve in an uncoupled fashion. Namely, it is evident from definition (3) that the logarithm of a

message composed at thekth stage can be expressed as a linear function of the logarithms of the messages

from the previous stage. This recursion is conveniently represented with a discrete-time linear system

xk+1 = Axk + b (4)

wherexk = [xk(e)] is a vector such thatxk(e) denoteslog(mv′→v
k (Hm)) (e being the directed edge from

v′ to v), b is a vector containing log-likelihoodslog(fv(Yv|Hm)), andA = [ae,e′ ]E×E is binary matrix such

thatae,e′ = 1 if edgee leads to the origin of edgee′. Note thatA is determined solely by the communication

graphG, and it determines asymptotic properties of the recursion (4).
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(a) Randomly distributed sensors with

constant radius of communication con-

nectivity

(b) Rate of convergence to consensus; Y-axis de-

notes percentage of sensors that have achieved

consensus; X-axis denotes time index

Figure 12: Simulation of Distributed Detection for a 400-node randomly deployed sensing system for 10

different target hypotheses.

Also, since individual sensors could choose to either fuse their information or simply behave as relay,

it follows that the dynamics of the fusion process is partially controllable. Based on these ideas we have

established the following general result:

Every communication graph topology admits a decentralized message passing algorithm, which converges

to centralized MAP estimate under sufficiently small message quantization.

A key feature of the present architecture is that individual sensor operation is based on local information.

Namely, the message forwarding does not require global knowledge of sensor models. This stands in sharp

contrast with previously proposed decentralized estimation schemes [8, 17, 7, 18]. Furthermore, the method

is scalable to event-driven operation since it can be implemented by programming the sensor to send out its

kth message only after receiving the(k − 1)th messages from all of its neighbors. Figure 12(b) illustrates

how fast a consensus about the underlying phenomena/target arises in a connected network of randomly

placed sensors.

Distributed target tracking: We close this section by pointing out that the principle of collaborative

processing can be applied to dynamic problems wherein sensors take periodic measurements pertaining to

an evolving phenomena. The canonical objective here is to track targets whose evolution is described by a

linear dynamical system through sensors that observe noisy locations and exchange messages by means of a

multi-hop protocol over a communication network. Several in-network processing techniques were studied
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for this scenario in [1] with emphasis on the relative time-scales of measurements and communication. These

techniques differ from existing techniques in two important aspects: a) there is no designated leader/fusion

node and each sensor attempts to optimally track the system trajectory based on its local observations and

time-dependent information available from other sensors in the network; b) the message computation at each

sensor is structurally identical, where the computed message from each sensor is the innovation in the state

conditioned on all the information available upto that time at each sensor. Consequently, the sensor network

can be queried at any time and at any node to obtain optimal estimates for the state of the dynamical system.

2.2 Channel Errors and Packet Losses

Typical applications of sensor networks involve inexpensive and unreliable sensors that communicate through

low capacity wireless links. Viable sensing systems should therefore be robust against attendant effects of

these restrictions. We illustrate graceful degradation of distributed detection with such channel imperfec-

tions. First, it is relatively easy to establish robustness to finite bit rate constraints by resorting to quantization

of messages. We have analyzed effects of such quantization and established design guidelines to achieve

prescribed insensitivity to quantization in [14]. It turns out that the maximum admissible quantization level

is proportional to the minimum Kullback divergence between any two conditional probability density func-

tions of the observationY under each hypothesisHi.

Another aspect of wireless transmission is that only a few messages can be reliably transmitted along

each communication link at each round of the algorithm. Our aim here is to account for the following two

effects: First, messages may be corrupted and lost due to imperfections in point-to-point communication.

Although link layer protocols would provide some relief against this issue, robustness of network operation

against message losses needs to be addressed, especially if the physical communication medium is wire-

less. Secondly, one can imagine situations where some sensors operate on a slower time-scale than others,

thereby slowing down the network under the lock-step message-passing algorithm outlined in Section 2.1.

This limitation may be overcome if each sensor contributes to the collaborative effort at its own time-scale.

In both cases described above the network operation is asynchronous in the sense that not all links are neces-

sarily active at each round of the algorithm. In addition, the network could also be time-varying. The main

idea used in overcoming packet loss effects (see [14] for more details) is to normalize the messages based

on the number of outgoing functional links (i.e., the number of receivers of the message) in the same round.

We point out that such an algorithm is consistent with the currently employed wireless protocols. This leads
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Figure 13: Convergence rate of consensus for different packet loss probabilities; Y-axis denotes percentage

of sensors that have achieved consensus; X-axis denotes time index

to a situation, wherein each message is not only weighted equally but also produces information channels

that will not be degraded simultaneously. Our results on graceful impact of packet losses is illustrated in

Figure 13.

2.3 Energy Scaling

A fundamental question that arises in a distributed sensing system is energy required to form fusion esti-

mates. Energy not only impacts the communication bit rate but also the lifetime of a sensing system. In this

thrust we explore energy scaling issues for large-scale deployment of distributed sensing systems. We have

conducted preliminary investigation for the fusion schemes presented in Section 2.1, which we describe

below.

The fusion scheme is based on refinement of information at each time step and at each sensor location. In

effect, we differentiate between data and information, and successively blend refinement and transportation

of data in the course of the algorithm. The time to reach consensus via this operation is on the order of

the diameter of the communication network [20, 19], a quantity that lower bounds the time to collect all

observations at any designated node for centralized processing. Hence the distributed approach does not

entail significant performance costs, whereas it evidently provides advantages in conforming to the scant

transport capacity of wireless networks.

Figure 12(b) illustrates a network of 400 sensors in additive Gaussian noise. The task is to classify

among 10 different hypotheses on a mean field. Figure 12(b) illustrates the dramatic convergence to consen-

sus in a typical realization of noisy sensor measurements. Comparisons between conventional decentralized

detection scheme and the consensus based scheme appears in the Table 1. An energy requirement ofd4Eb
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Scheme Energy (Joules/Node)

Decentralized Broadcast O(Nα/2dα
0 Eb)

Decentralized Multihop O(
√

Ndα
0 Eb)

Belief Propagation (grid) O(N log Ndα
0 Eb)

Coalescent Random Walks O(log(N)dα
0 Eb)

Table 1: Energy scaling for different schemes;d0 is the internode distance;Eb is the energy required to

transmit 1-bit over a unit distance;α is the attenuation coefficient for transmit energy in free space

is assumed for transmitting a single bit over a distanced. Decentralized detection operates under a fusion

network and local decisions from individual nodes are transmitted. The consensus approach shows dra-

matically improved performance. Furthermore, a with exponentially better performance in terms of energy

scaling can be obtained as seen in the last row of Table 1 through a token based approach that we discuss in

the following section. These facts establish thatutilizing high local data rates combined with information

refinement algorithms such asKalman Filteringcan lead to significant gains in energy efficiency.

2.3.1 Token-based Algorithms for Data Aggregation

The discovery problem in Section 2.1 dealt with a special type of data aggregation, namely, computing

the sum of each sensor’s log-likelihoods. In general data aggregation in sensor networks typically involve

distributed computation of functions such as maximum, sum, product, and weighted averages of individ-

ual sensor values. Such functions admit flexible decompositions in terms of pairwise operations, and this

property can be exploited to obtain distributed computation algorithms that display substantial advantages in

terms of energy consumption. We give a description of such algorithms by specializing to case of computing

the sum of sensor values, for notational convenience.

Each sensor maintains a variableestimatethat is updated as the sensor exchanges messages with its

neighbors. The initial value ofestimateis equal to a locally generated value whose network-wide sum is

of interest. Messages carry the most recent value ofestimateat the transmitter; the receiving sensor adds

this value to its ownestimatewhereas the transmitting sensor sets itsestimateto 0. Note that the sum of

estimates of all sensors remains fixed at the number of sensors with significant observations, and eventually

a single sensor will have a non-zeroestimate. The algorithm terminates at this point. To ensure that this

computation entails minimal energy consumption, message transmissions in the network are regulated by

tokens. Namely, messaging decisions are taken independently and asynchronously at individual sensors, but
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a sensor can transmit a message only if it is holding a token. The token then moves with the transmitted

message. If the receiver also has a token at that time then the two tokens coalesce into one. The algorithm

is guaranteed to terminate in a connected network, and it provides dramatic gains in message complexity

relative to other distributed algorithms in planar topologies [21].

From an analytical perspective, the termination time of the algorithm is on the order of the cover time of

a random walk if there is a single token in the network, and of the hitting times of a random walk if there are

multiple tokens. Termination times of belief propagation and gossip algorithms, on the other hand, are on

the same order as the mixing time of random walks. The net effect is that token based algorithms typically

take longer to terminate but they entail far fewer message transmissions as only a few sensors are active at

any time. Application of this algorithm for the setting of discovery problem leads to exponential savings of

energy as illustrated in Table 1.

3 Conclusions

In this article we identify two classes of sensor network problems that arise naturally in many applications.

Fusion problem involves correlated data over the sensor network, while search/sensor selection involves

selecting sensors that have useful information. The inherent assumption in fusion problem is that the sensor

locations are known as well as the statistical relationships between the data and the features of observable

phenomenon. The use of graphical models along with asynchronous message passing algorithms prove to be

a very natural approach to solving target tracking, change detection, and target identification problems, all

of which can be formulated in the fusion problem framework. Search problems in its extreme case involves

problems of making decisions when sensor data could be uncorrelated across sensors. Nonetheless, we

demonstrate that uncorrelated data across sensors still necessitates collaboration. In fact, depending on the

cost structure, elaborate decision regions need to be devised, which require joint mapping of observations

to decisions. This joint mapping in turn requires collaboration of sensors. We further describe an adaptive

decision making system, which feeds back the previous decisions of the sensor network to make more in-

formed decisions in the succeeding steps of the algorithm. The ideas that are developed for fusion problems

prove to be useful in successfully executing the described algorithm. Problems such as target tracking in

clutter and sensor selection can be fitted into the framework of this class.

A very important aspect of our work is the assumption that the sensors have only local information. For

example, no sensor has access to the measurement model of another sensor. Therefore, all the solutions that
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are outlined here are robust to variation of observation models across sensors. This fact has a very strong

implication: to solve either the search problem or the fusion problem no communication of information is

necessary other than that relevant to the observable phenomena.
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