Ecological Applications of Wireless Sensor Networks

Brian Neiswander Faye Walker

Professor Tom Little Multimedia Communications Lab

Boston University Summer 2006 Photonics REU: Final Report

This Presentation

- Project Goals
- Wireless Sensor Networks
- Motes
 - Attenuation
 - Calibration
- Field Tests
- Photosynthesis
- Future Work

Project Goals

Measure ecological data with wireless sensor networks

- Software
- Hardware
- Data Collection
- Show that wireless sensor networks are better than conventional methods for evaluating photosynthesis

Wireless Sensor Networks

- Use small, self-contained sensors called motes
- Data sent with radio, laser, infrared
- Ad hoc network
 - Each mote becomes aware of nearby motes and form a network
 - □ Self forming

Hop Scenarios

Single-Hop

data is sent directly from a mote to the base station (limited range)

Multi-Hop

data is passed from a mote to other motes and then to the base station (long range)

Collection and Analysis

MATLAB applications package

- Data collectors
- Calibrator
- Real-time and post analyzers
- Engineering unit converters

Our Motes

	Mica2	Tmote Sky
Light Intensity	Х	Х
Temperature	X	Х
Humidity	X	Х
Pressure	X	
Acceleration	X	
Low Power Mode	X	Х
Our Uses:	Large scale light collection	Bat barn animal study

Light Sensor

Two 7-bit counts

- □ If ch0 or ch1 count > 1111111
 - Overflow
 - Sensor saturates

Sensor Attenuation

Calibration

Heavy attenuation requires calibration

- Difficult to calibrate for large range of light
 12 hour test (sunrise to sunset)
- Calibrate each mote against a very accurate control light sensor
 ADC mote

Calibration Solution

- Voltmeter to measure control sensor
- Log data by hand
- Linear calibration equation for each mote

	A	В	С	D	E	F	G	Н	1
1		1	2	6	12	13	15	licor	V
2	table	0	0	0	0	0	0	499.664	
3	window	0.46	0.46	0.92	0.92	0.46	0.46	1.32E+03	
4	shade	5.06	4.6	4.6	4.6	4.14	4.14	5.59E+03	
5	sun	279.45	250.01	264.73	264.73	264.73			
6	1								
7	outside	250.01	216.89	235.29	224.25	180.09	235.29	88576.8	1.95
8	1	250.01	224.25	235.29	224.25	187.45	235.29	90393.76	1.99
9		28.29	19.55	39.33	53.13	15.87	43.01	15444.16	0.34
10	1	235.29	202.17	224.25	209.53	172.73	224.25	86305.6	1.9
11		67.85	64.17	50.37	41.17	35.65	39.33	20440.8	0.45
12	1	224.25	194.81	216.89	202.17	165.37	216.89	87214.08	1.92
13			41.17					22712	0.5
14		43.01	33.81	41.17	33.81	31.97	35.65	19532.32	0.43
15		216.89	187.45	202.17	194.81	158.01	202.17	84034.4	1.85
16		235.29	180.09	180.09	172.73	165.37	143.29	81308.96	1.79
17		30.13	24.61	31.97	22.17	64.17	26.45	18169.6	0.4
18	-							0	

Open Field Test

11 Mica2 motes
 Record light intensity
 Multi-hop scheme

Video
 Mote layout
 Animated plots
 Contour plot
 Surfaced plot

Video

Static Photosynthesis Models

Light intensity is only independent variableInput parameters dependent upon species

$$P(h) = \frac{P_{\max} + \alpha h - \sqrt{(P_{\max} + \alpha h)^2 - 4\theta \alpha P_{\max}}}{2\theta}$$

Rectangular θ = 0 (Sullivan et al.):

$$P(h) = \frac{\alpha h P_{\max}}{\alpha h + P_{\max}}$$

h - light

- P_{\max} maximum photosynthetic rate at saturation
 - lpha initial slope of the light-response curve

$$heta$$
 - curvature indicator

Dynamic Photosynthesis Model

Dynamic equation varies with time

$$P(t,h) = P_{t-1} + (P_t - P_{t-1})e^{-t\tau}$$

- Accounts for increases and decreases in light
- Utilizes predicted steady-state values from the previous models
- (Naumburg et al.)

Conventional Photosynthesis Analysis

WSN Photosynthesis Analysis

Future Work

- Bat barn field test
 - □ Collect environmental data (light, temp, hum.)
- Get better calibrations
- Apply photosynthesis equations to light data
- Simulate conventional methods with WSN light data
 - Evaluate WSN effectiveness

Summary

- Wireless sensor networks collect data easily and efficiently at high resolutions
 - □ Useful in ecological studies
- Sensors must be adjusted to suit the testing environment
 - □ Attenuation
 - Calibration
- Field tests don't always go as planned
 Murphy's law
- Photosynthesis equations should be better behaved with WSN data

We would like to thank the NSF, Boston University, and Professor Tom Little for this great research opportunity.

Any Questions?

References

- Naumburg, Elk and Ellsworth, David 2000. "Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE." Oecologia 122: 163-174.
- Peri, P.; Moot, D; and McNeail, D. "A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen, and water regimes." Grass and Forage Science 58: 416-430.
- Sullivan, N.; Bostad, P; and Vose, J. Estimates of net photosynthetic parameters for twelve tree species in mature forests of the southern Appalachians. Tree Physiology 16: 397-406.