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Abstract—We consider the problem of classifying among a set of
hypotheses via distributed noisy sensors. The sensors can col-

laborate over a communication network and the task is to arrive at
a consensus about the event after exchanging messages. We apply
a variant of belief propagation as a strategy for collaboration to ar-
rive at a solution to the distributed classification problem. We show
that the message evolution can be reformulated as the evolution
of a linear dynamical system, which is primarily characterized by
network connectivity. We show that a consensus to the centralized
maximum a posteriori (MAP) estimate can almost always reached
by the sensors for any arbitrary network. We then extend these
results in several directions. First, we demonstrate that these re-
sults continue to hold with quantization of the messages, which is
appealing from the point of view of finite bit rates supportable be-
tween links. We then demonstrate robustness against packet losses,
which implies that optimal decisions can be achieved with asyn-
chronous transmissions as well. Next, we present an account of en-
ergy requirements for distributed detection and demonstrate sig-
nificant improvement over conventional decentralized detection.
Finally, extensions to distributed estimation are described.

Index Terms—Ad hoc networks, collaborative information pro-
cessing, conditionally dependent observations, decentralized detec-
tion, estimation and detection.

I. INTRODUCTION

RECENT advances in computing and communication
technologies provide impetus for deploying massive

networks of tiny sensors capable of measuring, processing
and exchanging data over a wireless medium. In typical ap-
plications energy limitation of individual sensors is a primary
bottleneck as it entails further constraints in communication
bandwidth, reliability and connectivity. Information processing
models that account for such limitations have recently received
much attention within the networking, signal processing and
information-theory communities. In this paper, we address
this issue from a distributed viewpoint and consider a collec-
tion of sensors observing a single phenomena through noisy
measurements. The sensors can only collaborate through a
network defined by a connectivity graph in which messages
may be subject to quantization or random losses. The task is to
exchange messages in order to arrive at a consensus that reflects
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the classification of the event by a hypothetical node that has
access to all observations and observation models.

The general question of dealing with distributed data in the
context of detection has been an active topic of research (see
[2], [3], [6], [10], [14], [15], [17], [20], [25]–[28] and refer-
ences therein). Previously proposed techniques can be broadly
categorized into two groups: The fusion-centric approach as-
sumes that each sensor has a communication link to a data fu-
sion center as shown in Fig. 1. Quantization of sensor data in this
model was addressed by [15], [25], effects of power constraints
on noisy communication channels were considered in [7], [8],
and data compression issues were studied by [4] from an infor-
mation-theoretic perspective. The ad hoc approach, on the other
hand, involves no designated fusion center but focuses on estab-
lishing consensus within the network via message exchanges.
This approach is arguably more suitable to address energy is-
sues in large-scale networks and also appears to have robust-
ness advantages. Early literature [5] establishes that consensus
is achieved if messages are conditional expectations adopted to
local measurements and messages, however the agreement it-
self is in general sensitive to the relative timing of messages,
and computing the conditional expectations is not practically
appealing. Message specifications and rigid messaging sched-
ules that lead to consensus on optimal decisions were given in
[24] for the special case of a completely connected communi-
cation topology.

We adopt the ad hoc model and develop a data-oriented com-
munication strategy in order to overcome the alluded issues.
Related work for distributed optimization in sensor networks
have been proposed recently in [12], [19] for specific types of
network topologies. Approaches for distributed computation of
functions are presented in [11] based on a fusion-centric ap-
proach. Distributed averaging algorithms presented in [22], are
similar to the belief propagation (BP)-based approach presented
in this paper. However, this paper pursues a more general objec-
tive of developing a truly ad hoc, asynchronous, energy efficient
detection theory for arbitrary network topologies. Our problem
focuses on deriving conditions for arriving at a consensus at all
the sensors and situations where the consensus is the centralized
MAP estimate. A natural idea for collaboration is to exchange
a vector of individual sensor beliefs (probabilities) for different
hypothesis between linked sensors at any instant of time. This
idea is formalized in the “so called” BP algorithm [18] and pre-
liminary results on their application to the detection problem is
described in a number of our papers [2], [27], [28]. A descrip-
tion is shown in Fig. 1 where sensor nodes send a vector of like-
lihoods for each hypothesis at any instant of time. These likeli-
hoods are dynamically updated based on information received
by the sensor in the past. In this setup, we neither have a fusion
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Fig. 1. Decentralized (left) and distributed (right) detection schemes over
sensor networks.

center nor does each sensor need to know models for adjacent
sensors. Nevertheless, BP is known to work in general for non-
loopy network topologies. Furthermore, on account of finite link
capacity, it is unclear as to how to deal with attendant effects of
quantization. We deal with the first issue in Section IV by first
limiting our attention to conditionally independent observation
models. Later in the conclusion Section IX generalizations to
dependent noise models are discussed. We next classify loopy
graph topologies for which the standard BP does converge to the
MAP consensus. However, these networks turn out to be limited
and motivates us to consider variants of BP algorithm and we
show in Section V that for the class of problems where all sen-
sors are engaged in the same classification task, consensus can
indeed be attained through such modifications. We further show
that if network topology is known then consensus on the exact
posterior distribution can also be realized. We next deal with im-
plications of finite link capacities in Section VI by employing a
novel robustness perspective. By showing that our algorithm is
robust to perturbations of messages we are able to quantify ex-
plicitly the size of quantization before performance degrades.
Robustness of the algorithm against random packet losses is es-
tablished in Section VI-B. In Section VII, we present prelimi-
nary results on energy requirements for decentralized and dis-
tributed detections schemes for the simple case of a uniform grid
and show exponential improvement in energy scaling over the

fusion-center approach. Finally, in Section VIII extensions to
distributed estimation are described.

In summary the main advantages of the proposed scheme are
as follows.

A) The sensor network can operate in a completely asyn-
chronous fashion, i.e., the algorithm as well as the out-
comes do not depend on when a message is transmitted.

B) Each sensor node in the networks does not have knowl-
edge of sensing models for other sensors. This implies
that the algorithm works irrespective of knowing “who is
sending what.”

C) The algorithm always converges to the optimal MAP es-
timate.

II. SETUP

We consider MAP estimation in M-ary hypothesis testing
problems with conditionally independent observations (see
conclusions for extensions to dependent case). The observation
vector is denoted by , where throughout the
paper represents a set of sensors and represents the mea-
surement taken by sensor . For definiteness we focus on
the case when has a continuous distribution, but conclusions
of the paper apply verbatim for discrete observations when
densities are interpreted as probabilities.

Let be a collection of hypotheses with
prior distribution . The conditional probability density func-
tion of the observation vector under each hypothesis

is denoted by . We shall assume that obser-
vations are conditionally independent given the true hypothesis.
Specifically, for each realization of observa-
tion vector

(1)

for marginal densities . Let denote the posterior distri-
bution of the true hypothesis given the observations. Namely

(2)

where is a normalization constant that does not depend on
. Here both and depend on but this dependence is sup-

pressed in the notation for convenience. Note, for example, that
an observation model where under hypothesis

conforms to the described setting if
are deterministic functions and are conditionally
independent random variables given the true hypothesis.

Hypothesis is a MAP estimate if

We shall consider distributed identification of a MAP estimate
in cases when a single decision maker having access to all ob-
servations is not available. More specifically, we focus on dis-
tributed algorithms in which each sensor collaborates with other
sensors and thereby forms an estimate of the posterior distribu-
tion. This collaboration is limited by a communication network
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structure represented by a directed graph , which is
assumed to be strongly connected in order to avoid trivialities.
The vertices of graph correspond to sensors and an ordered
pair of vertices belongs to the edge set if there exists
a communication link from sensor to sensor . A sensor is
called a neighbor of sensor if it has a communication link to

. We denote the set of neighbors of by . That is

III. COLLABORATIVE FRAMEWORK

In this section we provide a collaborative framework for the
distributed MAP estimation problem based on local message
passing algorithms known as belief propagation (BP) [18], [30].
Since BP is generically formulated in terms of Markov random
fields (MRFs), we start here with a brief discussion of MRFs.

A random vector is an MRF with re-
spect to an undirected graph if it possesses cer-
tain conditional independence properties defined with respect to
neighborhood relations in . Namely, for each , given the
neighbors of with respect to , the random
variable is conditionally independent of the remaining en-
tries of . The Hammersley–Clifford theorem [18], [30] estab-
lishes under mild technical conditions that a random vector is
an MRF if and only if its distribution has a product form whose
factors are associated with only the cliques of . Of particular
relevance to our discussion, is a MRF if for positive map-
pings and

(3)

for each possible realization . The mappings
and are referred to as node and edge potentials respectively.
The graphical model thereby provides a platform to represent
pairwise correlations in via edge potentials. In this setting,
iterative BP algorithms aim to locally compute marginal distri-
butions of by passing messages between neighboring nodes
along the edges of the graphical model . Before specifying BP
in further detail, we give next an interpretation of the posterior
distribution in (2) in terms of MRFs.

Consider now a random vector where
each marginal takes values in the set .
Let be an arbitrary graph and the distribution of
be of the form (3) with potentials

(4)

(5)

where is the standard Kronecker delta function. If is
connected then it is easy to verify that all marginal distributions
of are identical, and furthermore they are equal to the pos-
terior distribution . Note that due to the arbitrariness of the
graphical model , there is enormous flexibility in choosing
the edges that BP messages traverse. In particular, can be
chosen to coincide with the communication network graph,

. Hence, the communication model does not have to bear
any relationship to the underlying statistical model.

The main theme in BP from a distributed detection per-
spective is that each sensor node transmits a vector whose th
component is related to a local estimate for hypothesis
at that node. For two nodes such that , we
denote by the th component of the th message
that is transmitted from node to node . In this section, we
specialize to Pearl’s sum–product algorithm [18] for BP. In
the mechanics of this algorithm, sensor node composes this
message by computing the product of most recently received
messages pertaining to each hypothesis (excluding message
from ), and averaging this product across all hypothesis with
adequate weighting to reflect correlations between the different
hypothesis. Specifically

is the message at th time instant from node to node about
hypothesis . On account of the specific potentials (4) and (5),
this construction reduces to

(6)

(7)

along any edge , for each hypothesis , and for each
round . Messages are used by recipient nodes to compile
their beliefs, which are estimates for the posterior distribution
and are defined as follows.

Definition 3.1: The belief
of node at round is the probability vector that satisfies

for some positive constant that does not depend on .
From the viewpoint of distributed system operation it is

worthwhile to note that i) each message is determined locally
by the observation at the sensor and the prior messages received
from neighboring sensors, ii) message composition does not re-
quire global knowledge of sensor models, and iii) the algorithm
also entails a relaxed synchronization among sensors, as it can
be implemented by programming each sensor to send out initial
messages immediately and to send out its th messages only
after receiving th messages from all of its neighbors.

If is a singly-connected graph then well-known results [30]
guarantee that each belief vector converges to the
true posterior distribution within a finite number of rounds.
For general graphs and general potentials the sum-product
algorithm is not expected to converge. Our focus is whether
the scheme does indeed converge for the special information
structure endowed by the classification problem. In exploring
this possibility it will be convenient to transform the original
problem into a linear dynamical system.
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Towards this end, we identify each directed edge by
its source vertex and its destination vertex such that

. For each pair of edges let

but (8)

Here and in rest of the paper, denotes the binary function
whose value is 1 if its argument is correct, and 0 otherwise. In
particular, if and only if edge leads to the source
of edge and the ordered pair does not form a directed
cycle. For each hypothesis , let

(9)

(10)

where we have denoted for nota-
tional simplicity. Taking the logarithm of both sides in equal-
ities (6)–(7) leads to the linear system

(11)

Define the vector by setting
, and define the binary matrix so that

equality (11) takes the vector form

(12)

Note that states of the dynamical system (12) have one entry
per edge, rather than per sensor node. This is due to the me-
chanics of BP, which imposes that a node sends different mes-
sages over different edges. We will later consider modifications
of BP that entail sending identical messages over all outgoing
edges from a node, and thereby lead to reduced system dimen-
sionality. We point out that the dynamical evolution in (12) de-
pends only on the graphical structure and not on the individual
observations. In turn, convergence properties of the algorithm is
based on primarily the network topology, as we will see in the
next section.

IV. CONSENSUS AND CONVERGENCE

We next identify conditions under which BP leads to a con-
sensus in the network in terms of convergence of individual be-
liefs. We consider the evolution of beliefs from a detection per-
spective and characterize topologies for which the consensus re-
flects a centralized MAP estimate. We adopt a definition of con-
sensus that is substantially weak for the conventional objective
of estimating the distribution but is useful when we are only in-
terested in achieving the MAP decision rule.

Definition 4.1: (Consensus) Given a subset of hypotheses
, the sensor network is said to asymptoti-

cally achieve consensus on if is the smallest set such that

for all and all

If each member of maximizes then the sensor network is
said to asymptotically achieve a MAP consensus.

We first examine asymptotic properties of BP on graphs for
which the matrix is primitive. For completeness the definition
of primitivity is given next.

Definition 4.2: A non-negative matrix is said to be primi-
tive if there exists a positive integer such that all entries of
are strictly positive.

Before stating the main result note that the solution to the
linear system (12) satisfies

(13)

The following results rely on the following straightforward ob-
servation, which is given here without proof.

Lemma 4.1: Given positive integer
where is the number of directed paths of length that
start with edge , end with edge , and that do not contain any
2-hop cycles.

Suppose that is primitive so that for some integer
. Since is a binary matrix all entries of are at least 1,

which implies that . Therefore, the spectral
radius of , denoted here by , is then strictly larger than 1.
Let and be, respectively, a right and
a left eigenvector of corresponding to the eigenvalue ,
suitably normalized so that for and

. We define the weighted out degree of each
sensor node as

Theorem 4.1: If is primitive then for each node

for each hypothesis such that

Proof: Define the matrices and ,
by setting for and .
From standard results in Perron–Frobenius theory (see, for ex-
ample, [13, Theorem 8.5.1]) which states that there exists posi-
tive constants and such that

(14)

Let . By equality (13) for each hypothesis

(15)
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Note that for each such that

(16)

where in the last inequality, we have used inequality (14) to-
gether with the fact that owing to .
One can thus choose large enough so that the last term on the
right-hand side (RHS) of (16) is arbitrarily small, and for a given
value of one can choose large enough to make the first term
therein arbitrarily small. In turn, by (15)

which further implies via the definition of that for each edge

(17)

By Definitions 3.1 and (10)

for some positive constant that does not depend on ; in turn,
for any two hypotheses

since . Therefore, by equality (17) and def-
inition (9) of ,

(18)

The theorem now follows because
unless the RHS of (18) is nonnegative.
Note that if is primitive Theorem 4.1 guarantees that MAP

consensus is asymptotically achieved provided that all nodes of
have the same weighted out degree. This property is satisfied

by regular graphs, as formally stated as a corollary next, as well
as the large random graphs that are considered in the following
section.

Corollary 4.1: Let be a finite connected d-reg-
ular graph , i.e., a connected graph where each vertex
has degree . Furthermore, let the matrix, , as defined in (8)
be primitive. Then a MAP consensus is achieved with the BP
algorithm.

While Definition 4.2 does not suggest a practical way of
testing for primitivity, an alternate definition helps in some
cases. More specifically, for , let be the
set of integers such that . Then is primitive if and
only if the greatest common divisor of is 1 (see,
for example, [13, Theorem 8.5.3] for a proof). In particular,
is primitive if it has a strictly positive diagonal entry. We will
appeal to this observation in Section V where we introduce
variants of BP that achieve MAP consensus on arbitrary graphs.

We consider next two interesting topologies that violate the
primitivity condition in Theorem 4.1. An alternate definition
[13, Definition 8.5.0 and Theorem 8.5.2] of primitivity implies
that if is not primitive then either it is reducible, or it has mul-
tiple eigenvectors of modulus . Theorem 4.2 below con-
cerns the case when has a tree structure and, in turn, is
nilpotent.1 Theorem 4.3 concerns ring graphs wherein
and has again multiple maximal eigenvalues. The theorems
establish that MAP consensus is achieved in both cases. How-
ever in graphs for which has multiple eigenvalues of modulus

and , such as tori with odd
oscillates persistently and consensus should not be expected in
general.

In the scope of the following two theorems, represents the
undirected graph obtained as follows: has the same node set
as , and an unordered pair of nodes is an edge of if

and .
Theorem 4.2: (Trees) Suppose that communication links are

bidirectional so that if then also. If is
a tree then the network asymptotically achieves MAP consensus
with BP algorithm.

Proof: If is a tree, then the matrix defined by (8) is
nilpotent since for all integers larger than the diam-
eter of the tree. In turn by Equality (13) the messages converge
within a number of steps no larger than the diameter. To identify
the limit, note that by Lemma 4.1

there exists a directed path that starts

with edge ends with edge

and contains no 2-hop loops

for . Since is a tree, Equality (13) leads to

where represents the length of the unique path be-
tween vertices . By Definition 3.1 the limit of the
estimate at each sensor is equal to the posterior
distribution .

1It is well known that on trees BP leads to the true posterior distributions even
for general Markov fields.
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Theorem 4.3 (Rings): Suppose that communication links are
bidirectional so that if then also. If is
a ring then the network asymptotically achieves MAP consensus
with BP algorithm.

Proof: If is a ring then for ; in
turn, Equality (13) leads to the vector equalities

Under the hypothesis of the theorem for all
edges that have a common orientation (that is, clock-
wise or counterclockwise) and that otherwise.
Therefore

(19)

Since

due to Definitions 3.1 and (10), (19) implies that

(20)

The conclusion of the theorem now follows because
due to definitions (9), (4),

(2), and, in turn, by (20) unless
.

Although the above theorems establish MAP consensus in
the sense of Definition 4.1, convergence of beliefs to a single
hypothesis may not emerge. If multiple MAP estimates exist the
maximum posteriors at the different sensors oscillate between
the different hypothesis within the MAP set (see [27] for an
example).

For general topologies the consensus identified by Theorem
4.1 depends on the individual observations as well as the
weighted out degrees of the nodes at which each observation
is taken. In the general case the consensus reflects right MAP
estimates for certain values of observations, and wrong choices
for others. We close this section with an illustration of this
situation.

Example: Consider binary hypothesis testing in a nine-sensor
network under the communication structure represented by the
graph of Fig. 2. Each edge in the graph represents two directed
edges in opposite directions. Maximal eigenvectors of no
longer have equal weights corresponding to each edge, in partic-
ular the weighted out degrees are equal and

. Suppose that the observations
translate to node potentials

and for , where .
Fig. 2 illustrates, for different values of and , the true MAP

Fig. 2. Illustration of how asymmetric graphs bias the consensus decision away
from the optimal: (top) asymmetric graph; (bottom) biased consensus. (Color
version available online at http://ieeexplore.ieee.org.)

estimate and the final consensus due to BP as identified by The-
orem 4.1. Note that this consensus reflects a flawed estimate if

lies in the area between the solid and dashed lines.

A. Random Graphs

In this section, we describe distributed hypothesis testing for
random graphs, , which are constructed as fol-
lows. The vertices of the graph, , are associated with
sensor nodes uniformly distributed in a square unit area denoted
by the region centered at zero as shown in the Fig. 3. The
edges of the graph correspond to communication connectivity
between the sensor nodes. In particular, two vertices and ,
are connected, i.e., if the Euclidean distance be-
tween the vertices is smaller than, , the communication con-
nectivity radius. In addition, for the sake of mathematical sim-
plicity, we consider a periodic extension of the graph to avoid
dealing with boundary conditions. In particular, consider two
vertices and , whose planar coordinates are respectively,

. Suppose denotes the set of all coor-
dinates such that is an integer vector. Then, the two
vertices are connected if

(21)
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Fig. 3. (Top) Random graph with uniformly distributed nodes. (Bottom) Sim-
ulation of distributed detection with 400 nodes and ten different hypotheses.
(Color version available online at http://ieeexplore.ieee.org.)

One can expect from the above construction that for an appro-
priate connectivity radius, the graph, is not only connected
but that each vertex has the same number of neighbors on an
average. We can then expect to derive a result similar to Corol-
lary 4.1. The minimum radius of connectivity, , required is of
the order of to ensure graphical connectivity of
uniformly distributed sensor nodes in a unit area [21]. However,
for this minimum radius the variance in the degree for each node
(i.e., number of neighbors for each node) is large. To ensure a
near constant degree with high probability we need a slightly
larger radius of connectivity, i.e., . This
connectivity radius, , not only ensures primitivity of the
matrix as described by (8) but also ensures that the number of
neighbors for each node is approximately constant. We collect
these results in the following lemma, whose proof is provided
in the Appendix.

Lemma 4.2: Consider the random graph, ,
generated as described above with connectivity radius

. It follows with probability ap-
proaching one as that a) the number of neighbors

for each node approaches ; b) the matrix as
defined by (8) is primitive; and c) consensus is achieved at all
the nodes.

Proof: See the Appendix for proof of the first two state-
ments. The last statement follows by direct application of The-
orem 4.1.

MAP consensus is harder to establish even though the choice
of connectivity radius ensures approximate regularity and sets
up parallels with Corollary 4.1. Also as the simulation of Fig. 3
suggests MAP consensus is typically achieved for such a net-
work. To understand this point observe from (17) that consensus
as defined by Definition 4.1 primarily depend on the compo-
nents of the left eigenvector, , of the matrix. Consequently,
MAP consensus is realized only when the components of the
left eigenvector are identical (or nearly identical), a situation
achieved for regular graphs as in Corollary 4.1. If one were to
view random graphs as a random perturbation of regular graphs
the resulting eigenvector perturbation is not guaranteed to be
small in general, especially when the difference between first
and second eigenvalue can be arbitrarily small.2 To address this
point, we consider two different strategies.

A) d-nearest neighbor graph: The graph is formed by con-
necting the d-nearest neighbors for each node.

B) Approximate belief propagation: Here, the mes-
sage-passing algorithm is modified so that MAP con-
sensus is achieved and the approximation converges to
the exact BP message passing scheme as the number of
sensors approach infinity.

This latter strategy is related to the schemes discussed in the
following section, where MAP achieving consensus algorithms
for arbitrary graphs are described.

For the d-nearest neighbor graph, the MAP consensus
is guaranteed by Corollary 4.1. The main issue here is the
asymmetric connectivity, i.e., different nodes have different
connectivity patterns and not all nodes within a given connec-
tivity radius may be connected. This issue can be addressed
by choosing a sufficiently large communication connectivity
radius. Indeed Lemma 4.2 asserts that if
then with probability approaching one as exactly
nodes are contained within a radius
simultaneously for all nodes.

For the second strategy, consider the following approximate
BP algorithm, specifically

(22)

where is a suitably chosen diagonal matrix with,
and such that has equal column

sums. Before establishing the latter point observe that
and so the approximate BP indeed converges to the exact BP

in the limit. Furthermore, if is primitive and has
equal column sums the corresponding left eigenvector has iden-
tical components. Since weighting does not destroy primitivity
it follows from an argument identical to Theorem 4.1 (and also
described in the following section) that converges to

2Eigenvector perturbations are inversely proportional to eigenvalue differ-
ences in the unperturbed matrix [13].
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the sum log-likelihood function (modulo a proportionality con-
stant). Therefore, MAP consensus is achievable. To establish
that such a weighting guarantees equal column sums with prob-
ability approaching one note that from the proof of Lemma 4.2
it follows that each column of has
nonzero entries with probability approaching one. Therefore, by
choosing a number the sum of th column of

can be made to take the value .

V. MODIFIED BP ALGORITHMS

While BP lends itself to analysis and guarantees MAP con-
sensus in certain cases, it has a number of drawbacks: 1) con-
vergence and consensus under BP depends on primitivity of a
transition matrix that is determined by the communication
graph , 2) the consensus in the network need not be a MAP
consensus unless the graph possesses fairly strict regularity
properties, 3) actual values of transmitted messages tend to 0 as
the algorithm progresses, thereby leading to potential numerical
instabilities, 4) BP algorithms require customizing information
for a particular node, in that message from node to node is
a function of messages received from neighbors of excluding

. It would be simpler and energy efficient if one could fuse the
received messages and broadcast a single message without the
need for customization. In this section, we address each issue
and provide a progressive list of modified BP algorithms which
efficiently lead to MAP consensus in general graphs.

We specify below each modification via a linear system, sim-
ilar to (11) for BP, but use the symbol for the state of this
system in order to avoid confusion with the BP algorithm.

Relaxing the Primitivity Requirement: Self-Loops: Consider
a message passing algorithm akin to BP but which is represented
by the linear system on

(23)

for each hypothesis . Here, is the identity
matrix of appropriate size, and denotes the th message
transmitted along the directed edge . In particular, for

The algorithm thus differs from BP due to the second term on the
RHS, namely a replica of the previous message sent along the
same edge. In the graphical representation of communication,
this amounts to a BP algorithm when is modified so that each
node has a self-loop, that is an edge from to itself.
Clearly, this does not entail any modification in the physical
communication infrastructure. Notice that the matrix
is primitive regardless of , and thus Theorem 4.1 applies.

Relaxing the Regularity Requirement: Weighted Self-Loops:
The main issue suggested by Theorem 4.1 is that the consensus
achieved via BP is in general based on a weighted log-likeli-
hood-ratio; therefore BP may lead to incorrect MAP estimates
if the graph is unbalanced in the sense that the weighted out
degree varies from node to node. The graph can in fact be bal-
anced by appropriate message passing, namely by introducing
self-loops in as in (23) in a way to increase the influence of

poorly connected nodes on the evolution of beliefs. We intro-
duce two modifications both of which lead to the desired solu-
tion: Here the number of self-loops for a particular node depends
on the degree of that node. Specifically

(24)

for some diagonal matrix where
, where is the number of edges

such that and . It then follows that
column sums of the matrix are all identical; therefore the
coefficients of the dominant left eigenvector of are all
equal. Straightforward adaptation of Theorem 4.1 now implies
that the network asymptotically achieves MAP consensus.
Alternatively, in cases where the maximum degree is not known
a priori at each node, the same effect can be obtained by
choosing where is any integer that is known to
be larger than .

Dealing With Numerical Instabilities: Normalization: Con-
sider now another variation of BP in which each node normal-
izes the messages it transmits by the number of messages it re-
ceives. The composition of messages also differs from BP in the
inclusion of log-potentials . Specifically, we consider message
passing identified by the linear system

(25)

where is a diagonal matrix with
for . Note that, as opposed to (24), this message

passing algorithm does not require sensor nodes to know any
global aspects of the graph topology, such as or any upper
bound to it. Furthermore the spectral radius of is one.
Consequently, log messages are bounded.

To see the convergence and consensus aspects of this algo-
rithm, note first that the matrix is primitive. Columns
of are probability vectors; in particular they have iden-
tical sums and therefore the coefficients of the dominant left
eigenvector of are all equal. Hence,

exists and the limit matrix has identical columns. In turn,
for each edge

for some positive constant . This implies that for large
enough values of , the vector
and the posterior distribution have common modes. The
algorithm (25) therefore achieves MAP consensus provided
that is interpreted as the belief of the
source node at time . Note also that if the matrix
is locally available so that the constant can be computed,
then the exact posterior distribution can be reconstructed via

Reducing Transmissions: Broadcast: We consider next an-
other variation of BP based on the theme of nodes broadcasting
the same message to all recipients. This differs from BP as it
does not require compiling and transmitting separate message to
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separate sensor nodes. The message passing algorithm can then
be represented with a linear system on a reduced state space.
More specifically we consider the following system on :
Let the matrix be defined by setting
if and otherwise. For each node let

be the number of edges emanating from , and define the di-
agonal matrix by setting
for . We consider the message passing algorithm repre-
sented by

(26)

Here, denotes th component of the message broadcast by
node in round of the algorithm. Let us redefine the be-
lief vector of node at time as .
Since is a primitive matrix whose transpose is a
stochastic matrix, the analysis of algorithm (25) can be mim-
icked to see that the algorithm (26) achieves MAP consensus.
In Section VI-B, we will establish a stronger version of this re-
sult under the assumption of random message losses.

We summarize the conclusions of this sections in the fol-
lowing theorem, which is stated without proof:

Theorem 5.1: For an arbitrary strongly-connected directed
graph , each of the message passing algorithms (24)–(26)
achieves MAP consensus.

VI. ROBUSTNESS ISSUES

A. Detection With Finite-Link Capacity

We deal with finite link capacity by taking a robustness per-
spective. Specifically, we study impact of message quantization
on the MAP estimate. The messages (rather than their loga-
rithms) are quantized with a constant-ratio quantizer, i.e., the
quantization levels, , satisfies

. Mathematically, the quantizer, is described by,
and alternatively can be de-

scribed by the following uncertain system:

for some

In the logarithmic domain, this translates to

(27)

where is a column vector of all ones. Based on the results
of the previous section, we assume that is a primitive sto-
chastic matrix without loss of generality. Our task now reduces
to quantifying the maximum allowable quantization level, ,
so that a MAP consensus can be achieved. Let denote
the maximum admissible quantization level for a network of

identical sensors for a given realization of sensor obser-
vations, . The assumption of identical sensors implies
that the distributions for the observations depend only on the
hypothesis and are independent of the sensors. Consequently,

, with a family of probability distri-
butions indexed by hypothesis, . We then have the following
result.

Theorem 6.1: Assume that there is a unique MAP estimate
for the given observation and consider the broadcast setup of
Section V and associated matrices and vectors.3 Then,

(28)

where denotes the MAP hypothesis. Further, as
the required quantization level converges to a constant

, where is the Kull-
back–Leibler distance.

Proof: Proceeding along the lines of Theorem 4.1, we note
that, for any two hypothesis and , we have

where without loss of generality we have assumed that the com-
ponents of the right eigenvector are ones. Now, if hypothesis,

, is the MAP hypothesis then given, , it is more likely
than . We have . We need
to ensure that the difference in the beliefs at each node is larger
than zero as well, i.e., .
Now, proceeding along the same lines as Theorem 4.1 and ob-
serving that the maximal eigenvalue of matrix is unity and the
corresponding left eigenvector has identical components, we ob-
tain

where is a unit column vector whose th component is equal
to one and all other components are equal to zero. To ensure that
quantization does not modify the MAP estimate, we need

(29)

where the second equality follows from the fact that

and from the primitivity and stochasticity of . This establishes
the first statement. Now dividing by we see that the expres-
sion on the left is exactly the average of independent and
identically distributed (i.i.d.) random variables. Now let be the

3Generalizations to other cases follow in an identical manner.
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true hypothesis, which is not necessarily the MAP estimate. By
appealing to the strong law of large numbers, we have that

where the equality (a) follows from the fact that
almost surely as . Since (29) must hold for all
the result follows.

Consequently, it follows that if the distributions corre-
sponding to each hypothesis are well separated, the number
of quantization levels is also a constant in the log-message
domain. This follows from (27), which amounts to dis-
cretizing log messages into a constant number of bits equal to

bits per message (where is the max-
imum value of any log message). The boundedness assumption
follows from the results in Section IV, where we showed that
the log messages are bounded.

B. Packet Losses and Asynchronous Operation

In this section we relax the assumption that one message is
transmitted along each communication link at each round of the
algorithm. Our aim here is to account for the following two ef-
fects: First, messages may be corrupted and lost due to imper-
fections in point-to-point communication. Although link layer
protocols would provide some relief against this issue, robust-
ness of network operation against message losses needs to be
addressed, especially if the physical communication medium is
wireless. Second, one can imagine situations where some sen-
sors operate on a slower time scale than others, thereby slowing
down the network under the lock-step message-passing algo-
rithm outlined in Section III. This limitation may be overcome
if each sensor contributes to the collaborative effort at its own
time scale. In both cases described above the network operation
is asynchronous in the sense that not all links are necessarily
active at each round of the algorithm. We next establish the at-
tendant effects of this generalization in stochastic setting.

We consider the broadcast operation of Section V in the case
when the connectivity of the network is time-varying. Namely,
evolution of the messages is represented as

(30)

where is a binary matrix and
is a diagonal matrix with

so that in particular columns of are probability vec-
tors. The matrix identifies sensor nodes that communicate in

Fig. 4. Convergence rate of consensus for different packet loss probabilities:
Y axis denotes percentage of sensors that have achieved consensus and X axis
denotes time index.

round . Namely, for any two sensors , the corresponding
entry of is defined as

We shall say that link is functional at round if
. The system (30) then describes the evolution of

local beliefs when each transmitted message is normalized by
the number of outgoing functional links (i.e., the number of re-
ceivers of the message) in the same round. We point out that such
an algorithm is consistent with the currently employed wireless
protocols. A simulation of the impact of packet losses illustrated
in Fig. 4 shows that the modified BP algorithms are relatively
robust to packet losses.

Theorem 6.2: Suppose that the matrices are iid,
and that is irreducible. Then for each there exists
a random sequence such that

almost surely

for . In particular, for large enough values of ,
the vector and the posterior distribu-
tion have common modes.

We prove the theorem via an adaptation of the techniques in
[29] for asymptotic analysis of stochastic-matrix products. We
start with auxiliary results.

Given a square matrix define

Let , so that is a stochastic matrix and

(31)
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Lemma 6.1: Under the hypothesis of Theorem 6.2, for each
there exists such that for

Proof: It suffices to show that for large enough , all entries
of the matrix product

are positive with probability at least . By definition of s,
entries of this product are positive if and only if all entries in

(32)

are positive. The th entry in the product (32) is positive
if and only if a hypothetical message that originates at node
in round can reach node by round by traversing
a functional link in each round. Note that a self-looping link is
always functional due to the identity matrix contained in each
factor of (32). Let be the probability that link is
functional at a round, so that without loss of generality

, and let be
independent geometric random variables where has pa-
rameter . Since is irreducible by hypothesis, the
time to reach any node from any other node via functional links
is stochastically dominated by . Define the
random variable as

has positive entries

Since there are node pairs, is stochastically dominated by
. Let be the mean of this latter variable

so that

where last inequality is an application of Markov’s inequality.
The lemma follows by choosing .

Corollary 6.1: Since each takes values from a fi-
nite set, there exists a positive number such that

, for .
For a square matrix define

(33)

The following lemma is a recitation of [29, Lemma 2].
Lemma 6.2: For

Proof of Lemma 6.2: Fix and . Appeal to
Lemma 6.2 to write

Since each factor of the product on the left-hand side is at most
1, Corollary 6.1 implies that the product is larger than only if
there are more than values of with

Lemma 6.1 now implies that for

where does not depend on . The left-hand side is thus sum-
mable in ; in turn

almost surely

due to the Borel–Cantelli lemma. Arbitrariness of implies
that converges, hence by definition (33), the
rows of the product almost surely become iden-
tical (though they do not necessarily settle to a fixed vector). In
light of equality (31) the theorem follows by identifying
with the th entry of an arbitrary row of .

Remark 6.1: Note that the proof of Theorem 6.2 relies only
on Lemma 6.1; hence the conclusion of the theorem holds under
much more relaxed assumptions on the statistics of

. From a deterministic perspective, it is not difficult to see
that this conclusion holds if each link is functional infinitely
often, provided that the communication graph is irreducible and
aperiodic.

Remark 6.2: The algorithm requires neither measurement nor
estimation of packet loss probabilities.

To illustrate the effect of packet losses we have performed a
number of numerical experiments. A typical simulation of the
average convergence is illustrated in Fig. 1 for sen-
sors placed on a uniform grid where any two nodes that are sepa-
rated by minimum internode distance are connected with a bidi-
rectional communication link. Here denotes the message loss
probability on each link, and losses are taken to occur indepen-
dently for different links and at different times. From simula-
tions it appears that the convergence rate degrades gracefully
and we do not see appreciable differences even for large packet
loss probabilities.
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TABLE I
ENERGY SCALING FOR DIFFERENT SCHEMES; d IS THE INTERNODE DISTANCE;
E IS THE ENERGY REQUIRED TO TRANSMIT 1 bit OVER A UNIT DISTANCE; �

IS THE ATTENUATION COEFFICIENT FOR TRANSMIT ENERGY IN FREE SPACE

VII. ENERGY BUDGETS

In this section we derive energy budgets for decentralized and
distributed detection schemes that are alluded to in the introduc-
tion. We consider a sensor network deployed on a square grid.
The results are listed in Table I.

The objective of this section is to provide preliminary base-
line comparisons between the two schemes and a deeper study
will be the subject of future work. The comparison is compli-
cated by the fact that these schemes are not strictly comparable.
Decentralized detection attempts to achieve good false alarm
and detection performance averaged across all realizations
of sensor observations, while distributed approach attempts
to achieve centralized MAP consensus for every observed
realization.

The setup of the problem considered in this section is
as follows. nodes (vertices) of the graph are located
at coordinates

, on a uniform square planar
grid. The edges of the graph are formed by connecting any two
nodes that are at a distance from each other. The transmit
energy is assumed to attenuate with distance as , for some

. This implies that if is the joules/bit required for reliable
decoding over a unit distance then is the corresponding
energy required for distance .

Decentralized Case: We analyze decentralized detection for
point-to-point and multihop communication schemes with the
fusion center located at the center of the square area. In the
former scheme each node communicates its local decision di-
rectly to the fusion center. In the second scheme each node re-
lays its local decision to a neighboring node, which, in turn,
forwards that information in the direction of the fusion center.
For the point-to-point scheme, the average energy consumption/
node, , where is the distance from the th
node to the fusion center. A lower bound can be computed by
observing that the set of nodes

for each fixed value of contains nodes at a
distance no less than . Therefore

For the multihop scheme, we appeal to the max-flow min-cut
theorem. Consider a cut that separates the set of nodes into

with
, where is a positive integer smaller than

. The number of bits passing the cut from towards
the fusion center located in is equal to the number of nodes
in the cut set, which is equal to . Now
this traffic must be supported by nodes that are located
at the boundary of the cut set and the total energy required is

. Summing this energy over all and
normalizing with respect to the number of nodes gives us:

Distributed Case: Our task here is to determine the amount
of energy expended per node in realizing a MAP consensus.
First, the results of Section VI indicate that the distinction be-
tween messages and bits is unnecessary since each message cor-
responds to a constant number of bits (irrespective of the number
of nodes). Therefore, we are left to determine the number of
messages transmitted per node to achieve a MAP consensus. We
derive an upper bound by drawing upon results from mixing rate
of Markov chains. First, from [9], it follows that for a stochastic
matrix with being a symmetric incidence ma-
trix (as in Section V):

where is any positive vector that sums to unity and is the
second largest eigenvalue in magnitude. We are left to derive an
upper bound for the second eigenvalue. For the uniform square
grid these bounds follow from well-known results from graph
theory [9], [23]. First, the square grid graph can be decomposed
in to a product,4 of line graphs and . Next, eigen-
values of the adjacency matrix of the grid graph are the sum of
the eigenvalues of and respectively. For our situation the
graph (and ) correspond to line graphs, i.e., vertices at lo-
cations, and edges connecting
any two nodes at a distance . The eigenvalues of the line graph
are . Conse-
quently, the second eigenvalue of the (normalized) adjacency
matrix, , approaches 1 as , where is some constant.
This implies that the energy budget required for achieving the
MAP consensus scales as Joules/node.

Hierarchical: The above result forms the basis for the hierar-
chical scheme. In this scheme sensor nodes are organized hier-
archically. In the lowest layer small clusters of sensors achieve
their respective consensus within the cluster. A cluster head is
selected within each cluster and subsets of cluster heads form
higher layer networks and achieve consensus. Next, a cluster
head for each higher level network can form the next layer and
so on. We derive the average energy requirements for such a
scheme. Suppose identical clusters each of size achieve
consensus through local message passing with each message
expending energy . The total energy is the product of

4(v; w ) and (v;w ); (v ; w) and (v ; w) are edges in the product graph if
w ;w and v ; v are adjacent in G and G , respectively.
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number of clusters , number of nodes/cluster , number of
messages/cluster required to achieve consensus , and
amount of energy/message . Therefore

The average energy nodes . To
apply this idea to the hierarchical setup we proceed as follows:
The first layer is partitioned into uniform square
clusters of nodes. In general the th layer contains

clusters of nodes. For nodes there are a maximum
of hierarchical layers. Now, suppose
is the energy required per message transmission at the th layer
then the total energy, expended up to the th layer is

We are left to compute the energy/message expended at the
th layer. To compute this, we note that if the internode distance

is for the first layer, then it is in the second layer. In
general, for the th layer the internode distance, .
We next consider two possible scenarios.

A) Known cluster head locations: Here intermediate nodes
between any two cluster heads serve as relays and forward
messages from one cluster head to the other;

B) Unknown cluster head locations: Here, the intermediate
nodes still serve as relays but diffuse messages to the next
cluster head, which then updates the message and retrans-
mits.

In scenario A), the energy expended/node/message at the th
layer is since multihops at the th layer
are required to complete one th layer message transmission.
For scenario B) the corresponding relation is ,
which follows from the fact that the number of hops to reach
the nearest th layer clusterhead takes hops of th
layer. In this time a maximum of nodes at the th layer
have been used as relays for each th layer node. Substituting
these facts and noting that , we obtain for scenario
A) that J/node, while for scenario B)

J/node.

VIII. CONTINUOUS PARAMETER ESTIMATION

The techniques of Section VI-B can be extended to con-
tinuous parameter estimation via standard approximation
techniques. Namely, let be a continuous random variable on

for some integer , and let the observations
be conditionally independent given . If has finite mean,
then given there exists a positive integer , a finite
partition of , and constants

such that

where

When each event is interpreted as a separate hy-
pothesis , the distributed algorithm of Section VI-B can be
employed to identify the event with the largest posterior prob-
ability, and hence the (centralized) MAP estimate of can be
approximated up to a desired accuracy.

It is worthwhile to consider Gaussian estimation problems in
more detail, since distributed algorithms that entail no approxi-
mation errors can be identified for such cases. Towards that end,
suppose further that and are jointly Gaussian,
and define, for each , the locally computable quantities

Note that the conditional independence assumption implies that
the centralized MAP estimate of has the form

Consider now a message-passing algorithm that involves two
types of messages represented by the two decoupled linear sys-
tems such that

where is as defined in Section VI-B. Theorem 6.2
now implies that

for each sensor node .

IX. DISCUSSION AND CONCLUSION

We have considered the scenario of distributed noisy sen-
sors observing a single event with conditionally independent ob-
servations. The sensors are distributed and can only exchange
messages through a network. The sensor network is modeled
by means of a graph, which captures the connectivity of dif-
ferent sensor nodes in the network. The task is to arrive at a
consensus about the event after exchanging such messages. The
novelty of the paper lies in applying belief propagation as a mes-
sage passing strategy to solve a distributed hypothesis testing
problem for a prespecified network connectivity. We show that
the message evolution can be reformulated as the evolution of
a linear dynamical system, which is primarily characterized by
network connectivity. Next a family of modified algorithms are
considered. These algorithms converge to a MAP consensus
irrespective of graph topology and are robust to random link
failures and finite link capacities. Preliminary results on en-
ergy scaling laws are then derived for a uniform grid network
topology, which compare favorably with respect to conventional
decentralized detection schemes. Finally a natural extension to
distributed estimation is also presented.

We briefly discuss some of the immediate extensions of
methods presented here(see [1], [16] for more details). First,
we discuss extensions to the so called dependent noise case.
If the observations can be modeled as a Markov random field
when conditioned on the underlying hypothesis, it turns out
that the basic methods derived in this paper will apply. The
MRF models generalize spatially dependent Gauss–Markov
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noise processes. To see how the methods generalize, consider
the setup of Section II with the modification that for each
realization of observation vector , the joint
probability density function decomposes as

where is the so called set of edge potentials under
hypothesis . The decomposition follows from the Hammer-
sley–Clifford theorem (see description in Section III). The main
point now is that

Therefore, the basic question of arriving at a MAP consensus
amounts to reliably comparing the sum of edge potentials
between any two hypothesis, which is similar to the problem
studied here. The methods discussed here can also be ex-
tended to temporally correlated noise processes and requires
distributed Kalman filtering techniques, which is presented in
[1]. We have also shown that these methods have relevance to
target tracking [1], where the local innovations processes can be
correlated and the methods described in this paper can be gen-
eralized to fuse such correlated processes. Finally, our recent
work on energy scaling laws [16] describes a totally ad hoc,
asynchronous method based on information coalescence that
achieves the same exponential energy savings for distributed
detection described in Section VII.

APPENDIX

PROOF OF LEMMA 4.2

Consider the region of unit area in which nodes
are uniformly distributed with edges between any two
nodes if (21) is satisfied. Suppose is a circle of radius

around the node . The edge con-
nectivity matrix as defined in (8) is denoted by and the
accompanying graph by . We are interested in the
asymptotic properties as .

Proof That Number of Links Approaches a Constant: We in-
troduce the random variable to indicate whether or
not node, , is within the radius of node . The sum

is the total number of nodes that are linked to node .
It follows from the uniform distribution that,

. Therefore,
. It follows from Chernoff bound that

where we have chosen in the latter expression. We
can repeat this argument for nodes in the network, as follows:

The upper bound converges for . By a direct application
of Borel–Cantelli lemma it follows that [31]

almost surely

links/node

w.h.p. (34)

Proof of Primitivity: This follows from in [13, Theorem
8.5.3], which states the following: Suppose is an irreducible
and non-negative matrix associated with the directed graph,

. Let be the set of all path lengths
that start at node and end at . The matrix, , is primitive
if the greatest common divisor of path lengths is equal to
one for every . Irreducibility can be established through
strong connectedness (see Theorem [6.2.24] in [29]) of the
induced graph. Strong connectedness requires that for any
pair of nodes, there is a directed path of finite length. To
establish strong connectedness of the induced graph we
let be any two edges. Since
the underlying graph is connected, it follows that there
is a directed path from node to node . Suppose, this
path contains a directed cycle on , i.e., the path contains
the sequence of edges , which form a directed cycle. If

it is always possible to obtain a modified path that
does not include this cycle (simply delete from the path).
If not, consider circles of radii centered around
nodes , respectively. Consider any node other than
in the intersection of these circles (which exist with probability
approaching one). Replace by the directed edge
and augment with the directed edge . The new path
now formed is a feasible directed path and establishes strong
connectedness and therefore irreducibility. Primitivity follows
from the fact that the intersection of circles contain multiple
nodes with probability approaching one. Therefore, paths of
even and odd lengths exist with probability approaching one.
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