
1

Supporting Concurrent Task Deployment Wireless Sensor Networks*

S. Guo, C. Fan, and T.D.C. Little
Department of Electrical and Computer Engineering

Boston University
8 Saint Mary’s St., Boston, MA 02215, USA

{guosong,cxfan,tdcl}@ bu.edu

June 1, 2008

MCL Technical Report No. TR-06-01-2008

Abstract—Deploying large-scale sensor networks involves the programming of many devices
based on a desired mission. Techniques for reprogramming devices in situ have been
investigated to mitigate the effort required when program updates are required or when the
mission of the system changes. We consider a technique that is intended to support multiple
concurrent missions by the system by exploiting available resources of the sensor network. In
essence, our model is based on a tasking scheme, a common framework for the interchange and
instantiation of tasks on multiple devices, and the use of attributes defining the resources in the
system. A prototype system has been implemented to demonstrate and validate the concepts
using the Imote2, a 32-bit mote architecture that has been configured with embedded Linux
enabled with Java. Several applications have been rendered as tasks that are injected into a
multi-node sensor network. Results demonstrate the support of concurrent overlaid applications
in the system permitting task injection, maintenance, and termination. Performance evaluation of
the scheme indicates benefits over an epidemic model of code dissemination.

* In Proc. Intl. Symp. on Network Computing and Applications (NCA 2008), July 11, 2008,
Cambridge, MA. This work is supported by the NSF under grant No. CNS-0435353. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

2

1. Introduction

Wireless sensor networks (WSNs) are expected to encompass very large numbers of devices.
For example, in a building automation scenario, it is not unreasonable to expect many sensors
and actuators to exist in each room. These might be smoke detectors, light switches, lights,
HVAC valves and thermostats. History shows us that these devices continue to reduce in size,
energy consumption, and performance, and as with other maturing technologies, the dominant
lifetime costs become tied to installation and maintenance. In the case of installation, a desirable
feature of, for example, a wireless thermostat, is its ability to be installed by a non-specialist and
for it to subsequently discover and associate with its corresponding HVAC control loop. We
claim that this involves discovery processes enabled by the use of localized information realized
as attributes.

Fig 1: WSN in Building Automation Example

Similarly, maintenance of a WSN can potentially be costly from a labor standpoint. Physically
touching each device can be of an equivalent cost as installation. Replenishment of devices, as
an option presents heterogeneity challenges as newer devices often rely on more recent code
releases or features. Thus efforts have been applied to create code dissemination schemes that
permit updates to be propagated wirelessly, “over the air” to all devices in the system.

However, these schemes are usually an all-or-nothing activity for various reasons, primarily
because the devices are resource limited and are challenged to support large or complex process
management, and because of the goal to have predictable behavior by limiting the system to a
single application. We challenge these assumptions by targeting specific objectives:

1. Allow the WSN to support multiple coexisting missions
2. Allow the missions to be dynamically created, injected, and retired
3. Be energy efficient as a goal but not a primary motivation

Wireless Thermostat Node

Motion Detector Sensor Node

Wireless Smoke Sensor Node

HVAC Actuator Node

3

Our approach for these objectives is to adopt a tasking model. A mission is defined as a WSN
function, such as an HVAC-thermostat-actuator control loop. With a tasking model the function
is implemented by code rendered and configured on the motes involved in the control loop. Thus
there can be n task instances that exist for this function on a subset of the WSN. In order to
implement this model we must achieve certain behaviors that emerge:

1. Concurrent functions: multiple control loops in the WSN that are non-intersecting (e.g.,

multiple rooms)
2. Concurrent tasks on a device: multiple functions that leverage the same sensor
3. Baseline propagation of tasks for installation and propagation in the system
4. Injection of missions, defined by tasks, into the system for dissemination, adaptation, and

execution
5. Limiting of task propagation and instantiation to the devices that need the tasks
6. Mobile code translation to accommodate functions not known in advance

With this model, we design general paradigm for programming subsets of a WSN. An artifact

of this model is the ability, by leveraging attributes associated with devices and their data, to
form specialized communication abstractions [1].

In the remainder of the paper we describe a proposed framework for supporting these
concurrent missions with a tasking model. The scheme is supported and demonstrated by the use
of Java on the Imote2 platform configured with ARM-Linux. We also demonstrate performance
of the scheme as assessed using the OPNET network simulation environment. Although we
reference a building automation scheme, the results are expected to generalize to many WSN
scenarios.

2. Related Work

Wireless sensor networks are characterized by low cost, low power embedded sensor devices

that are network-enabled. For most applications, sensor nodes in a WSN are initialized once and
intended to operate for the duration of the application or mission. However, shortcomings of this
approach include the costs associated with implementing code updates. Thus there has been
considerable interest in alternative models to (a) reprogram, (b) design APIs for programming, (c)
better map intereractions among nodes to the WSN via programming techniques. Hood [15] is a
neighbor-based programming framework addressing the latter topic. This scheme parameterizes
the network application as different attributes and provided filtering mechanism to select and
share data based on data attribute. Abstract Regions [1] generalizes and improve the idea of
Hood via abstractions above required inter-device communication. It also considers mechanisms
for data aggregation. Mate [8], TinyDB [5], Trickle [9], and Squawk [22] address code
dissemination with a focus on efficiency. Mate and TinyDB use high-level virtual code
representations to reduce the code transmission cost. Mate is quite functional but is limited in
the scope of instructions that can be achieved in its virtual machine and is best suited for simple
applications. Trickle improves Mate, with a remedy for simple flooding for dissemination by
limiting code propagation to subsets of network nodes. Squawk introduces Java as a WSN
programming tool and uses Squawk bytecodes to transmit a program.

Unfortunately these code dissemination schemes do not support incremental application
updating. References [4] and [24] provide some solutions. Reference [24] develops an

4

algorithm that can efficiently encode program updates. An edit script is generated by host
program and corresponding operations are cast on each device at the instruction level. However,
this work is essentially a coding scheme with strong processor dependencies. Reference [4]
describes a generalized program update scheme. Without prior knowledge of the program code
structure, this scheme is designed to distribute key changes of new version of a program.
However, a shortcoming is the inability to distribute different application code to different
subsets of nodes. MOAP [25] and Deluge [3] are two multi-hop network programming
implementations. MOAP succeeds in propagating program code to a selective number of nodes
without saturating the whole network. Deluge disseminates the program in an epidemic fashion
and improves the throughput using optimization techniques like adjusting transmission rate.
Unfortunately, the required rebooting process of new program loading degrades the performance
of network application and this is shown in our OPNET simulation results.

3. Task Based Reprogramming

Our proposed tasking scheme relies on three key components: (1) a decomposition of tasks, (2)

installation or injection into the system, and (3) message processing based on attributed data at
each node. These are each discussed in detail below.

3.1 Task Decomposition

We seek to enable incremental, functional updates, and the ability to support concurrent missions.

In our scheme we model a sensor net application as a mission supported by a set of independent and
identical tasks that are disseminated on a subset of the WSN devices (a mission is achieved by identical
tasks disseminated on a subset of all nodes). However, this subset is guided by attributes associated with
the devices and predicates that aid in their instantiation. For example, one can envision a temperature
monitoring application that is instantiated on nodes that possess temperature sensors with two
independent task modules: a routing task and a temperature measuring task as shown in Fig 2. Other
nodes in the network need only to support the routing task. Multiple missions are achieved by the
injection of multiple tasks that are disseminated to nodes with matching attributes. The decomposition
process is based on the analysis of the running application. Right now we do not have a general algorithm
for the decomposition but we require the decomposition to achieve the following goal. We denote the
function of the running application as F(A), the function of the decomposed task as F(

i
T), the

decomposition requires that:

 1) !
=

=
N

i

i
TFAF

1

)()(

 2) All of the decomposed task
i
T form a partition of the general application A. A Partition of a set

A is a set of disjoint subsets of A, whose union is A

IU)(, , jiifTTATAT ji

i

ii !==" !#

The independence of the different tasks in the WSN benefits the task installation since it ensures no
interference with currently running tasks. Every node contains a task table and tasks run in parallel on the
node. Furthermore, the process of new task installation is eased by only adding a new entry to the node’s
existing task table.

5

Fig 2: A Mission is Comprised of Multiple Identical Tasks Mapped to Attributes of Nodes

3.2 Task Installation

Unlike existing over-the-air programming (such as Deluge [3] and Sun Spot[22]) which feed

all the nodes with the same code, we install different tasks onto different nodes based on the
predicates used in dissemination that are applied on node attributes.

Our task installation and forwarding scheme are inspired by Content Based Routing protocol
proposed in [10]. In this scheme, a set of predefined predicates on each node can be used to
delineate a subset of nodes to target our tasks. These predicates per node are called the
Installation Predicate (IP). The Installation Predicate is defined as follows:

IP = ...},{ ,32,1 ppp where
i
p is individual predicate on each node

The Installation Predicate (IP) over the received task code
i
T defines a task addressing

scheme.
IP(

i
T)——>{true, false}

If the result is true, the node will install the received task module, otherwise the node ignores
the task and forwards it to the proper neighbors.

In the forwarding process, each node forms a Forwarding Predicate (FP) related to each
neighbor using the algorithm proposed by [10]. We denote the set of all Neighbors of each node
as N and give a Task module Forwarding Function (TFF) to identify the neighbor which needs to
receive the task module code:

})(:{),(TrueTFPNiiFPTTFF
ii
=!"=

Task Table

Task One: Measure Temperature Application: Temperature Monitoring

Task Two: Routing Temperature data to gateway

6

Fig 3. Illustration of Wireless Task Installation

During the task installation process, there is no reboot or reset operation as associated with

other types of over-the-air programming. Every application can be modified and updated by
stopping, retiring, and adding different tasks. The task installation and deletion process is
intended to leverage common data structures on each node (e.g., neighbor connectivity
information) yet not interfere with concurrent tasks. Optimization of inter-task cooperation is
beyond the scope of our current scheme. The installation process is illustrated in Fig. 3. Here a
set of running applications is defined by multiple tasks. The sender converts the updated task
(Task 3 in Fig. 3) into byte code and transmits the code over the network. The receiver converts
the byte code back to a task module and inserts the task module into its own task table to
accomplish the application updating without interfering the other running task modules.

3.3 Message Processing

In our framework, the node behaves as a message forwarder. Fig.4 shows the message-processing

framework within a node. Every incoming message is first parsed by an interpreter according to the
predefined message format. The Interpreter will then forward the message to a proper task module for
further processing based on the attribute forwarding scheme. The processed messages are all sent to a
package module for duplicate removal. This module will repackage the received messages and send them
out.

Fig 4. Message Processing within a Node

3.4 Main Features of the Task Based Reprogramming

Independent tasks serve as the logical programming units mapped to nodes in the network. The

application can be easily modified or updated by installing, updating and deleting individual
Task Modules.

7

We use predicates, which are predefined installation rules, to guide the installation of the task
module. Predicates enable us to install different tasks on different nodes based on the nodes’
property. This feature prevents the node from installing the code unrelated to its function and
thus saves resources.

There is no reboot or reset operation on the node. The node’s function is achieved by
combining different independent and parallel running task modules together. Task independence
along with the message processing scheme guarantees that the update of one particular task
module will not interfere with other running tasks. Thus there is no direct impact on the
network’s performance.

Finally, the support for independent tasks allows the injection of multiple missions represented
by independent tasks. Different missions are achieved by injecting unique tasks, or identical
tasks with different injection predicates.

4. Proof of Concept Implementation of Task Based Reprogramming

We implemented our framework on the Crossbow Imote2 platform with attached sensor
boards. The motes were installed with embedded Linux v.2.6.14 including Java v.1.3.0. Java was
selected due to its popularity, convenient APIs, and the potential to support code mobility.
Support for handling multiple tasks is achieved by Java multithreading operations. Code
injection is achieved using Java’s mobile code transmission architecture. However, some effort
was required to adapt the Java VM to support instantiations from foreign nodes that received
injected code.

a) single-hop scenario b) multi-hop scenario

 Fig 6. Prototype Setup
In our demonstration of the framework we programmed a base station with two parallel tasks

that are injected into a set of autonomous WSN nodes. The first task enables each mote toggle its
blue LED once per second. The second task leveraged the Imote2 sensor board to periodically
sample temperature. This drives each node to act as an aggregator of temperature values from
each of the other nodes in the network. The node with the highest value illuminates its own red
LED. In lab tests we successfully instantiated these concurrent tasks in single-hop (star) and
multi-hop configurations shown in Fig 6. For the first scenario (Fig. 6a), the two satellite motes
are within one hop range of the base station. We observe that the two satellite motes would
install new task simultaneously which is a gain from the code broadcast of the base station. For

Base Base

8

the second scenario (Fig. 6b), one of the satellite motes is out of range of the base station; the
three motes consist of a two hop count network. Periodically broadcasting of task list makes sure
the farther mote from base station could correctly install the new tasks. In our demonstration we
implemented some basic Java APIs for Imote2 programming, such as Task interface, Sensing
interface, Listening_Message interface, Data_Sending interface, etc and these APIs could be
easily ported to any other sensor node which is equipped with a standard java virtual machine.
We hope in the future we could provide more and more standard Java APIs of our scheme for the
users to make the programming of WSN simpler and thus encourage more effort to be given to
investigate the potential of WSN application instead of worrying about the implementation
complexity.

5. Simulation

Although the focus of our efforts have been directed towards specific functional goals, we

have sought to understand the practical limitations to our design and implementation strategy. In
this section we investigate the performance of the TBR scheme in a comparative analysis with
other code dissemination techniques. We investigated performance by modeling the TBR scheme
and its instantiation in the Opnet network simulation environment. The details of our
performance study are shown below.

5.1 Performance Metrics

We quantify performance using the following dimensions:

1. Task Dissemination Percentage: Fraction of nodes that have been injected required tasks
in the network during simulation

2. Application Dissemination Time: Average time cost for a complete task dissemination
over the entire network

These two parameters are critical to understanding the behavior of task injection. We expect the
use of Java to incur penalties in terms of bytes transmitted and do not dwell on this metric.

5.2 Task Dissemination Protocol

There are two main timers in our protocol: TAD_TIMER(Task Advertising timer) which

controls the period of advertising the node’s task list and RCV_TASK_Timer(Receive Task
timer) which control the expiration time of receiving a task block code. Two kinds of packets are
applied: RQT_Packet(Request Task Packet), which inquiry a particular task and
RQN_Packet(Request Neighbor Packet) which is used to detect the neighborhood. We perform
analysis based primarily on this Task Dissemination Protocol which is specified below.

1. Each node maintains its own task table and periodically broadcasts its task list to its
neighbor until TAD_TIMER (task advertising timer) is out. There are two states of the
node: normal and listening to task code.

 Pseudo Code:
If(TAD_TIMER expire && node_state == normal state)

{ Broadcast(TAD_Message) }

9

2. Receiver receives TAD message and checks the task injection rule to decide whether to

inject this task or not. By default, the rule is to inject the first new task found in the task
list. When a task is needed to be injected, the receiver sets the new task parameters to the
inject phase state and jumps to listen task state: three task parameters are used: Name,
Source and State.

 Name: task name to be injected;
 Source: where the task comes from, eliminating the duplicate task injection from other
 node.
 State: the state of the task:(0: temp task; 1: permanent task; -1: destroyed task)
 Pseudo Code:

If(Receive TAD_Message && nodestate== normal state)
 {
 Received_Task_List=getTaskList(TAD_Message);
 If(CheckTaskInjectRule(Received_Task_List)==true)
 {
 Jump State to Listening Task Code;
 Set RCV_TASK_TIMER;
 Send(RQT_Message)
 Waiting Task;
 }
 }

3. Receiver jumps from normal state to L_Task state (Listening Task Code State) waiting

for incoming task and ignoring other interrupts
4. Receiver sends back RQT_PACKET to the specified task source node
5. Sender receives the first RQT_PACKET will fall back a random time in order to achieve

a multicast of task code. The nodes in the neighbor list with the same task requirement
could benefit from the broadcast of task code.

 Pseudo Code:
If(Receive RQT_Message && state == normal state)
 {
 Fall back a slight time;
Broadcast(Task_Code);
 }

6. Receivers with different task requirements (different desired tasks) will simply discard

the code and wait for the next round task inquiry
7. When the task injection succeeds or injection times out, the receiver will jump back to

normal state. The node will add a new task in its local task list (Task Map) if the injection
is successful. Otherwise, the node jumps back to normal state, deletes the temp task from
task list and resets the task state to -1

 Pseudo Code:
 If((RCV_TASK_Timer expire || Task Inject Success) && state == listening task

state)
 {

10

 Jump back to normal state;
 }

8. During normal state, the node periodically broadcasts RQN_PACKET to push itself into

the neighbor's neighbor list.
9. Receiver adds the sender of RQN_PACKET to its neighbor list.

5.3 OPNET Simulation Model

We built a simulation environment for the Task Dissemination Protocol using OPNET based

on grid-shaped network topology shown in Fig 7: (node_0 is the base station).

Fig 7. Grid Topology for Simulation

Radio transceivers in the node model have the following parameters: a 2.4 GHz center
frequency, a single physical channel with a bandwidth of 5 MHz, and the raw bit rate of 250
kbps. These parameters are consistent with the standard physical channel setup used in the IEEE
802.15.4 used by the Imote2s in our testbed (Section 4). We also customized the receiver group
pipeline stage function such that the transmission range of a node is set to 10 meters for
simulation

Each node contains four components: radio receiver, processor, radio transmitter, and antenna
as shown in Fig 8.

Fig 8. Node Model

Fig 9 illustrates the implementation of the processor module, which is the core implementation

of the Task Injection Protocol

11

Fig 9. Processor Module Implementation

5.4 Opnet Simulation Results

For simplicity in the simulation we do not consider radio collision problems and assume that

they are addressed by an underlying MAC layer. We regulate the size of each task to be identical
and equal to 1kB. In order to avoid collision, we set the TAD_TIMER expiration to be a random
time uniformly distributed between [5, 10] seconds. The node backoff time is also random,
uniformly distributed between [0.2, 0.4] seconds.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(second)

t
a
s
k

d
i
s
s
e
m
i
n
a
t
i
o
n

p
e
r
c
e
n
t
a
g
e

Task Dissemination in a Forty-Nine Node Network

Fig 10. Task Dissemination Time w.r.t Network Size(size = 49)

We first analyze the single task dissemination time over different sized network. We apply our
task injection scheme on a square mesh network with the size range from 4 (2x2) nodes to 49

12

(7x7) nodes. Fig 10 shows the result for the largest network size (7x7). From the results, we
observe that a task can be completely installed on all nodes in a 49-node network spanning an
area of 360 square meters within one minute. This time is negligible compared to the lifetime of
a typical WSN and little impact on the overall performance of the network.

We further measured the task dissemination speed on different sized networks. The definition
of average task dissemination speed is defined as follows: The result is provided in Fig 11.

Timeion Diseemiantn Applicatio

Install toNeed Tasks of # Total
 SpeedAVG =

0 5 10 15 20 25 30 35 40 45 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

network size(number of nodes)

t
a
s
k

d
i
s
s
e
m
i
n
a
t
i
o
n

s
p
e
e
d
(
#

o
f

t
a
s
k

p
e
r

s
e
c
o
n
d
)

Average Task Dissemination Speed vs Network Size

Fig 11. Task Dissemination Speed vs. Network Size

Fig. 11, illustrates an advantage of our scheme; the task dissemination speed increases with the
size of the network as would be expected as participation by nodes increases as propagation
radiates. By further analyzing the relationship between Task Injection Completion Time and
Network size we reach the results shown in Fig. 12.

13

0 5 10 15 20 25 30 35 40 45 50
15

20

25

30

35

40

45

50

Network Size(number of nodes)

t
i
m
e
(
s
e
c
o
n
d
)

Task Dissemination Completion Time vs Network Size

Fig 12. Task Dissemination Time vs Network Size

Fig. 12 demonstrates that task dissemination time complexity in our scheme grows almost

linearly with respect to the size of the network. This result indicates good scalability of our
scheme.

Clearly injecting smaller, autonomous tasks is more efficient than injecting large monolithic
applications. Fig. 13 shows a comparison of task-based injection vs. injection of a single large
application that can be represented as five tasks with the scheme which is adopted from reference
[22] across a 7x7 square mesh network (Fig. 14). These results favor the tasking model in terms
of installation time.

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(second)

P
r
o
g
r
a
m

D
i
s
s
e
m
i
n
a
t
i
o
n

P
e
r
c
e
n
t
a
g
e

Multi Task vs Single Application Dissemination

Multi_Task

Single_App

Fig. 13 Multi Task Dissemination vs Single App Dissemination

14

Fig 14 Topology of 49 Nodes

Based on the simulation results we claim that compared to the traditional program
dissemination scheme, our tasking approach has beneficial functional and performance
characteristics. Additionally, by eliminating mote rebooting processes as required for other
schemes, we can reduce the time for code installation.

6. Conclusion and Future Work

We described a task-based programming methodology that permits the execution of concurrent

missions in a WSN. This model is demonstrated with a Java implementation and shows potential
for performance gains due to the reduction in the unit of reprogramming of an application.
Network updating becomes an easier job with the help of proper application decomposition and
individual update of the task module on each mote; Run-time updating is achieved and new task
installation has no interference with other running applications; Network programming and
reprogramming are simplified by using Java and its standard APIs. Future work involves the
creation of more complex WSN missions as implemented as tasks and to identify the
performance limit of concurrency using Java in this manner. It is our goal to simplify the process
of deploying sensor networks using with the task model and Java.

References

[1] M. Welsh, Geoff Mainland, “Programming Sensor Networks Using Abstract Regions”, NSDI

2004, p. 29-42.

[2] Boulis and M. B. Srivastava, "A Framework for Efficient and Programmable Sensor
Networks", In Proc. of OPENARCH 2002, NY, p.117-118.

[3] A. Chlipala, J. Hui and G. Tolle, “Deluge: Data Dissemination in Multi-Hop Sensor
Networks,” UC Berkeley CS294-1 Project Report,Dec. 2003.

1 hop

12 hops

Base

15

[4] J. Jeong and D. Culler, “Incremental Network Programming for Wireless Sensors”, IEEE

SECON 2004, p. 25-33.

[5] S. R. Madden, M. J. Franklin, J. M. Hellerstein and W. Hong, “TinyDB: An Acquisitional

Query Processing System for Sensor Networks”, ACM Transactions on Database Systems, v
30, n 1, March, 2005, p. 122-173.

[6] P. J. Marrón et al., “Management and Configuration Issues for Sensor Networks,” Int’l. J.
Network Mgmt, vol. 15, no. 4, July 2005, p. 235–253.

[7] A. Carzaniga, M.J. Rutherford, and A.L. Wolf, "A Routing Scheme for Content-Based

Networking", Proceedings of IEEE INFOCOM 2004. HK p.918-928.

[8] P. Levis and D. Culler, “Mat´e: A Tiny Virtual Machine for Sensor Networks,” ASPLOS,
ACM SIGOPS Operating Systems Review v.36, p. 85 – 95.

[9] P. Levis, N. Patel, S. Shenker, and D. Culler “Trickle: ASelf-Regulating Algorithm for Code

Propagation and Maintenance in Wireless Sensor Networks”, NSDI 2004, p.15-28.

[10] A. Carzaniga and A.L. Wolf, "Forwarding in a Content-Based Network", Proceedings of

ACM SIGCOMM 2003 Karlsruhe, Germany. August, 2003, p. 163-174.

[11] R. Tynan, , D. Marsh, D. O'Kane, and G. M. P. O’Hare, “Agents for Wireless Sensor

Network Power Management”, Proc. of the 2005 ICPPW, p. 413-418.

[12] L. L. Petrea, D. Grigoras, “Towards Introducing Code Mobility on J2ME”. ISPDC 2005, p.

173-182.

[13] C. Tschudin, H. Gulbrandsen, H. Lundgren, “Active Routing for Ad-hoc Networks”, IEEE

Communications Magazine, v 38, n 4, Apr, 2000, p 122-127.

[14] K. Whitehouse et al, "Marionette: Using RPC for Interactive Development and Debugging

of Wireless Embedded Networks". IPSN/SPOTS '06. Nashville, TN, April 21, 2006.
P.416-423.

[15] K. Whitehouse et al. "Hood: a Neighborhood Abstraction for Sensor Networks."

MobiSys’04. Boston, MA, June, 2004. p.99-110.

[16] C. Intanagonwiwat, R. Govindan, D. Estrin, “Directed Diffusion: A Scalable and Robust

Communication Paradigm for Sensor Networks” Proc. of the Sixth Annual International
Conference on Mobile Computing and Networking, 2000, p 56-67.

[17] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond Average: Towards

Sophisticated Sensing with Queries”, Information Processing in Sensor Networks. Second
International Workshop, 2003. p 63-79.

16

[18] U. P. Schultz, K. Burgaard, F.G. Christensen, J.L. Kristensen, “Compiling JAVA for

Low-End Embedded Systems”, ACM SIGPLAN Notices, v 38, n 7, July, 2003, p 42-50.

[19] Q. Wang, Y. Zhu, L. Cheng, “Reprogramming wireless sensor networks: challenges and

approaches”, IEEE Network 20(3), 2006, p. 48-55.

[20] C.C. Han, et al, “A dynamic operating system for sensor nodes”, MobiSys 2005, p.

163-176.

[21] D. Simon, et al, “JavaTM on the bare metal of wireless sensor devices: the Squawk Java

virtual machine” In VEE ’06: Proc. of the 2nd international conference on Virtual execution
environments, New York, NY, USA, 2006. p78–88.

[22] SUN Spot Project: http://www.sunspotworld.com/.

[23] OPNET University Program http://www.opnet.com/ university_program/.

[24] N. Reijers and K. Langendoen, “Efficient Code Distribution in Wireless Sensor Networks,”

WSNA ’03 San Diego, CA, USA 2003, p. 60 – 67.

[25] T. Stathopoulos, J. Heidemann and D. Estrin, “A Remote Code Update Mechanism for

Wireless Sensor Networks,” CENS Technical Report # 30.

