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Abstract 
 

Functional decline with aging and the growing interest in interventions aimed at the treatment and 
prevention of aging-associated functional limitations have resulted in a strong interest in continuous 
monitoring of daily activities in the home and community setting. Development of functional activity 
monitors (FAMs) will allow rehabilitation researchers and clinicians to evaluate treatment efficacy, to 
monitor compliance to exercise instructions, and to provide real time feedback in the treatment of 
movement disorders during the performance of daily activities. The purpose of the present study was to 
develop and test a small sized wearable FAM system comprised of three sensors positioned on the 
sternum and both thighs, wireless Bluetooth transmission capability to a smartphone, and computational 
efficient activity detection algorithms for the accurate detection of functional activities. Each sensor was 
composed of a tri-axial accelerometer and a tri-axial gyroscope. The computationally efficient activity 
recognition algorithms were developed, using a sliding window of 1 second, the variability of the tilt 
angle time series and power spectral analysis. In addition, it includes a decision tree that identifies 
postures such as sitting, standing and lying, walking at comfortable, slow and fast speeds, transitions 
between these functional activities (e.g, sit-to-stand and stand-to-sit), activity duration and step 
frequency. In a research lab setting the output of the FAM system, video recordings and a 3D motion 
analysis system were compared in 10 healthy young adults. The results show the agreement between the 
FAM system and the video recordings ranged from 98.10% to 100% for all postures, transfers and 
walking periods. There were no significant differences in activity durations and step frequency between 
measurement instruments.   
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1. Introduction 
Functional decline with aging increases the risk of disability, dependency, falls, and mortality [1] [2]. 

Hence, there is growing interest in rehabilitation and the development of function promoting anabolic 
therapies (FPTAs) for the treatment and prevention of aging-associated functional limitations [3]. In 
addition, very limited information is available on how rehabilitation and FPATs affect the levels of 
functional activities (e.g., walking, stair climbing, running, biking, etc.) in the home and community 
based setting. It has been argued that functional activities in the home environment are an excellent 
integrated measure of physical function and that there is a pertinent need for the development of reliable, 
valid and responsive measures for the assessment of (reduced) level of activity in the evaluation of older 
individuals participating in clinical trials and home care services [4].  
 Currently, questionnaires and video recording are used in the assessment of functional activities in 
the home and community based setting [5]. As a result of limitations of these measurement instruments, 
there is a strong interest in the technology of Micro Electro Mechanical Systems (MEMS) that allowed 
for the development of miniature and low powered inertial sensors such as accelerometers and 
gyroscopes, in the continuous measurement of functional activities. Most applications in clinical 
research involve the usage of one or two accelerometers attached to ankle and/or wrist (e.g., 
pedometers). The limitation of this configuration is that only (frequency of) walking periods and global 
level of activity can be accurately assessed [6]. Other sensor configurations have been tested, but 
showed limited capability of detecting different postural and locomotion activities [7] [8] [9]. Previous 
studies by our research group has demonstrated that walking, sitting and standing periods lasting longer 
than 5 seconds in the home and community based setting can be accurately assessed for at least 24 hours 
with one activity monitor  on the sternum and one on both thighs [10]. The limitations of current activity 
monitor designs include the maximal hours of date recording, energy supply, the extraction of recorded 
date, the size of the data-logger attached to the body, the algorithms used in data-reduction and the 
assessment of other functional activities such as sitting, standing, lying, transfers and walking. The 
introduction of wireless communication techniques  and smartphones eliminates these barriers and will 
allow rehabilitation researchers and clinicians to 1) evaluate treatment efficacy, 2) monitor compliance 
to exercise instructions,  and 3) provide real time feedback in the treatment of movement disorders 
during the performance of the relevant daily activities. 
 Previous research has demonstrated that accelerometers are less accurate when the angles of rotation 
are large. Gyroscopes appear to be more reliable in the measurement of angles [11], and, therefore, can 
more accurately identify functional activities and the emerging movement patterns. It has been argued 
that the combination of different technologies (e.g., gyroscope and accelerometers) provides the most 
optimal activity monitor platform [12] With the implementation of Kalman filters, wavelet transforms 
and neural networks the occurrence of drift in the gyroscope time series has been significantly reduced 
[13] [14] [15]. However, these algorithms are complex and cannot be easily applied in the FAM as a 
result of computational power and energy demands on the smartphone.  
 The specific aim of the present study was to develop and test a small sized wireless FAM system that 
can accurately record functional activities in the home and community based setting. It was 
hypothesized that FAM system comprised of 3 sensors positioned on the sternum and the two thighs, 
wireless Bluetooth transmission to a smartphone, and computational efficient activity detection 
algorithms will allow for the accurate identification of postures (sitting, standing and lying), walking (at 
comfortable, slow and fast speeds) and transfers between activities as well as activity duration and step 
frequency. 
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2. Materials and methods 
A. Subjects 
 Ten healthy young adults (5 females and 5 males) included in the study were 18-30 years of age and 
had no walking disability or complicating medical history.  They all gave an informed consent form, and 
the study was approved by the Boston University Institutional Review Board.  
 
B. Methods 
 During the experiment the subjects were instructed to walk over ground a distance of 10 meters at a 
comfortable, slow and fast speed, and to maintain a sitting, standing and lying down position for 20 to 
60 seconds. Each trial included multiple postures, transfers and walking periods. Anthropometric 
measures such as body mass and height and leg length (from greater trochanter to lateral malleolus on 
the ankle) were measured using a balance scale with a height rod and a measuring tape. The experiment 
was carried out in the Clinical Movement Sciences Laboratory at Boston University. 
 
C. Instrumentation 
 1) Functional Activity Monitor (FAM): The FAM is comprised of three IMU 6 degree of freedom 
sensors, version 4 (V4; Sparkfun Inc, Boulder CO, USA), which were positioned on the sternum and 
both thighs. Each sensor included one tri-axial accelerometer (Freescale, MMA7260Q) and one tri-axial 
gyroscope (InvenSense, Idg500, 500 degree/second), and was powered by 3.7V lithium ion batteries. 
The sensitivity of the accelerometer was set at 1.5g to save energy and battery life. All sensors 
transmitted signals wireless by means of Bluetooth to a smartphone (Motorola Inc.). The sampling rate 
was 50 Hz. 
 2) 3D motion recording system: Three dimensional (3D) kinematic data was collected by means of 
the Optotrak 3020 system (Northern Digital Inc., Waterloo, ON, Canada). Three Optotrak Position 
Sensors each consisting of a bank of three cameras were position around the subject to all for 3D 
movement recording, and calibrations were accepted when the mean calibration error was 0.7 mm or 
less. Infrared light emitting diodes (IREDs) were attached bilaterally to the ankle (lateral malleolus), 
knee (lateral femoral condyle), hip (Iliac crest), and shoulder (clavicle anterior surface). In addition, 
IREDs were placed on each FAM. The sampling rate was set at 100Hz. 
 3) Video cameras: One HDC video camera, model HS100P/PC (Panasonic Inc.) and one HD video 
camera, model VIXIA HG21(Canon Inc.) stationed on tripods were used for video recordings. Video 
recording was collected at a frequency of 30Hz. 
 
D) Data reduction and analysis 
 1) FAM time series: Pitch (ρ) is defined as the angle of the x-axis relative to the ground, Roll (φ) is 
defined as the angle of the y-axis relative to the ground and Theta (θ) ) is defined as the angle of the z-
axis relative to the ground [16]. The accelerometer signal was filtered, using a second-order forward-
backward digital low-pass Butterworth filter at a cutoff frequency at 3 Hz. The angle of the sternum and 
both thighs was estimated from the accelerometer time series by applying the following arctangent 
function:  
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The gyroscope signal was filtered by means of a median-mean filter designed to eliminate burst noise 
and outlier signals. Subsequently, a complementary filter and a calibration procedure using the 
accelerometer time series were applied to eliminate drift observed in the gyroscope time series (see Fig. 
1).  
 
 

 
 

Figure 1. Complementary filter and calibration procedure. 
 
The angular rate data was integrated to angles by means of the equation θ = ∫ωdt + θ0 . The sternum and 
thigh angles were adjusted to the difference between absolute vertical zero angle (obtained via wall 
calibration) and a specific tilt angle depending on the subject’s body shape and posture in the anatomical 
posture (obtained via personal calibration). The outcomes of our  instrumentation reliability studies 
using a Digital Angle Protector (Denali) showed that the difference in mean static angles between the 
FAM system and the Optrotrak system ranged from minimally 0.26º to maximally 1.18º with a mean 
difference of 0.57º and SD of 0.92º for five fixed angles (0º, 30º, 60º, 90º and 120º). Using a Biodex 
system (SEMI, Toronto, ON) we imposed amplitudes of 120º, 90º, 60º, 30º and 5º at four different 
frequencies 80,60, 40, 20 bits/min and found a difference of minimally 0.06º to maximally 2.3º with a 
mean value of 0.61º and SD of 0.188º. These findings demonstrate a high accuracy for both static and 
dynamic angles. 
 In order to differentiate between activities, the standard deviation (SD) of the complete acceleration 
time series in the z axis for all three sensors was calculated for each 1 second interval [7]. A SD 
threshold of 2º was applied to distinguish between static activities (e.g., sitting, standing and lying) and 
dynamic activities (e.g., transfers and walking). The specific ranges for trunk and thigh angles were used 
to identify sitting (sternum -20º to20º and thighs 25º to 110º), standing (both sternum and thighs -20º to 
20º); and lying (sternum -130º to -50º and thighs 50º to 130º). If no postures were identified, the posture 
was labeled “unidentified static activity”. When the 1st second of dynamic activity was detected, the 
algorithm counted the number of peaks from the gyroscope time series of the chest sensor. If the number 
of peaks was less than or equal to 3 and the maximum angle difference from the mean angle of last 
second of “static” activity is greater than 20°, the activity was identified as a transfer. If the number of 
peaks was greater than 3, the algorithm estimated the power spectrum density (PSD) of the chest sensor 
time series to identify the step frequency. If the step frequency fell in the range of 0.5-3Hz [17], the 
activity was identified as walking. If the frequency detected was not within that range, the algorithm 
labeled the activity as “unidentified dynamic activity”. The output of the   algorithm’s output included 
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the sequence of activities, the duration of each activity (in seconds), and if activity was identified as 
walking, the PSD estimate of step frequency. 
 2) Optotrak time series: If there were up to twenty consecutive samples of data missing, the raw time 
series was interpolated. After interpolation, the data was filtered using a zero-lag, fourth order 
Butterworth low pass filter with a cutoff frequency of 5 Hz. Stride frequency (SF) was estimated by 
dividing the number of peaks in the time series of the leg swing angle by the elapsed time, which was 
dependent on the duration of the walking speed condition. The initial contact of the foot was determined 
by identifying the time frame at which the antero-posterior component of the velocity of the heel marker 
changed from a positive to a negative value. 
 All computations were performed using custom made Matlab programs (The MathWorks, Natick, 
MA) for the FAM and Optotrak data. 
 3) Statistical analysis: A cross-tab analysis was applied to evaluate the agreement in detection of 
activities between the FAM system and the video recordings. An ANOVA with repeated measures was 
applied to compare the FAM system and the video recordings for the durations of the activities 
identified. A significant main effect of Tool (2 levels: FAM and Video) would indicate a difference 
between the two systems. In a similar approach, an ANOVA with repeated measures was also applied in 
the comparison of the FAM system and the Optotrak system in determining the step frequency during 
the walking periods identified. All statistical analyses were carried out with version 18.0 of SPSS 
statistical software package (SPSS, Inc. Chicago, IL).  

3. Results 
 The agreement between the FAM system and the video recordings ranged from 98.1% to 100% for 
all postures, transfers and walking. The agreement for the individual activities was 98.1% for standing, 
98.6% for sitting, and 100% for lying, transfers and walking. 
 There was no significant difference in the durations of the activities between the FAM system and 
the video recording (p=0.69).  
 In addition, the comparison between the FAM system and the Optotrak system showed no 
significant difference in the step frequency across all walking periods at comfortable, slow and fast 
walking speeds (p=0.97). A main effect of Velocity was found (p<0.001) with no significant interaction 
effect between tools and walking velocity (p=0.99), indicating that both systems accurately captured 
changes in step frequency. 

4. Discussion 
The outcomes of the present study indicate that the FAM system not only accurately identify 

functional activities such as sitting, standing, lying, transfers and walking, it also measures accurately 
the duration of these activities and step frequency during over ground walking. The FAM configuration 
including one sensor on the sternum and one on both thighs allows for the identification of different 
functional activities. The implementation of computationally efficient algorithms for measuring angles 
with the gyroscope calibrated by the accelerometer not only results in an accurate measurement of static 
and dynamic angles, but also in a highly accurate detection of daily activities. Remarkable is the 
accurate detection of walking and measurement of the duration of the walking and step frequency at all 
walking speeds. Especially the low and fast walking speeds tend to reduce the accuracy of the detection 
of walking. The outcomes of our previous gait studies on the coordination dynamics of walking using 
walking speed as a reference have led to optimal gait pattern recognition algorithms [18].  Currently, we 
are testing the implementation of these algorithms on the smartphone, which will provide the capability 
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of real time online monitoring of functional activities and providing real time instantaneous feedback 
when movement disorders occur. In addition, we are evaluating the reliability and responsiveness of the 
FAM system in the home and community based setting. We continue to expand the algorithms by 
implementing neural network approaches, stochastic decision algorithms and machine learning 
strategies, which will increase our capability to detect daily activities that include uni-manual and bi-
manual tasks, such as combing and washing hair, washing dishes, throwing balls, etc. 
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