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Abstract 
 

Improvements in solid-state/LED lighting are driving increased capabilities of lighting systems – 
offering potential for applications such as Visible Light Communications (VLC) and indoor localization 
using the lighting medium. In this paper, we motivate the adoption of localization for both the support of 
handover between arrays of VLC-equipped luminaires as well as for indoor positioning and beam 
steering. Our approach uses a state estimation model to achieve localization and motion tracking in 
spatially diverse VLC networks while considering user mobility and dynamic device orientation. Under 
these conditions, we show simulation results with location and velocity errors of 5cm and 10cm/s, 
respectively. 
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1. Introduction 
 
Visible Light Communication (VLC) is experiencing growing interest due to improvements in solid 
state lighting, rapid growth in demand for wireless communication, and ubiquity of lighting systems in 
indoor environments. Beyond the ability to provide data rates above 100Mb/s, VLC offers the additional 
benefit of spatial diversity due to directionality of the optical medium. This diversity leads to spatial 
reuse and drastic bandwidth density (Mb/s/m2) improvements in multiuser environments. 
Heterogeneous wireless systems have also been proposed where VLC supplements conventional RF 
communications in order to provide the bandwidth density benefits of VLC while mitigating issues 
related to channel blocking, intrusive uplink, and marketability [1], [2].  

A major consideration for spatially diverse and heterogeneous systems is the optimization of handover 
as a user traverses the environment. Previous work has shown that appropriate handover decisions can 
decrease packet transfer delay and improve overall QoS by reducing the number of unnecessary channel 
transfers [3]. This can include Horizontal Handover (HHO) where traffic is transferred between VLC 
channels (e.g., between luminaires) or Vertical Handover (VHO) where traffic is transferred to an 
alternate medium (e.g., RF). State estimation techniques provide a method to track the motion of a user 
in the physical space and to predict their path – facilitating handover through predictive methods which 
minimize the number of channel transfers when compared to techniques that monitor signal strength 
alone [4]. Predicting device location has also been discussed as a means of steering high data rate VLC 
channels for improved performance [5].  

Beyond the potential for assisted communication, localization, or positioning, has been a subject of 
growing interest for years as mobile computing is becoming the norm in society. Many of the functions 
that mobile services provide rely heavily on mobile device position - primarly using GPS for outdoor 
scenarios. The research field has been flooded with many attempts at balancing performance, cost, and 
complexity of indoor positioning systems. There have been two main high level approaches set forth to 
solve the indoor localization problem: (1) exploiting existing infrastructure and developing algorithms to 
perform the best possible given the available infrastructure and its constraints (e.g., WiFi signal strength, 
fluorescent lighting) or (2) designing specialized solutions that address the fundamental issues that are 
core to the localization problem using the best technologies to solve the problem. Localization with VLC 
provides a compromise.  

In this paper, we propose and analyze a state estimation model for tracking device location and motion 
in an environment with fixed position VLC transmitters and mobile users. Section II provides the 
necessary background description of the VLC channel and its constraints while surveying benefits of 
indoor localization and Kalman Filter recursive estimation. Section III describes the observed system 
model that we use to analyze the benefits of recursive estimation techniques for motion tracking in VLC 
enabled environments. Section IV provides the results in terms of accuracy and time to convergence, 
while Section V concludes the investigation. 

2. Background 
 

2.1 Visible Light Communication Channel 
Optical communication has been studied across the spectrum and in both constrained and free-space for 
many years. Improvements in solid state lighting have made the visible spectrum fertile ground for 
extending this research field in the form of VLC. Due to signal directionality, path loss in an optical 
channel such as VLC is modeled differently than that of an RF channel. Angles of transmission and 
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acceptance effect received signal power; therefore additional parameters are observed. The received 
signal at receiver j from transmitter i can be modeled as  

𝑃𝑟,𝑖𝑗 =
𝑃𝑡,𝑖𝑇�𝜙𝑖𝑗�𝐴𝑟𝑔�𝜃𝑖𝑗�

𝐷𝑖𝑗2
 

where 𝑃𝑡 is the transmitted optical power, 𝐴𝑟 is the area of the receiver photodiode, 𝐷𝑖𝑗 is the distance 
between transmitter and receiver, and 𝜙𝑖𝑗 and 𝜃𝑖𝑗 represent angles of emission and acceptance, 
respectively. The intensity pattern of a typical LED is modeled as a Lambertian pattern with order n, 
given by  

𝑇(𝜙) =
𝑛 + 1

2𝜋
cos𝑛(𝜙) 

and the optical gain function for a bare photodiode can generally be observed as 𝑔(𝜃) = cos(𝜃) [6]. 
Overlapping channels can be distinguished through channel separation techniques such as time division, 
frequency division, code division, or wavelength division [7]. 

2.2 Indoor Localization 
Indoor localization has been explored in many contexts, but most often finds application in 
piggybacking existing communication infrastructures (e.g., WiFi, Bluetooth) due to the fact that 
customized solutions (e.g., UWB, Ultrasound, and IR) are too expensive and require hardware devoted 
solely to localization in addition to existing communication infrastructure.Moreover, localization in the 
conventional sense requires transceivers capable of processing channel measurements (e.g., angle, signal 
strength, time of flight) and relate them to positional estimates through localization algorithms (e.g., 
multilateration, triangulation). With the transition from electric to electronic lighting and the ubiquity of 
light in indoor spaces, visible light may prove to be the next communication infrastructure to exploit for 
localization services. 

The benefits of visible light as a localization medium are its directionality, short range, and impulse 
response, while its issues to overcome are installation accuracy, network layer  identification, 
coexistence of WiFi and VLC, and efficient multiple access schemes. Visible light is one of the most 
viable solutions to indoor positioning due to its directionality, short impulse response, and the 
distribution and availability of anchor luminaries to meet the illumination needs of indoor spaces. One 
approach exploits the ubiquity and directionality of light in order to localize the mobile user [8]. In this 
work, we observe measurements of the optical channel as part of a recursive state estimation model with 
the goal of estimating dynamic position and velocity of a user device. 
 
2.3 Kalman Filtering 
Generally, discrete-time linear state space models are employed to describe the behavior of dynamical 
systems 

𝒙[𝑡 + 1] = 𝑨𝑥[𝑡] + 𝑩𝑢[𝑡] + 𝑮𝑤[𝑡] 
𝑦[𝑡] = 𝑪𝑥[𝑡] + 𝑫𝑢[𝑡] + 𝑯𝑣[𝑡] 

 
The discrete-time Kalman Filter (KF) is a recursive MMSE estimator, and for the purpose of this 
investigation, its operation can be summarized into a few high-level steps: initialization, prediction, 
measurement, and update. The filter requires an initial state and covariance estimate to begin operation. 
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It uses this initial estimate, which can be any time instant 𝑡 (not necessarily zero) (𝒙𝑡|𝑡 and 𝚺𝑡|𝑡) to 
predict the state, 𝒙𝑡+1|𝑡, and covariance, 𝚺𝑡+1|𝑡, at the next time step. The filter then receives measured 
data, 𝒚𝑡+1, from the environment and compares it to the predicted measurement, 𝒚𝑡+|𝑡; this difference is 
known as the innovations of the filter, 𝒗𝑡+1. The innovations provide the filter sufficient information to 
adjust its “Kalman Gain,” 𝑲𝑡+1, to correct its inaccuracies between its predicted and measured data 
during its update state. The filter is recursive in the sense that it will use this last update as its reference 
for making a prediction in the subsequent time step and is summarized mathematically as: 
 

𝒙𝑡+1|𝑡 = 𝑨𝒙𝑡|𝑡 + 𝑩𝑢[𝑡] + 𝑮𝐸{𝑤[𝑡]} 
𝚺𝑡+1|𝑡 = 𝑨𝚺𝑡|𝑡𝑨𝑇 + 𝑮𝑸𝑮𝑇 

𝒚𝑡+1|𝑡 =  𝑪𝒙𝑡|𝑡 + 𝑫𝑢[𝑡] + 𝑯𝐸{𝑣[𝑡]} 
 

𝒙𝑡+1|𝑡+1 = 𝒙𝑡+1|𝑡 + 𝑲𝑡+1𝒗𝑡+1 
𝚺𝑡+1|𝑡+1 = [𝑰 − 𝑪𝑲𝑡+1]𝚺𝑡+1|𝑡 

𝒗𝑡+1 = 𝒚𝑡+1 − 𝒚𝑡+1|𝑡 
𝑲𝑡+1 = 𝚺𝑡+1|𝑡𝑪𝑇�𝑪𝚺𝑡+1|𝑡𝑪𝑇 + 𝑅�

−1
 

 
The basic KF operates on the assumption that all system dynamics and measurement models are linear; 
however many circumstances arise in which these relations are non-linear. Linearization of the non-
linear model creates the discrete-time linear form known as the Extended Kalman Filter (EKF) [9]. 
Depending on the degree of non-linearity, the EKF is difficult to implement, difficult to tune, and only 
reliable for systems that are almost linear on the time scale of the updates due to the inherent 
linearization in the EKF.  

An alternative approach is to use an Unscented Transformation (UT) [10]. The principle behind the UT 
is that it is easier to approximate a probability distribution than it is to approximate an arbitrary non-
linear transformation. The UT requires the selection of a set of 𝜎-points which deterministically 
(contrary to random particle filters) mirror the mean and covariance of the states of the system. 
Furthermore, weights are assigned to the 𝜎-points to provide an unbiased estimator. The mean and 
covariance of the 𝜎-points can be used in the KF to produce the MMSE of the state. The UT propagates 
system state and covariance information through nonlinear transformations rather than analytically 
linearizing the transformation. It is more accurate, easier to implement, and uses the same order of 
calculations as linearization. 

3. System Description 
 
In this section, we describe the environment under consideration, the observed KF model, and three 
scenarios simulated in order to assess the accuracy of the model. Although we discuss the 
implementation for a defined environment, the concept may be extended to generic environments with 
known transmitter locations and orientations. 

3.1 System Model 
As a base case for the model, we observe an empty room with dimensions 6m X 6m X 4m and fixed 
position transmitters located in the grid layout or cellular layouts shown in Figure 1. The grid layout is a 
conventional layout for recessed lighting fixtures (luminaires) and the cellular layout follows the 
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hexagonal structure of classic cellular networks. We assume that a user first determines the transmitter 
with maximum signal strength and that their initial location in the environment is normally distributed 
with expected value below the transmitter. It is assumed that the user is moving through the environment 
with zero mean random acceleration in the x and y planes, following conventional state models for 
translational motion [11]. 

The KF model observed in this work considers a linear state model, 𝒙, with transition matrix, 𝑨, and a 
nonlinear measurement, 𝒚. Process noise, 𝑤, and measurement noise, 𝑣, are assumed to be independent, 
zero-mean, Gaussian white noise processes with covariance matrices 𝑸 and 𝑹, respectively.  
 

𝒙[𝑡 + 1] = 𝑨𝑥[𝑡] + 𝑤[𝑡] 
𝒚[𝑡] = ℎ[𝒙[𝑡], 𝑡] + 𝑣[𝑡] 

 
3.2 Scenario I 
In the first scenario, we observe a receiver directed perpendicular to the floor such that 𝜙𝑖𝑗 = 𝜃𝑖𝑗 . The 
state represents the position and velocity in the x and y planes and location in the z plane is assumed to 
be held constant. The measurement vector consists of the set of received signal powers from each of the 
9 transmitters in the room, including measurement noise. The signal from each transmitter is assumed to 
be distinguishable. 

𝒙 = �𝑥,𝑉𝑥,𝑦,𝑉𝑦�
′
 

𝒚 = �𝑆𝐼𝐺1𝑗, 𝑆𝐼𝐺2𝑗, … , 𝑆𝐼𝐺9𝑗�
′
 

 
Scenario I observes the state transition and covariance matrices described in [11]. We then modify these 
matrices to account for additional parameters in scenarios II and III.  
 

𝑨𝐼 = �

1 𝑑𝑡 0 0
0 1 0 0
0 0 1 𝑑𝑡
0 0 0 1

� 𝑸𝐼 = 𝑞 ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑑𝑡3

3
𝑑𝑡2

2
0 0

𝑑𝑡2

2
𝑑𝑡 0 0

0 0 𝑑𝑡3

3
𝑑𝑡2

2

0 0 𝑑𝑡2

2
𝑑𝑡⎦
⎥
⎥
⎥
⎥
⎥
⎤

  𝑹𝐼 = 𝑟𝑠𝑖𝑔 ∙ 𝐼9𝑥9 

 

Figure 1: Reference room with overhead view of grid and cellular layouts 
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As indicated by Equation 1, the received power from transmitter 𝑖 is dependent on 𝑃𝑡, 𝐴𝑟, 𝜙𝑖𝑗, 𝜃𝑖𝑗, and 
𝐷𝑖𝑗. The transmit power and receiver effective area are held constant, while 𝜙𝑖𝑗, 𝜃𝑖𝑗, and 𝐷𝑖𝑗 are 
dependent on the receiver location in the x, y, and z planes. 
 

𝐷𝑖𝑗2 = (𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2 + (𝑍𝑖 − 𝑧)2 

𝜙𝑖𝑗 = 𝜃𝑖𝑗 = arctan�
�(𝑋𝑖 − 𝑥)2 + (𝑌𝑖 − 𝑦)2

𝑍𝑖 − 𝑧
� 

 

3.3 Scenario II 
In the second scenario, we observe similar measurements while adding the additional complexity of 
device rotation to the state model. The state transition and process noise covariance matrices are also 
updated in order to account for the changes in the state model. 
 

𝒙 = �𝑥,𝑉𝑥,𝑦,𝑉𝑦,𝜃𝑒𝑙 ,𝜃𝑎𝑧�
′
 

 

𝑨𝐼𝐼 = �
𝐴𝐼 0�

0� �1 0
0 1�

�  𝑸𝐼𝐼 = �
𝑄𝐼 0�

0� �
(𝑞𝜃)𝑑𝑡 0

0 (𝑞𝜃)𝑑𝑡�
� 

 
In this scenario, the assumption that 𝜙𝑖𝑗 = 𝜃𝑖𝑗  no longer holds. The acceptance angle, 𝜃𝑖𝑗, is now 
dependent on the rotation of the receiver. In order to determine 𝜃𝑖𝑗, we observe the unit vector pointing 
away from from the center of the receiver, 𝑉𝑟𝑥, and the unit vector pointing from the receiver to the 𝑖th 
transmitter, 𝑉𝑡𝑥,𝑖. Given the two unit vectors, the acceptance angle can be calculated as shown below. 
 

𝑉𝑟𝑥 = {cos(𝜃𝑒𝑙) ∙ sin(𝜃𝑎𝑧), sin(𝜃𝑒𝑙) ∙ sin(𝜃𝑎𝑧), cos(𝜃𝑎𝑧)} 
𝑉𝑡𝑥,𝑖 = {(𝑋𝑖 − 𝑥), (𝑌𝑖 − 𝑦), (𝑍𝑖 − 𝑧)} 

cos�𝜃𝑖𝑗� =
𝑉𝑟𝑥 ∙ 𝑉𝑡𝑥,𝑖

|𝑉𝑟𝑥|�𝑉𝑡𝑥,𝑖�
 

 

3.4 Scenario III 
In the final scenario, we aim to improve accuracy by observing device rotation in the measurement 
vector, 𝒀. This change to the measurement vector also has associated updates to the measurement noise 
covariance matrix.  
 

𝒚 = �𝑆𝐼𝐺1𝑗, 𝑆𝐼𝐺2𝑗 , … , 𝑆𝐼𝐺9𝑗 ,𝜃𝑒𝑙 ,𝜃𝑎𝑧�
′
 

 

𝑹𝐼𝐼𝐼 = �𝑹𝐼 0�
0� 𝑟𝜃 ∙ 𝐼2𝑥2

� 

 
In this scenario, we aim to show that additional sensors, such as an accelerometer and gyroscope, can 
improve the performance of the algorithm in a realistic setting. 
  



7 
 

Table 1 
4.  Results 
 

The following section shows results of the three scenarios 
described above. We run a Monte Carlo simulation with 
200 trials. A random path through the environment is 
observed for each trial and the error between the actual 
state and filter estimation is averaged across trials. Table 
I provides a list of parameter values observed in 
simulation. We will first present a set of Cramer Rao 
bounds, and then provide simulation results showing 
average error for varying parameters. 
 
4.1 Cramer Rao Bounds 
The first observation in Figure 2 shows the CRB across 
multiple sampling rates. The results show that the bounds 
on the estimates improve as the sampling rate increases. 
Figure 3 shows a similar comparison as the transmitter 
Lambertian order is increased from 𝑛 = 1 to 𝑛 = 4, 
corresponding to transmitter FOV ranging from 60∘ to 35∘. The bounds improve as the emission moves 
more towards a spot light.  

 The error bound on position converges quickly as it is directly related to the measurement; however 
error bound on velocity converges slower due to its relation to change in position. With a sampling 
period of 0.2ms and Lambertian order 𝑛 = 4, the error bound on position converges to 1cm after 100ms 
and the error bound on velocity converges to 2cm/s after approximately 750ms.  

4.2 Kalman Filter Results 
For comparison of filters, Figures 4 and 5 show the simulation accuracies of the EKF and UT across the 
range of transmitter Lambertian orders for the grid layout with a sampling period of 0.2ms. We also 
show the CRB at 𝑛 = 4 for comparison. The high initial performance of the EKF is due to the initial 
distribution of the receiver location being centered around the region directly below a transmitter in the 
grid layout. The overhead transmitter provides a dominant signal – increasing the signal to noise ratio 
and providing very good accuracy. EKF performance degrades as receivers move away from the center 

Parameter Phase I Phase II / III 
System Parameters 

𝑃𝑡 (W) 5 5 
𝐴𝑟 (mm2) 300 300 

dt (ms) 0.2, 0.5, 1 0.2 
n 1,2,3,4 1 

Initial Expectations 
E[x,y] (m) [0.99, 0.99] [0.99, 0.99] 

E[Vx,Vy] (m/s) [0.8, 0.8] [0.8, 0.8] 
E[θel,θaz] (°) - [0,0] 
Σ[x,y] (m) [0.5,0.5] [0.5,0.5] 

Σ[Vx,Vy] (m/s) [0.2,0.2] [0.2,0.2] 
Σ[θel,θaz] (°) - [ 𝜋

180
, 𝜋
4
] 

Noise Parameters 
rsig 3.5 ∙ 10−8 3.5 ∙ 10−8 
rθ - 

𝜋
360

 

q 10−2 10−2 

qθ - 
𝜋

360
 

Figure 3: Cramer Rao Bounds for  
multiple sampling rates 

Figure 3: Cramer Rao Bounds for  
multiple transmitter orders 
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of a transmitter and converges with the results from the UT as receivers move through the regions where 
the transmitter emission patterns provide very little overlap. In general, the EKF performed better when 
starting below a transmitter; however, we observed that the UT provides smoother results when the 
receiver is between transmitters – as with the case of the cellular layout. While the results shown here 
indicate narrow FOV transmitters provide better results, we have observed that there is an optimal 
setting between wide FOV transmitters and narrow FOV spot lights. As receivers move away from a 
transmitter, wide FOV implementations provide overlapping signals - leading to smooth transitions 
between dominant signals. Alternatively, very narrow FOV implementations have many low signal 
regions as the user traverses the room. In addition, lighting constraints limit the FOV of the transmitter 
as the typical environment requires near-uniform lighting throughout a room.  

We also provide a performance comparison of the grid and cellular layouts for the UT in Figure 6. 
Although the cellular layout only shows slightly improved performance, it is important to note that the 
initial distribution of the user in the cellular environment is no longer centered under a transmitter since 
we compare against the same set of simulated motion paths. As previously discussed, the dominant 
signal at a receiver directly aligned with a transmitter impacts convergence time.  

Figure 4: Simulation results for the Extended Kalman Filter 

Figure 5: Simulation results for the Unscented Filter 
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Up until this point, the results shown have been under the base case assumptions from Scenario I. Figure 
7 compares these idealistic results to the more realistic scenarios accounting for device rotation. Both 
position and velocity estimations are drastically degraded in Scenario II due to the additional degrees of 
freedom associated with user rotation; however, Scenario III shows that noisy measurements of this 
rotation can improve the position and velocity estimations such that the error is near that of the idealized 
base case.  

5. Conclusions 
 

In summary, we have provided a novel state estimation model leveraging the lighting infrastructure and 
capabilities of solid state lighting in order to approximate user location and motion under realistic 
conditions. We have also presented simulated results showing position and velocity estimations in an 
empty room with average error of approximately 5cm and 10cm/s, respectively.  

We have accounted for realistic conditions including mobile users and device rotation; however we 
recognize that additional complexities in an environment occur due to dynamic signal conditions from 
obstructions and signal reflections. If the device is controlled by a user, it is likely that the user will 

Figure 7: Simulation results comparing grid and cellular layouts 

Figure 6: Simulation results comparing scenarios I, II, and III 
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occlude the signal from one direction; however we claim that this occlusion may be used to provide 
additional information to the system, assuming the motion path is known to be in the direction of the 
unobstructed signals. We have also discussed how a dominant signal has a major impact on performance 
– indicating that valid results may still be obtainable if some channels are blocked. 

The discussion presented in this report provides a method for tracking device location and motion. 
Moving forward, such results are applicable in many use cases including indoor positioning systems and 
asset tracking as well as assisted handover methods and beam steering for indoor VLC networks. 
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