
A Two Phase Hybrid RSS/AoA Algorithm for Indoor
Device Localization using Visible Light∗

Gregary B. Prince and Thomas.D.C. Little
Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts
{gbprince, tdcl}@bu.edu

September 19, 2012

MCL Technical Report No. 09-19-2012

Abstract–A two phase hybrid algorithm for estimating the location ofa mobile node, which has
the capability of measuring signal strength, azimuth, and elevation, in a smart space environment
over the visible light channel is proposed. In contrast to conventional triangulation approaches
which are performed in a simplified plane, the smart room architecture requires a non-planar solu-
tion due to the illumination requirement. Furthermore, conventional triangulation approaches can
at times produce numerically ill-defined solutions, thereby prohibiting a notion of target location.
Instead of solely relying on triangulation, the mobile nodes estimate their locations through a two
phase approach in which they firstly exploit the signal strength observables with unique IDs to
establish acoarseestimate, and secondly use the azimuth and elevation observables to establish
a fineestimate. In many cases, thefineestimate will improve upon thecoarseestimate; however
when triangulation fails, the algorithm yields thecoarseestimate rather than a localization failure.
Since the environment model relies on the primary requirement of adequate illumination, the num-
ber of LED anchors and transmit power for communication functions are determined. Simulation
results confirm the effectiveness of the hybrid two phase localization approach in a smart space in-
door environment by having a mediancoarsephase accuracy of 34.88 cm and afinephase median
accuracy of 13.95 cm.
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1 Introduction

Localization has been a subject of growing interest for years as mobile computing is becoming
the norm in society. Many of the functions that mobile services provide rely heavily on having
some notion of device position. The research field has been flooded with many attempts at bal-
ancing performance, cost, and complexity of positioning systems. There have been two main high
level approaches set forth to solve the localization problem: (1) exploiting existing infrastructure
and developing algorithms to perform the best possible given the infrastructure available and its
constraints (e.g. WiFi signal strength, Fluorescent lighting) [4] or (2) designing specialized solu-
tions that address the fundamental issues that are core to the localization problem using the best
technologies to solve the problem. Examples of such technologies are Ultrasound, Infrared (IR),
Ultrawideband (UWB), [8] and even imaging techniques [9][10][11]. One thought is to use one of
the most ubiquitous sources (lighting) in an indoor space tofind a balance between infrastructure
and technology optimization approaches to indoor localization. Currently, fluorescent lighting us-
ing low-rate frequency shift keying waveforms [13][14] andreceiver switching methods coupled
with a 6-axis sensor for LED lighting [12] have been proposedas solutions in this context. Neither
of these approaches take into account the potential for optimally designing the balance between
lighting and target localization.

With the introduction of energy efficient LEDs and the world’s ever-growing demands for en-
ergy, a transition to solid state lighting will happen. LEDsand light for that matter have the ability
to offer unparalleled opportunity for mobile computing. Through this infrastructure overhaul re-
searchers have the ability to carefully architect and shapethe way light can be used to localize
mobile devices but also enable intelligent spaces. Although, the concept of asmart roomhas been
gaining attention, it should be noted that localizing and detecting various targets is vital to its oper-
ation. Therefore, the task of localization is more complicated as a variety of targets of interest may
or may not occupy the space and to date many approaches focus on finding devices that have the
ability to communicate, not necessarily people, animals, and even chemicals without incorporating
some form of imaging or simple motion sensor.

Section II provides the necessary background description of the Visible Light Communication
(VLC) channel and its constraints while touching on the rudimentary localization. Section III de-
scribes the system model in which we analyze the lighting andgeometric constraints and describe
the two phase algorithm. Section IV provides the results in terms of location accuracy for both the
coarse and fine phases measured against the ground truth overthe constructed indoor environment,
while Section V concludes the investigation and proposes areas for new research.

2 Background

Indoor localization has been explored in many contexts, butmost often finds application in pig-
gybacking existing communication infrastructures (e.g. WiFi, Bluetooth) due to the fact that cus-
tomized solutions (e.g. UWB, Ultrasound, and IR) are too expensive and require hardware devoted
solely to localization in addition to existing communication infrastructure. Moreover, localization
in the conventional sense requires transceivers which are capable of processing channel measure-
ments (e.g. angle, signal strength, time of flight etc.) and relate them to positional estimates
through localization algorithms (e.g. multilateration, triangulation). With the transition from elec-
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tric to electronic lighting and the ubiquity of light in indoor spaces, visible light may prove to be
the next communication infrastructure to exploit for localization services. The benefits of visible
light as a localization medium are its directionality, short range, and impulse response, while its
issues to overcome are installation accuracy, network layer identification, coexistence of WiFi and
VLC [17], and efficient multiple access schemes [5].

To provide a theoretical analysis and simulation of the proposed algorithm, a model of the VLC
channel is required. The channel impulse response,h(t), model is that proposed in a character-
ization of the channel through simulation [2][6] to accountfor reflections that lead to temporal
dispersion inh(t).

Figure 1: Source Receiver Channel Model Illustration [6]

Due to the directionality of visible light systems, the following vector structure is employed
to describe the geometry of a source-receiver pair. A typical LED source can be represented by
Sk = {rSk

, n̂Sk
, mk, PTk

}, ∀k ∈ L; rSk
= [xk, yk, zk]

T is the source position,̂nSk
is the source

orientation,m is the Lambertian mode number associated with the directivity of the source,PTk
is

the source’s transmit power, andL is the number of sources in the space.
Whereas the simple receiver is defined asRj = {rRj

, n̂Rj
, ARj

, FOVj}, ∀j ∈ T ; rRj
=

[xj , yj, zj]
T is the receiver position,̂nRj

is the orientation,ARj
is the receiver area,FOVj is the

receiver’s field of view, andT is the number of receivers in the space . Provided a rangeDk,j be-
tween thekthsource and thejth receiver,θj,k is the angle of incidence betweenn̂Rj

and(rSk
−rRj

)
andφk,j is the angle of irradiance betweenn̂Sk

and(rRj
− rSk

).
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cos(θj,k) = n̂Rj
·

rSk
− rRj

Dk,j

(1)

cos(φk,j) = n̂Sk
·

rRj
− rSk

Dk,j

(2)

Given the performance parameters of the sources and receivers, we can define the maximum pos-
sible received power at(φk, θj) = (0, 0), which provides a bound on the power scale the receiver
would observe if directly under a luminaire with a perfectlyaligned LOS.

Pk,j(0, 0) =
(mk + 1)ARj

PTk

2π(zk − zj)2
(3)

Typically the impulse response of the channel is modeled as ascaled (based on the geometric
properties identified) and shifted impulse. This treatmentfails to account for the reflections and
scattering that are often encountered by optical transmissions; Researchers often account for the
multipath effect through an exponential factorκ applied to the propagation model.

Pk,j(φk,j, θk,j) =
Pk,j(0, 0) cosm+κ(φk,j) cosM(θk,j)

D2
k,j/(zk − zj)2

(4)

The development of a software model, CandLES, designed for the specific purpose of charac-
terizing the lighting and communication performance of VLCis provided in [2]. This model can
provide the impulse responses for an arbitrary configuration of transceivers and blockage objects
along with the illumination pattern without the need for empirically determining an appropriate
multipath parameterκ. Furthermore, the transmission is also corrupted by additive white Gaussian
noise (AWGN), whose Power Spectral Density (PSD) is constant, at the receiver due to thermal
noise.

The PSD of the LED source also has an impact on the communication performance. The PSD
of the transmission at the output of the channel is proportional to the PSD of the transmission
PSDXh

(λ) ∝ PSDX(λ).
This produces a PSD,PSDXh(t)+N(t)(λ), which is observed by the receiver optics. Firstly, this

signal is concentrated and filtered by to alter the PSD toPSDXh(t)C which allows the received
energy to be optically focused on the detection device (photodiode),RPd(λ) after being appropri-
ately filtered byROF (λ). The signal and noise terms of the received waveform can be expressed
as summations over the wavelengths in the band of interest.

P =
∑

λ

A · PSDXhC(λ) · ROF (λ) · RPd(λ) · ∆λ (5)

N =
∑

λ

A · PSDNC(λ) · ROF (λ) · RPd(λ) · ∆λ (6)

The SNR can now be defined as the ratio of signal power to the product of unit electron charge,q,
the noise, and the signaling rate,Rb.

SNRk,j =
P 2
k,j

(q ·Nk,j) · Rb

(7)
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Figure 2: VLC System Blocks: Transmission, Channel, and Reception

With an understanding of the VLC channel, measurements may be extracted from it such as re-
ceived signal strength (RSS), angle of arrival (AoA), time difference of arrival (TDoA), and/or time
of arrival (ToA). Due to the directionality and the short range nature of VLC, some measurement
types are more attractive than others when considering localizing a communication capable device.
This investigation used RSS and AoA measurements from the visible light channel to determine
the target’s position.

3 System and Algorithm Description

The CandLES simulation environment [2] is used to model a 4 by4 by 3.5 meter room, with
twelve (12) luminaries mounted to the ceiling and receiversat varying discrete positions within the
room. Figure 3 provides a view of the indoor environment model using CandLES. The simulation
parameters are provided in Table 1.

The model measures the system impulse response, noise levels, as well as signal power and
reception angles at each of the discrete receiver locationsfrom each of the twelve luminaire anchors
by coordinating multiple access to the visible light channel in a time division approach. The
multiple access scheme may be expanded to use codes, frequency tones, or even wavelengths and
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Figure 3: Indoor Environment Model

will be considered in future work. The collection of these measurements within this indoor space
are used as input to the proposed localization algorithm herein.

One of the primary requirements of this environment is to provide adequate lighting in the
space. As observed in equations (7), the SNR can be very high for adequate illumination. The
metric used is 200- 500 lx at desk surface, which is considered to be one meter above the floor.
Figure 4 illustrates the illumination coverage in this environment.

3.1 Coarse Phase Algorithm

Thecoarsephase of the target localization algorithm depends heavilyon the infrastructure layout
of the luminaire anchors. Prior localization approaches inthe context of sectors or cells has been
investigated [1]. These approaches are able to bound the worst case localization error to the radius
of the sector itself through code signaling or in-range sensing.

The context of WiFi/VLC cooperative localization [17] is considered within an indoor environ-
ment, equipped with LED luminaries designed and distributed in a manner such that the illumina-
tion requirement is satisfied.

The implication of the illumination requirement from a communications perspective, simply
guarantees connectivity over the majority of the indoor environment. Thekth luminaire is as-
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Table 1: Indoor Localization Parameters
Parameter Value

Optical Tx Power(PT ) 1.9649 W
Lambertian Mode(m) 30
Effective Area of Rx(AR) 0.81 cm2

Electron Charge(q) 1.6 × 10−19 C
Background Light Current(Ibg) 5100 µA
Speed of Light(c) 2.998 × 108 m/s
Noise PSD(No) 1.632 × 10−21 W/Hz
Optical/Electrical Efficiency(γ) 0.53
Source Orientation(n̂Sk

) [0,0,-1]T

Range of Receiver AzimuthAz 0 to π
Range of Receiver ElevationEl 0 to π
Receiver Orientation(n̂Rj

) [0,0,0]T − [0, 0,−1]T

Vertical Range(zk − zj) 2.2 m
Symbol Rate(Rb) 20 MHz
Field of View (FOV ) 10-180 degrees
Wall Reflectivity%Reflect 60%

sumed to be installed at a positionrSk,desiredin the relative coordinate frame along with its relative
orientationn̂Sk,desired; however these absolute positions and orientations are subject to installation
errors(rSk,offset, n̂Sk,offset), which are modeled as Gaussian noise.

rSk,actual = rSk,desired+ rSk,offset ,∀k ∈ L (8)

n̂Sk,actual = n̂Sk,desired+ n̂Sk,offset ,∀k ∈ L (9)

Furthermore, the coarse algorithm leverages the work done on multiple access [5] for the visible
light channel. At the network layer each landmark luminaireis required to have its own unique ID,
and the capability to packetize the position, orientation,transmit optical power, and beam pattern
mode as outlined in the Figure 5. The mobile target has the capability to process the network layer
packets and measure the optical power for each luminaire transmission in the sequence and report
an estimate when firstly entering the environment. The main idea is that prior to establishing a
communication connection, the device broadcasts its presence to the infrastructure. The coarse
estimate is obtained as a weighted positional estimate whose weights are the measured optical
power from each luminaire. Additional binary weightsβk are applied to the received optical power
to discount outliers in the observations, which can occur atvarying orientations. This investigation
used a received power threshold of10 dB. Equation 10 outlines the coarse weighted estimate of
device location.

r̂Rj =

∑L

k=1 βkPk,j(φk,j, θk,j)rSk,desired
∑L

k=1 βkPk,j(φk,j, θk,j)
(10)

The only constraint on the rate,Rb, at which the coarse sequence is transmitted is that the power
level variation appears uniform to the user in the room. Moreover, the specific implementation of
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Figure 5: Broadcast VLC Packet

the multiple access is not considered in this paper. One of the largest benefits of this approach
is that simply observing the brightest luminaire does not yield an appropriate feasible guess of
location, especially when multiple luminaries are within theFoV . Thecoarsephase concludes by
returning the AoA measurements it expects to observe in thefinephase.
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Figure 6: Localization Process between Target and Infrastructure

3.2 Fine Phase Algorithm

The orientation of the target is crucial and the determination of target location is geometry and
search related given the information available. Thecoarsephase of the algorithm measured
Pk,j(φk,j, θk,j) and provided an initial guess of the range,D̂k,j = ||r̂Rj − rSk,desired||. Therefore,
In certain circumstances, we may assume thatθk,j = φk,j, ∀k ∈ L, j ∈ M Under this assumption,
we may compute an estimate for the angle of incidence,θk,j.

θk,j = cos−1

[

(

Pk,j(φk,j, θk,j)

Pk,j(0, 0)

)
1

m+M+κ

]

(11)

The fine phase of the positioning algorithm served to improve the initial coarse estimate by
measuring bearing and elevation angles observed from the landmark luminaries and triangulat-
ing its position. There are several approaches to triangulation in the literature such as itera-
tive search,geometric circle intersection, geometric triangulation, Newton-Raphson method [16].
Firstly, to place the AoA analysis discussion into context,give attention to the geometry outlined
in Figure 7.

Typically three dimensional triangulation requires four reference anchors due to the fact that
each anchor provides one independent AoA measurement to thereceiver. However, if the receiver
is capable of measuring both Azimuth(ψ̂k,j) and Elevation(α̂k,j) with respect to its orientation
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axis (e.g thez-axis isn̂Rj
) , only two anchors are required for triangulation. LetDx andDy denote

the inter-luminaire spacing in thex andy directions, mounted on the ceiling. Given these two
distances any inter-anchor distance,D, can be computed when determining which anchors to use
for triangulation. Furthermore, we may compute the ranges between the anchorsk = 1, 2 and the
jth receiver of interest as follows:

Dj,1 =
D

√

1 + tan2 ψ̂j,1

sin α̂j,1(tan ψ̂j,1 tan ψ̂j,2)
(12)

Dj,2 =
D

√

1 + tan2 ψ̂j,2

sin α̂j,2(tan ψ̂j,1 tan ψ̂j,2)
(13)





Xj

Yj
Zj



 =





Xk

Yk
Zk



 +





Dj,k sin α̂j,k cos ψ̂j,k
Dj,k sin α̂j,k sin ψ̂j,k

Dj,k cos α̂j,k



 (14)

It can be seen in equations 12 through 14, that given true measurements of the Azimuth(ψ̂k,j =
ψk,j) and Elevation(α̂k,j = αk,j) between the receiver and two anchor luminaries, the position of
the receiver can be analytically computed. Due to the non-linearity of the transformations, bias
and precision errors in the angular measurements can drastically affect the estimate of receiver
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position. There are measures to be taken to bound the affect these instrumentation errors can
propagate. Given that lighting sources are typically installed in a fixed location within the indoor
space, we may derive a geometric constraint [18] which aids in the removal of poor measurements.
In this paper, however, we assume that the light sources are on the ceiling as in Figure 3 and can
derive the geometric constraint according to the illustration in Figure 7.

e =
[

eψ1,j
, eα1,j

, eψ2,j
, eα2,j

]T
(15)

We propose to minimize the square errorf(e) subject to the geometric constraintc(e).

argmin
e

f(e) = e
T
e

subject to c(e) = 0
(16)

We can observe that the constraint based on this configuration is given by:

c(e) = cot(π
2
− α1,j) sin(ψ1,j)−

cot(π
2
− α2,j) sin(π − ψ2,j) = 0

(17)

This constrained optimization problem may be solved Lagrangian functions and may be trans-
formed into a more computationally effective Quadratic Programming (QP) problem [18]. The
optimization is iterative and have pre-established performance criteria established such as an error
tolerance (γ ≥ 0): ||ei+1 − ei|| ≤ γ to prevent demising returns on computation or subject to a
maximum iteration constraint :Imax = N , to prevent excessive computation time.

4 Results

The two phase hybrid localization system is applied to the environment model (Figure 3), using
the range of parameters in Table 1.
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Figure 8: Coarse Performance for Varying Field of Views as a function of Receiver Orientation

Firstly, the effect of orientation and field of view on the receiver design was studied to bound
the design space; if the coarse performance is poor or numerically ill defined, the fine phase of the
algorithm is of no use. Figure 8 illustrates the mean Euclidean distance error as an intensity plot
for fixed field of views as a function of receiver orientation (Azimuth and Elevation in its local
coordinate frame).

It is observed that forFoV /∈ [70, 110], there are potential orientation configurations in which a
coarse estimate cannot be made (as seen as white patches in Figure 8). The 90 degreeFoV provides
the best mean Euclidean distance accuracy performance overall receiver orientation ranging from
42 cm to 55 cm when not being directly beneath luminaries. Taking this result into account, the
spatial error distribution is investigated for the coarse phase of the algorithm. The mean accuracy
error over the indoor simulation space is found to be34.88 cm. The intensity map of accuracy
error is shown in Figure 9. The largest spatial contributorsof error are the poorly illuminated
areas; however occupants are generally not isolated to these corner areas. We can observe that
the coarse phase effectively groups the receiver to the closest luminaries or combination thereof,
therefore the performance of this scheme is best when the receiver is in the closest proximity to
luminaries.
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The fine phase of the algorithm serves to improve the initial coarse estimate. As observed in
Figure 10, the Euclidean distance error is improved over theinterior of the room when compared to
the coarse phase performance as the receiver is able to arrive at useful independent measurements
and can refine the initial coarse estimate. . It is noticed, however, that the fine phase processing
has little impact on the poorly illuminated sections of the room. The median accuracy over the
complete room is13.95 cm.

The results reported offer significant improvements over state of the art piggyback approaches
due to both the ubiquity and distribution of anchor sources provided throughout the indoor en-
vironment as well as the directionality of the medium over which the localization is performed.
Moreover the computational complexity is low as a coarse estimate is found within one multiple
access cycle, whereas the fine estimate arrives at a solutionwithin four iterations on average. This
algorithm is performed in the mobile device and can be thought of as distributed; however as we
have shown herein the device may report its estimates of its location to the infrastructure to allow
the infrastructure to provide services or resources to the mobile device.
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5 Conclusions and Future Work

Localization algorithms, which adhere to the exploitationof communication infrastructure (e.g.
WiFi, Bluetooth), typically perform poorly (e.g. accuracies of 1 meter or more) and moreover often
require sophisticated learning algorithms or fingerprinting methods to achieve that performance. A
lighting infrastructure based on solid state LED illumination and communication was introduced. It
was found that the directionality and increased number of landmarks enabled superior performance
using the proposed two phase algorithm than the state of the art approaches for WiFi or Bluetooth.
Despite the findings being intuitive from a heuristics standpoint it’s the application to lighting (a
common indoor necessity) that enables these improvements using simple weighted average and
triangulation approaches. Our results show that visible light is one of the most viable solutions
to indoor positioning due to its directionality, short impulse response, and the distribution and
ubiquity of anchor luminaries to meet the illumination needs of indoor spaces. Future work will
consider occupied spaces with more multipath effects are observed along with varying lighting
configurations.
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