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Abstract–Advances in mobile computing, sensors, controls, ubiquitous networking, and other in-
door automation infrastructure enable buildings to operate more intelligently, providing improved
energy efficiency, safety, convenience, and quality of life. However, many features of these “smart
spaces” require sensing, aggregation, analysis, and storage of potentially sensitive information
about room occupants. The privacy of the information manipulated by smart spaces quickly be-
comes a key barrier in realizing the full value of ambient systems and is the focus of this paper.
We approach this challenge by first surveying current privacy definitions and mechanisms (access
control, k-anonymity, and differential privacy) under the assumption of ambient sensors and net-
working found in smart spaces. We then identify how existing approaches are not suitable for smart
spaces under major smart space privacy scenarios and propose adaptations with strong potential
for addressing these scenarios.
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Figure 1: (a) Highly automated smart spaces provide services to improve productivity, energy-
efficiency, and health in a variety of situations. (b) Illustrates the interactions between different
parts of a smart space. By gathering information about the smart space from sensors and by
providing access to this information to software applications, the smart space computer controls
the actuators in the smart space system. Occupants can interact with the smart space infrastructure
through the sensors and actuators or through mobile devices that act as user agents. Through the
smart space computer, the smart space can also access resources on larger networks, such as the
cloud.

1 Introduction
Ambient systems offer many potential benefits to humans in terms of efficiency, safety, health,
convenience, and productivity. Our recent work in this area focuses on benefits achieved by the
adoption of intelligent and interactive (“smart”) lighting systems developed by the NSF Smart
Lighting Engineering Research Center [1]. A typical use case here is illustrated in figure 1a. Here
we envision individuals in an office building in which the infrastructure (“smart spaces”) provides
services to identify the location of assets (people, objects, and the like), resources (conference
rooms, elevators, & lighting), and rules for their use and consumption.

In the most basic case, we seek to turn lights off when no user is present. In more exotic cases,
we monitor user activities and predict behaviors to anticipate where services are required (e.g.,
elevator arrival or light consumption to support tasks), or we quantify the occupancy and location
of certain individuals to maximize the use of conference rooms. In these and many other related
use cases, the smart space—sensing, computing, and networking infrastructure—needs to detect,
process, and disseminate a great deal of information about individual users. This information
can be highly personal and dangerous if exposed inappropriately or maliciously. We focus on
the challenge of mitigating the effects of the sensing and aggregation of this information in smart
spaces without jeopardizing the benefits that they promise.

We investigate three popular methods of protecting privacy and illustrate their limitations. In the
process, major barriers to protecting privacy in smart spaces are highlighted. We also introduce an
extension to differential privacy to make it more applicable to emerging smart spaces.
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1.1 Capabilities of smart spaces
The scope of smart spaces is vast, growing daily as new applications are developed for mobile
computing platforms, such smart phones, in the context of home automation, or for vehicular net-
works. While these applications are sometimes exotic, they are also practical as concepts seeking
to improve human life. Examples include indoor positioning, thermostat control, and our main
focus: lighting technologies. Specific innovations include color-controllable lighting units; optical
sensors, such as cameras; and visible light communications, which can reuse lighting infrastructure
to provide wireless networking capabilities [2, 3, 4].

These technologies can be combined to create highly-automated rooms that anticipate and re-
spond to their occupants’ needs. For example, a smart space can find and track occupants using
sensors as they move throughout a building to automatically turn lights on near occupants to light
their way and off as the occupant passes to conserve energy. Temperature, air flow, sound volume,
and other room settings can also be automatically tuned to suit the occupants’ personal preference
or to match their current activities. Additional examples are illustrated in figure 1a. Through such
automation, smart spaces have not only the potential to provide energy savings, but also to improve
the productivity of their occupants.

In addition to automation, the sensing, networking, and computational capabilities of smart
spaces can provide information services, such as providing directions for navigation, managing
resources to facilitate sharing, tracking shoppers to increase sales, interacting with utility compa-
nies through smart meters, or monitoring to allow nurses to remotely serve patients (telemedicine).
Research into circadian rhythm control by regulating light levels [5] also demonstrates the poten-
tial to improve health when a smart space can identify and track individuals. This latter point is
critical: realizing many of the benefits of ambient systems requires empowering the computing
infrastructure with sensitive information about individuals.

1.2 Organization of the paper
The remainder of the paper is organized as follows: section 2 explains the problems and the desired
outcomes for smart space privacy; section 3.1 explores using access control methods to protect
privacy in smart spaces; section 3.2 explores applying k-anonymity to smart spaces; and section 3.3
explores applying differential privacy to smart spaces. Section 4 concludes the paper.

2 Overview of privacy problems
While smart spaces have the potential to improve quality of life for their occupants, unless everyone
who observes the smart space’s data is fully trusted to handle all of the data, smart spaces can also
cause their occupants to suffer privacy breaches. Although this trust is reasonable in special cases,
such as remote in-home medical care, in which only the patient and medical professionals, who
are customarily trusted, interact with the smart space, this assumption of trust is not appropriate in
most other scenarios.

For example, in shared buildings, such as office buildings or shopping centers, occupants may
not be comfortable sharing their smart space data with each other. In these scenarios, malicious
occupants can use the smart space to gather data about other occupants that would otherwise be
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Figure 2: A smart space may inadvertently leak information in many ways. (a) Indoor positioning
or occupancy data (needed for many smart space applications) can disclose the location, activities,
and relationships of occupants. (b) Shows how personalized lighting may disclose the presence
and identity of occupants within a room: if light matching Alice’s personal preference leaks out of
a room through a slit under the door, people outside of the room may correctly infer that Alice is
inside the room.

inaccessible. One example of this is illustrated in figure 2b, where the capability to adjust a room’s
settings to meet personal preferences can be used to discover the presence or location of occupants.

In other cases, occupants may not entirely trust the smart space’s system administrator. For ex-
ample, if a shopkeeper analyzes her store’s smart space data to maximize profit, a conflict between
the shopkeeper’s desire for more revenue and the shopper’s desire to keep purchasing decisions
from advertisers may prevent shoppers from fully trusting the shopkeeper.

Additional privacy problems can arise from the software or devices that comprise the smart
space. Like smart phone applications, while smart space software applications from third parties
can provide desirable features, they can also contain trojan code: components that access and
covertly disclose private information. Similarly, hardware obtained from untrusted parties can
leak information. Unfortunately, it is very difficult to screen for such hidden threats [6]. These
scenarios, already common in smart phone applications, will be problematic in ambient systems
as well.

Prior works have investigated privacy problems in smart spaces or related scenarios. While a few
of these papers present a general solution [7], many focus on only one feature of smart spaces, such
as protecting location privacy for a particular application [8], and do not address privacy protection
broadly for multiple services. We seek a general framework on which to base the development of
a privacy protection paradigm that can be applied in a large set of use cases in smart spaces.

Among the works that do aim to provide a general solution for smart spaces, most rely primarily
on access control mechanisms to prevent unauthorized access to data [7, 9]. Unfortunately, as
we explain in section 3.1, despite access control mechanisms, information can still be leaked to
untrusted or partially trusted entities; additional privacy protection is necessary to mitigate these
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disclosures.
In contrast to previous works, we seek general solutions to protect privacy even when the smart

space must accommodate untrusted entities. This is achieved by exploring privacy mechanisms
that are typically used to regulate third-party database access and evaluating them in the context of
smart spaces.

2.1 Smart space privacy goals
In order to discuss privacy for smart spaces, we need a working definition of privacy. Unfor-
tunately, no universal consensus exists on the definition of or requirements for privacy; instead,
privacy is a nebulous concept that is time-dependent, context-dependent, and subject to different
interpretations [10]. These characteristics make privacy difficult to achieve or to measure. Instead
of evaluating privacy mechanisms against a universal definition, we compare their utility (whether
desired applications can work under the restrictions of the privacy mechanisms) and the integrity
of their privacy guarantees (the extent to which their privacy protections hold) against the other
mechanisms in various smart space use cases.

Each use case is a desirable smart space service implemented on the architecture illustrated in
figure 1b. In this architecture, we assume that only a central computer is fully trusted and that
communications to and from this central computer are secure against eavesdropping and tamper-
ing. Other components or participants (such as third-party software applications or cloud-based
services) can be untrusted or partially trusted. These assumptions mitigate the need to fully vet
each part of the smart space while avoiding the need to implement decentralized privacy mecha-
nisms.

3 Approaches to privacy

3.1 Access control
Privacy is often defined by an access control policy that specifies the conditions under which infor-
mation may or may not be released. These policies consider what information is requested, who
is requesting the information, and other contextual information. For example, the access control
policy for a telemedicine smart space may specify that access to the patient’s medical information
is only granted during business hours to the patient’s physician. Another, more permissive access
control policy may allow all information to be shared or sold to advertising partners.

According to the access control definition of privacy, a system provides or preserves privacy if
and only if it adheres to the specified access control policy. However, the policy may not ade-
quately reflect the expected or desired level of privacy and may still allow information to be leaked
in undesirable ways. For example, as illustrated in figure 2b, an access control policy that al-
lows a personalized lighting system to access occupancy information may unintentionally disclose
this information to untrusted coworkers sharing the smart space; outsiders without direct access
to protected occupancy information can still infer the identity of occupants behind closed doors
by observing the smart space’s response to the protected information (in this case, personalized
lighting that escapes under the door).
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Table 1: k-anonymization is illustrated: (a) a sample raw dataset and (b) the k-anonymized dataset,
where k = 2, are shown.

Name Age Gender Score
Alice 17 F 85
Bob 23 M 70
Charlie 16 M 72
Dave 26 M 74
Eve 15 F 61
Frank 22 M 90

(a)

Name Age Gender Score
* < 23 F 85
* ≥ 23 M 70
* < 23 M 72
* ≥ 23 M 74
* < 23 F 61
* < 23 M 90

(b)

This example highlights two unfortunate limitations of access control. First, the onus to antic-
ipate unintended disclosures lies with the access control policy designer. In this case, since the
policy’s designer did not anticipate that escaping light can carry occupancy information, the pol-
icy was not designed to prevent this disclosure. Anticipating unintended disclosures is especially
difficult in smart spaces due to the vast variety of data used, the large number of applications and
other entities using this data, and the complex (and sometimes unknown) interactions that occur
within smart spaces.

Second, using strict policies to prevent undesirable disclosures can be impractical since such
policies may disable otherwise desirable components of the smart space that inevitably share or
disclose information. For example, a strict policy would prevent personalized lighting within an
office building because personalized lighting would reveal occupancy information to untrusted or
adversarial coworkers. Similarly, a strict policy would prevent smart meters from communicat-
ing to utility companies since potentially sensitive usage information may be inferred from these
communications.

Finally, a strict access control policy would prevent third-party applications, devices, and ser-
vices from using smart space data, crippling third-party smart space products, since they may
contain trojans or deviate from the specified policy in an unverifiable manner. As a consequence,
using access control to achieve privacy in smart spaces may hamper the development of smart
space products by new, not-yet-trusted developers.

3.2 k-anonymity
An alternative is k-anonymity. Unlike access control, which can only protect privacy by preventing
data releases, k-anonymity aims to protect the identity of the person whom is the subject of the
released information [11]. In this way, even if desirable applications disclose the k-anonymized
sensitive information, smart space occupants remain protected by anonymity. This also allows
untrusted or partially trusted third-party applications, devices, and services to be integrated into
the smart space without necessarily sacrificing privacy. Similarly, the shopkeeper described in
section 2 can analyze her shop’s smart space data while allowing her customers to retain their
privacy through anonymity.
k-anonymity is achieved by determining which attributes are quasi-identifiers (QIs): attributes

(such as name, age, and location) that can be used with other sources of information to identify
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people. The values of these attributes are generalized so that they cannot specifically identify any
individual; instead, any anonymized record can belong to any of k people.

For example, from the raw dataset shown in table 1a, k-anonymization can be performed by
generalizing each QI (name, age, and gender), to form table 1b, so that each tuple of QIs can
match at least k = 2 people. As a result, an adversary who can match name, age, and gender
to identities would still be unable to determine to whom each anonymized entry belongs. For
example, the 5th entry in table 1b could either be Alice’s or Eve’s entry to the adversary.

However, this generalization makes k-anonymized data less precise than data protected with
just access control mechanisms. This reduction in precision can degrade the performance of smart
space applications. For example, one approach to achieve (probabilistic) k-anonymity is for ev-
eryone in a smart space to falsely report being in being in N − 1 different regions, where N is
the number of regions expected to cover k people [12]. With this anonymized data, an energy-
efficiency application that automatically switches lights on and off based on occupancy would not
work well because lights would remain on in N − 1 out of N regions, which are falsely reported
as being occupied.

Still, despite this compromise in utility, k-anonymity is susceptible to failure in several ways
[11, 13]. One assumption of k-anonymity is that the anonymizer can determine which attributes
in the private dataset also appear in other datasets to determine which attributes should be treated
as QIs [11]. Unfortunately, as admitted in reference [11], identifying all QIs is a challenging task
that requires knowing about all external sources of information. If a QI is missed when anonymiz-
ing data, adversaries can use the attribute to narrow down the anonymizing set. k-anonymity is
especially susceptible to this risk in smart spaces; due to the rich abundance of information, many
attributes, and hence, potentially unanticipated QIs, exist.
k-anonymity in smart spaces is further complicated because smart spaces generate multiple data

releases over time. Unlike privacy mechanisms for traditional databases that only need to pro-
tect a single snapshot of the database, smart space privacy mechanisms need to handle perpetually
updating information (or, effectively, an ever increasing number of snapshots). Unfortunately, if
multiple data releases describe the same or overlapping groups of people, composition or inter-
section attacks may drastically reduce the size of the anonymizing set [13]. For example, Eve in
table 1b completely loses her anonymity on her 23rd birthday because her k-anonymized age tran-
sitions from < 23 to ≥ 23; since Eve’s entry will be the only one that transitions on Eve’s 23rd
birthday, an adversary that knows Eve’s birthday can identify her entry with certainty.

Intersection attacks may also be possible if separate smart space applications submit separate
queries on the same snapshot, yielding multiple data releases. Separate queries and multiple data
releases may be generated if different applications and services require data to be k-anonymized in
different ways. For example, an indoor navigation service may prefer the anonymization method
described in [12] while an energy-efficiency application may prefer to use larger, continuous re-
gions instead of fake locations for anonymization. By overlaying both sets of anonymized location
information to find their intersection, the precise location of participants can be determined.

3.3 Differential privacy
In contrast to k-anonymity, differential privacy (DP) composes well: combining multiple differen-
tial privacy data releases or combining them with external sources of information does not catas-
trophically obliterate the privacy guarantees [13]. In addition, like k-anonymity, DP can work in
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smart spaces with untrusted or partially trusted components, occupants, and external services since
it does not rely on the entities that access information to enforce its policy.

DP aims to ensure that the probability of getting any outcome remains the same whether or not
any individual participates; in this sense, participation does not diminish privacy since it does not
significantly affect the result. This is achieved by randomizing and adding noise to the functions
that use the dataset to mask the effects of individual participants. Formally, as stated in Dwork [14],
a randomized function f gives ε-differential privacy if for any input datasets D1 and D2 differing
by no more than one entry and for any set of outputs S ∈ Range(f),

Pr[f(D1) ∈ S] ≤ exp(ε)× Pr[f(D2) ∈ S]

A smaller ε (closer to 0) means that each participant’s participation has a less significant effect
on the outcome, thus providing greater privacy to each individual.

However, the guarantees provided by DP inherently limit the utility of the resulting data in a
smart space. Since the individual should not be able to cause the probability of getting any outcome
to change by more than a factor of exp(ε), which is deliberately kept near unity to protect privacy,
personalization, such as adjusting the lighting to match the occupant’s personal preferences, is not
possible.

For example, imagine that we have a dataset that tracks the presence of people in a room and
their lighting preference. We wish to design an ε-DP function f , with ε = 0.1, that uses this dataset
to set the room’s lighting levels to match the occupants’ preference, or, if no occupants are in the
room, to turn off the room’s lights. Let’s say that Bob, an occupant in the room, represented by an
entry in the dataset, prefers 82 lux of neutral white lighting. Ideally, if we ignore privacy, f always
sets the lights to 82 lux when Bob is present and to 0 lux when Bob is not present. However, since
0.1-DP requires

Pr [f(Bob here) = 82] ≤ e0.1 ∗ Pr [f(nobody here) = 82]

if the lights are off with 90% probability when nobody is in the room, then the lights cannot be
82 lux (or even on) with greater than 1.1 ∗ (100% − 90%) = 11% probability when Bob is in the
room.

Fortunately, smart space applications that work with large groups of people that don’t require
personalization and can work with noisy aggregated data remain possible. For example, one po-
tential application is to adjust settings, such as the temperature and lighting levels, in a large audi-
torium to match the audience’s overall preference. DP can also be applied to analyze data to learn
general trends that can provide useful insights to help optimize the smart space.

3.3.1 Privacy budgets

Implementations of DP, unfortunately, only allow for a limited number of queries, known as the
privacy budget. While this limitation is acceptable for database applications (for which DP was
designed), in which a snapshot of the database at one point in time can yield useful insights,
most smart space applications require frequent and perpetual information updates and will not
work properly with stale information. For example, knowing the average preference for lighting
level in an auditorium five weeks ago is insufficient for a smart space application to determine the
appropriate lighting settings now.

8



In database applications, the privacy budget is intended to prevent adversaries from repeatedly
querying a dataset to gain more certainty about the result. This attack would otherwise be pos-
sible since averaging several noisy estimates of one value yields a more accurate estimate of that
value. Unless the number of queries is bounded (by the privacy budget), adversaries would be
able to almost completely eliminate the noise by averaging, defeating the guarantees of differential
privacy.

Dwork et al. [15] present ways to implement differential privacy without limiting the number
of updates allowed. Unfortunately, these methods require the queries’ answers to monotonically
approach a fixed bound with each changing update; this requirement ensures that the query results
will eventually stop changing significantly and thus, stop providing any significant update. While
the approaches in [15] are suitable for monitoring one-shot events as they happen, the approaches
are not as suitable for smart space applications because the smart space applications will eventually
stop getting useful updates.

We propose partitioning time-varying smart space data over time, with a separate privacy budget
for each time segment. Smart space applications require frequent updates because the needed
information changes unpredictably over time. For example, imagine a smart space application that
sets the ventilation airflow in an elevator to be proportional to the number of occupants. At time t0,
there are a0 occupants, so the application learns that there are approximately a0 + N0 occupants,
where Ni is the noise added to the query at time ti. At a later time t1, perhaps ten minutes later,
the previous occupants have likely left and new occupants have arrived. Let the number of people
in the elevator at t1 be a1. Assuming that a0 and a1 are independent, the estimate of a1 does
not reveal any additional information about a0 and vice-versa. Thus, multiple differential privacy
queries about unpredictably changing information, made in sufficiently different times cannot be
used to increase certainty about any particular answer.

This ever-growing privacy budget may be implemented by providing an hourly, daily, or other
periodic privacy budget that may only be used to query data from the associated time period.
However, more analysis needs to be done to determine how to implement the periodic privacy
budget to achieve the desired ε for ε-differential privacy, especially in cases where the answers to
queries at different times cannot be assumed to be completely independent.

3.3.2 Interactions in the smart space

Unfortunately, despite this adaptation and despite the compromises in utility accepted to provide
more robust privacy guarantees than just access control or k-anonymity alone, DP may not be
sufficient to provide an acceptable level of privacy for smart space occupants. Although DP can
add enough noise to mask the maximum effect that any individual’s dataset entry can have on
query results, occupants in a smart space also have the potential to affect the entries of other
people through interactions with those people. In the worst case, one influential individual may
be able to affect the attributes of all other individuals. In this case, either that individual will be
individually observable (through other dataset entries) despite DP, which results in no privacy for
that individual, or enough noise to mask the effect of all entries in the dataset will need to be added,
which renders the resulting data entirely useless. Neither option is desirable.
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4 Summary, discussion, and conclusion
Future smart spaces, equipped with the means to gather, share, and use information about them-
selves and their occupants, have the potential to greatly improve quality-of-life by providing con-
venience, safety, and efficiency. However, these same capabilities also create opportunities for vast
and intrusive privacy invasions. In an effort to mitigate these privacy problems while retaining the
benefits, we investigate privacy-protection mechanisms in the context of these envisioned smart
spaces to build a general smart space privacy framework.

Unlike prior works, we assume a generalized threat model in which devices or applications that
consume information are not fully trusted. This broader threat model is more realistic since it
accounts for potentially untrustworthy visitors, coworkers, shop keepers, service providers, and
other data-consumers that can interact with a smart space. Furthermore, this threat model allows
for a more flexible smart space product ecosystem, in which untrusted or partially trusted third
parties can contribute to the development of smart spaces without sacrificing privacy.

Unfortunately, within this threat model, existing access-control mechanisms are insufficient to
prevent data disclosure or to protect privacy. Other privacy definitions and mechanisms, such as k-
anonymity and differential privacy are able to provide more robust privacy guarantees by sacrificing
precision, and hence utility, but they each have their own weaknesses when applied to smart spaces.
k-anonymity can fail if previously unanticipated data is made available, as time passes, or if smart
space components interact badly. Differential privacy provides more robust privacy guarantees and
it can be adapted for certain smart space applications by partitioning the data to deal with privacy
budget limitations. However, it can still fail if occupants interact with each other (as they are likely
to do since they share the smart space).

Although none of the explored approaches preserve privacy in general-purpose smart spaces, the
possibility of finding a suitable privacy paradigm has not been ruled out; it may still be possible,
with a sufficiently inspired definition of privacy, to provide a satisfactory degree of privacy to the
smart space participants without rendering the smart space useless.

In the meantime, more specific use cases, such as remote home care, or single-application
smart spaces can still be secured with simple privacy mechanisms such as access control and k-
anonymity. However, future smart space privacy research must both account for the adversary’s
ability to infer information from a smart space’s response to private information and consider the
important role that untrusted or partially trusted parties play in the smart-space ecosystem.
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