Demo: Distributed Task Execution in Mobile Ad Hoc Networks

Prithwish Basu
Salma Abu Ayyash
Wang Ke
Thomas D.C. Little

Department of Electrical and Computer Engineering, Boston University, Boston, MA.

pbasu@bbn.com, {ke, saayyash, tdel} @ bu.edu

Demo #1 : TG Instantiation

Demo #2: TG Re-instantiation

Demo #3: TG-Patching

Detection of Disconnections

- Disconnections between instantiated nodes causes tasks to get disrupted
- These disconnections can be detected by periodic soft state HELLO messaging

Detection of Disconnections (in taskd)

- Source of disconnections
 - Network partitions due to failure or mobility
 - Route failures for extremely long routes
- Next steps after detection:
 - Re-instantiation (replacement of a lost child)
 - TG-patching (salvaging the tree below the lost child)

Summary of Key Research Contributions

- A novel distributed framework for task based resource discovery and deployment
- Algorithms
 - Theoretical foundations: computational complexity issues in embedding TGs onto irregular networks (MANETs)
 - New algorithms and protocols for discovery/selection of devices in the network while obeying the TG structure/attributes
 - Approximation bounds for the heuristic algorithms
- Techniques for efficient adaptation of distributed application / task to device mobility in the MANET
- Performance Evaluation
 - Metrics for analyzing performance of the above protocols
 - Performance evaluation by extensive simulation in ns-2
 - Development of a proof-of-concept prototype in a laboratory environment on off-the-shelf hardware
- Scalability Issues
 - Service composition using hierarchical task graphs
 - Focus: reuse of service instances that have been composed before by other users
- Future Work: Extending TG concepts to other application scenarios

Selected Publications